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Abstract. We study the regularity up to the boundary of solutions to the Dirich-
let problem for the fractional Laplacian. We prove that if u is a solution of
(−∆)su = g in Ω, u ≡ 0 in Rn\Ω, for some s ∈ (0, 1) and g ∈ L∞(Ω), then u
is Cs(Rn) and u/δs|Ω is Cα up to the boundary ∂Ω for some α ∈ (0, 1), where
δ(x) = dist(x, ∂Ω). For this, we develop a fractional analog of the Krylov bound-
ary Harnack method.

Moreover, under further regularity assumptions on g we obtain higher order
Hölder estimates for u and u/δs. Namely, the Cβ norms of u and u/δs in the sets
{x ∈ Ω : δ(x) ≥ ρ} are controlled by Cρs−β and Cρα−β , respectively.

These regularity results are crucial tools in our proof of the Pohozaev identity
for the fractional Laplacian [19, 20].

1. Introduction and results

Let s ∈ (0, 1) and g ∈ L∞(Ω), and consider the fractional elliptic problem

(1.1)

{
(−∆)su = g in Ω

u = 0 in Rn\Ω,
in a bounded domain Ω ⊂ Rn, where

(1.2) (−∆)su(x) = cn,sPV

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

and cn,s is a normalization constant.
Problem (1.1) is the Dirichlet problem for the fractional Laplacian. There are

classical results in the literature dealing with the interior regularity of s-harmonic
functions, or more generally for equations of the type (1.1). However, there are few
results on regularity up to the boundary. This is the topic of study of the paper.

Our main result establishes the Hölder regularity up to the boundary ∂Ω of the
function u/δs|Ω, where

δ(x) = dist(x, ∂Ω).

For this, we develop an analog of the Krylov [17] boundary Harnack method for prob-
lem (1.1). As in Krylov’s work, our proof applies also to operators with “bounded
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measurable coefficients”, more precisely those of the type (1.5). This will be treated
in a future work [21]. In this paper we only consider the constant coefficient op-
erator (−∆)s, since in this case we can establish more precise regularity results.
Most of them will be needed in our subsequent work [20], where we find and prove
the Pohozaev identity for the fractional Laplacian, announced in [19]. For (1.1), in
addition to the Hölder regularity up to the boundary for u/δs, we prove that any
solution u is Cs(Rn). Moreover, when g is not only bounded but Hölder continuous,
we obtain better interior Hölder estimates for u and u/δs.

The Dirichlet problem for the fractional Laplacian (1.1) has been studied from the
point of view of probability, potential theory, and PDEs. The closest result to the
one in our paper is that of Bogdan [2], establishing a boundary Harnack inequality
for nonnegative s-harmonic functions. It will be described in more detail later on
in the Introduction (in relation with Theorem 1.2). Related regularity results up
to the boundary have been proved in [16] and [7]. In [16] it is proved that u/δs

has a limit at every boundary point when u solves the homogeneous fractional heat
equation. The same is proven in [7] for a free boundary problem for the fractional
Laplacian.

Some other results dealing with various aspects concerning the Dirichlet problem
are the following: estimates for the heat kernel (of the parabolic version of this
problem) and for the Green function, e.g., [3, 10]; an explicit expression of the
Poisson kernel for a ball [18]; and the explicit solution to problem (1.1) in a ball
for g ≡ 1 [13]. In addition, the interior regularity theory for viscosity solutions to
nonlocal equations with “bounded measurable coefficients” is developed in [9].

The first result of this paper gives the optimal Hölder regularity for a solution u of
(1.1). The proof, which is given in Section 2, is based on two ingredients: a suitable
upper barrier, and the interior regularity results for the fractional Laplacian. Given
g ∈ L∞(Ω), we say that u is a solution of (1.1) when u ∈ Hs(Rn) is a weak solution
(see Definition 2.1). When g is continuous, the notions of weak solution and of
viscosity solution agree; see Remark 2.11.

We recall that a domain Ω satisfies the exterior ball condition if there exists a
positive radius ρ0 such that all the points on ∂Ω can be touched by some exterior
ball of radius ρ0.

Proposition 1.1. Let Ω be a bounded Lipschitz domain satisfying the exterior ball
condition, g ∈ L∞(Ω), and u be a solution of (1.1). Then, u ∈ Cs(Rn) and

‖u‖Cs(Rn) ≤ C‖g‖L∞(Ω),

where C is a constant depending only on Ω and s.

This Cs regularity is optimal, in the sense that a solution to problem (1.1) is not
in general Cα for any α > s. This can be seen by looking at the problem

(1.3)

{
(−∆)su = 1 in Br(x0)

u = 0 in Rn\Br(x0),
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for which its solution is explicit. For any r > 0 and x0 ∈ Rn, it is given by [13, 3]

(1.4) u(x) =
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

(
r2 − |x− x0|2

)s
in Br(x0).

It is clear that this solution is Cs up to the boundary but it is not Cα for any α > s.
Since solutions u of (1.1) are Cs up to the boundary, and not better, it is of

importance to study the regularity of u/δs up to ∂Ω. For instance, our recent proof
[20, 19] of the Pohozaev identity for the fractional Laplacian uses in a crucial way
that u/δs is Hölder continuous up to ∂Ω. This is the main result of the present
paper and it is stated next.

For local equations of second order with bounded measurable coefficients and in
non-divergence form, the analog result is given by a theorem of N. Krylov [17], which
states that u/δ is Cα up to the boundary for some α ∈ (0, 1). This result is the key
ingredient in the proof of the C2,α boundary regularity of solutions to fully nonlinear
elliptic equations F (D2u) = 0 —see [15, 6].

For our nonlocal equation (1.1), the corresponding result is the following.

Theorem 1.2. Let Ω be a bounded C1,1 domain, g ∈ L∞(Ω), u be a solution of
(1.1), and δ(x) = dist(x, ∂Ω). Then, u/δs|Ω can be continuously extended to Ω.
Moreover, we have u/δs ∈ Cα(Ω) and

‖u/δs‖Cα(Ω) ≤ C‖g‖L∞(Ω)

for some α > 0 satisfying α < min{s, 1 − s}. The constants α and C depend only
on Ω and s.

To prove this result we use the method of Krylov (see [15]). It consists of trapping
the solution between two multiples of δs in order to control the oscillation of the
quotient u/δs near the boundary. For this, we need to prove, among other things,
that (−∆)sδs0 is bounded in Ω, where δ0(x) = dist(x,Rn \Ω) is the distance function
in Ω extended by zero outside. This will be guaranteed by the assumption that Ω
is C1,1.

To our knowledge, the only previous results dealing with the regularity up to the
boundary for solutions to (1.1) or its parabolic version were the ones by K. Bogdan
[2] and S. Kim and K. Lee [16]. The first one [2] is the boundary Harnack principle
for nonnegative s-harmonic functions, which reads as follows: assume that u and v
are two nonnegative functions in a Lipschitz domain Ω, which satisfy (−∆)su ≡ 0
and (−∆)sv ≡ 0 in Ω ∩ Br(x0) for some ball Br(x0) centered at x0 ∈ ∂Ω. Assume

also that u ≡ v ≡ 0 in Br(x0) \ Ω. Then, the quotient u/v is Cα(Br/2(x0)) for
some α ∈ (0, 1). In [4] the same result is proven in open domains Ω, without any
regularity assumption.

While the result in [4] assumes no regularity on the domain, we need to assume Ω
to be C1,1. This assumption is needed to compare the solutions with the function δs.
As a counterpart, we allow nonzero right hand sides g ∈ L∞(Ω) and also changing-
sign solutions. In C1,1 domains, our results in Section 3 (which are local near any
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boundary point) extend Bogdan’s result. For instance, assume that u and v satisfy
(−∆)su = g and (−∆)sv = h in Ω, u ≡ v ≡ 0 in Rn \Ω, and that h is positive in Ω.
Then, by Theorem 1.2 we have that u/δs and v/δs are Cα(Ω) functions. In addition,
by the Hopf lemma for the fractional Laplacian we find that v/δs ≥ c > 0 in Ω.
Hence, we obtain that the quotient u/v is Cα up to the boundary, as in Bogdan’s
result for s-harmonic functions.

As in Krylov’s result, our method can be adapted to the case of nonlocal elliptic
equations with “bounded measurable coefficients”. Namely, in another paper [21]
we will prove the boundary Harnack principle for solutions to Lu = g in Ω, u ≡ 0
in Rn \ Ω, where g ∈ L∞(Ω),

(1.5) Lu(x) =

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|yTA(x)y|
n+2s

2

dy,

and A(x) is a symmetric matrix, measurable in x, and with 0 < λId ≤ A(x) ≤ ΛId.
A second result (for the parabolic problem) related to ours is contained in [16].

The authors show that any solution of ∂tu + (−∆)su = 0 in Ω, u ≡ 0 in Rn \ Ω,
satisfies the following property: for any t > 0 the function u/δs is continuous up to
the boundary ∂Ω.

Our results were motivated by the study of nonlocal semilinear problems (−∆)su =
f(u) in Ω, u ≡ 0 in Rn \ Ω, more specifically, by the Pohozaev identity that we es-
tablish in [20]. Its proof requires the precise regularity theory up to the boundary
developed in the present paper (see Corollary 1.6 below). Other works treating the
fractional Dirichlet semilinear problem, which deal mainly with existence of solutions
and symmetry properties, are [22, 23, 12, 1].

In the semilinear case, g = f(u) and therefore g automatically becomes more
regular than just bounded. When g has better regularity, the next two results im-
prove the preceding ones. The proofs of these results require the use of the following
weighted Hölder norms, a slight modification of the ones in Gilbarg-Trudinger [14,
Section 6.1].

Throughout the paper, and when no confusion is possible, we use the notation
Cβ(U) with β > 0 to refer to the space Ck,β′(U), where k is the is greatest integer
such that k < β and where β′ = β − k. This notation is specially appropriate
when we work with (−∆)s in order to avoid the splitting of different cases in the
statements of regularity results. According to this, [ · ]Cβ(U) denotes the Ck,β′(U)
seminorm

[u]Cβ(U) = [u]Ck,β′ (U) = sup
x,y∈U, x 6=y

|Dku(x)−Dku(y)|
|x− y|β′

.

Moreover, given an open set U ⊂ Rn with ∂U 6= ∅, we will also denote

dx = dist(x, ∂U) and dx,y = min{dx, dy}.
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Definition 1.3. Let β > 0 and σ ≥ −β. Let β = k + β′, with k integer and
β′ ∈ (0, 1]. For w ∈ Cβ(U) = Ck,β′(U), define the seminorm

[w]
(σ)
β;U = sup

x,y∈U

(
dβ+σ
x,y

|Dkw(x)−Dkw(y)|
|x− y|β′

)
.

For σ > −1, we also define the norm ‖ · ‖(σ)
β;U as follows: in case that σ ≥ 0,

‖w‖(σ)
β;U =

k∑
l=0

sup
x∈U

(
dl+σx |Dlw(x)|

)
+ [w]

(σ)
β;U ,

while for −1 < σ < 0,

‖w‖(σ)
β;U = ‖w‖C−σ(U) +

k∑
l=1

sup
x∈U

(
dl+σx |Dlw(x)|

)
+ [w]

(σ)
β;U .

Note that σ is the rescale order of the seminorm [ · ](σ)
β;U , in the sense that [w(λ·)](σ)

β;U/λ =

λσ[w]
(σ)
β;U .

When g is Hölder continuous, the next result provides optimal estimates for higher
order Hölder norms of u up to the boundary.

Proposition 1.4. Let Ω be a bounded domain, and β > 0 be such that neither β

nor β + 2s is an integer. Let g ∈ Cβ(Ω) be such that ‖g‖(s)
β;Ω <∞, and u ∈ Cs(Rn)

be a solution of (1.1). Then, u ∈ Cβ+2s(Ω) and

‖u‖(−s)
β+2s;Ω ≤ C

(
‖u‖Cs(Rn) + ‖g‖(s)

β;Ω

)
,

where C is a constant depending only on Ω, s, and β.

Next, the Hölder regularity up to the boundary of u/δs in Theorem 1.2 can be
improved when g is Hölder continuous. This is stated in the following theorem,
whose proof uses a nonlocal equation satisfied by the quotient u/δs in Ω —see
(4.2)— and the fact that this quotient is Cα(Ω).

Theorem 1.5. Let Ω be a bounded C1,1 domain, and let α ∈ (0, 1) be given by

Theorem 1.2. Let g ∈ L∞(Ω) be such that ‖g‖(s−α)
α;Ω < ∞, and u be a solution of

(1.1). Then, u/δs ∈ Cα(Ω) ∩ Cγ(Ω) and

‖u/δs‖(−α)
γ;Ω ≤ C

(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
,

where γ = min{1, α + 2s} and C is a constant depending only on Ω and s.

Finally, we apply the previous results to the semilinear problem

(1.6)

{
(−∆)su = f(x, u) in Ω

u = 0 on Rn\Ω,

where Ω is a bounded C1,1 domain and f is a Lipschitz nonlinearity.



6 XAVIER ROS-OTON AND JOAQUIM SERRA

In the following result, the meaning of “bounded solution” is that of “bounded
weak solution” (see definition 2.1) or that of “viscosity solution”. By Remark 2.11,
these two notions coincide. Also, by f ∈ C0,1

loc (Ω × R) we mean that f is Lipschitz
in every compact subset of Ω× R.

Corollary 1.6. Let Ω be a bounded and C1,1 domain, f ∈ C0,1
loc (Ω × R), u be a

bounded solution of (1.6), and δ(x) = dist(x, ∂Ω). Then,

(a) u ∈ Cs(Rn) and, for every β ∈ [s, 1 + 2s), u is of class Cβ(Ω) and

[u]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρs−β for all ρ ∈ (0, 1).

(b) The function u/δs|Ω can be continuously extended to Ω. Moreover, there
exists α ∈ (0, 1) such that u/δs ∈ Cα(Ω). In addition, for all β ∈ [α, s+ α],
it holds the estimate

[u/δs]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρα−β for all ρ ∈ (0, 1).

The constants α and C depend only on Ω, s, f , ‖u‖L∞(Rn), and β.

The paper is organized as follows. In Section 2 we prove Propositions 1.1 and 1.4.
In Section 3 we prove Theorem 1.2 using the Krylov method. In Section 4 we prove
Theorem 1.5 and Corollary 1.6. Finally, the Appendix deals with some basic tools
and barriers which are used throughout the paper.

2. Optimal Hölder regularity for u

In this section we prove that, assuming Ω to be a bounded Lipschitz domain
satisfying the exterior ball condition, every solution u of (1.1) belongs to Cs(Rn).
For this, we first establish that u is Cβ in Ω, for all β ∈ (0, 2s), and sharp bounds
for the corresponding seminorms near ∂Ω. These bounds yield u ∈ Cs(Rn) as a
corollary. First, we make precise the notion of weak solution to problem (1.1).

Definition 2.1. We say that u is a weak solution of (1.1) if u ∈ Hs(Rn), u ≡ 0
(a.e.) in Rn \ Ω, and ∫

Rn
(−∆)s/2u(−∆)s/2v dx =

∫
Ω

gv dx

for all v ∈ Hs(Rn) such that v ≡ 0 in Rn \ Ω.

We recall first some well known interior regularity results for linear equations
involving the operator (−∆)s, defined by (1.2). The first one states that w ∈
Cβ+2s(B1/2) whenever w ∈ Cβ(Rn) and (−∆)sw ∈ Cβ(B1). Recall that, throughout

this section and in all the paper, we denote by Cβ, with β > 0, the space Ck,β′ ,
where k is an integer, β′ ∈ (0, 1], and β = k + β′.

Proposition 2.2. Assume that w ∈ C∞(Rn) solves (−∆)sw = h in B1 and that
neither β nor β + 2s is an integer. Then,

‖w‖Cβ+2s(B1/2) ≤ C
(
‖w‖Cβ(Rn) + ‖h‖Cβ(B1)

)
,
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where C is a constant depending only on n, s, and β.

Proof. Follow the proof of Proposition 2.1.8 in [24], where the same result is proved
with B1 and B1/2 replaced by the whole Rn. �

The second result states that w ∈ Cβ(B1/2) for each β ∈ (0, 2s) whenever w ∈
L∞(Rn) and (−∆)sw ∈ L∞(B1).

Proposition 2.3. Assume that w ∈ C∞(Rn) solves (−∆)sw = h in B1. Then, for
every β ∈ (0, 2s),

‖w‖Cβ(B1/2) ≤ C
(
‖w‖L∞(Rn) + ‖h‖L∞(B1)

)
,

where C is a constant depending only on n, s, and β.

Proof. Follow the proof of Proposition 2.1.9 in [24], where the same result is proved
in the whole Rn. �

The third result is the analog of the first, with the difference that it does not need
to assume w ∈ Cβ(Rn), but only w ∈ Cβ(B2) and (1 + |x|)−n−2sw(x) ∈ L1(Rn).

Corollary 2.4. Assume that w ∈ C∞(Rn) is a solution of (−∆)sw = h in B2, and
that neither β nor β + 2s is an integer. Then,

‖w‖Cβ+2s(B1/2) ≤ C

(
‖(1 + |x|)−n−2sw(x)‖L1(Rn) + ‖w‖Cβ(B2) + ‖h‖Cβ(B2)

)
where the constant C depends only on n, s, and β.

Proof. Let η ∈ C∞(Rn) be such that η ≡ 0 outside B2 and η ≡ 1 in B3/2. Then

w̃ := wη ∈ C∞(Rn) and (−∆)sw̃ = h̃ := h − (−∆)s
(
w(1 − η)

)
. Note that for

x ∈ B3/2 we have

(−∆)s (w(1− η)) (x) = cn,s

∫
Rn\B3/2

−
(
w(1− η)

)
(y)

|x− y|n+2s
dy.

From this expression we obtain that

‖(−∆)s (w(1− η)) ‖L∞(B1) ≤ C‖(1 + |y|)−n−2sw(y)‖L1(Rn)

and for all γ ∈ (0, β],

[(−∆)s (w(1− η))]Cγ(B1) ≤ C‖(1 + |y|)−n−2s−γw(y)‖L1(Rn)

≤ C‖(1 + |y|)−n−2sw(y)‖L1(Rn)

for some constant C that depends only on n, s, β, and η. Therefore

‖h̃‖Cβ(B1) ≤ C
(
‖h‖Cβ(B2) + ‖(1 + |x|)−n−2sw(x)‖L1(Rn)

)
,

while we also clearly have

‖w̃‖Cβ(Rn) ≤ C‖w‖Cβ(B2) .

The constants C depend only on n, s, β and η. Now, we finish the proof by applying
Proposition 2.2 with w replaced by w̃. �
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Finally, the fourth result is the analog of the second one, but instead of assuming
w ∈ L∞(Rn), it only assumes w ∈ L∞(B2) and (1 + |x|)−n−2sw(x) ∈ L1(Rn).

Corollary 2.5. Assume that w ∈ C∞(Rn) is a solution of (−∆)sw = h in B2.
Then, for every β ∈ (0, 2s),

‖w‖Cβ(B1/2) ≤ C

(
‖(1 + |x|)−n−2sw(x)‖L1(Rn) + ‖w‖L∞(B2) + ‖h‖L∞(B2)

)
where the constant C depends only on n, s, and β.

Proof. Analog to the proof of Corollary 2.4. �

As a consequence of the previous results we next prove that every solution u of
(1.1) is Cs(Rn). First let us find an explicit upper barrier for |u| to prove that
|u| ≤ Cδs in Ω. This is the first step to obtain the Cs regularity.

To construct this we will need the following result, which is proved in the Appen-
dix.

Lemma 2.6 (Supersolution). There exist C1 > 0 and a radial continuous function
ϕ1 ∈ Hs

loc(Rn) satisfying

(2.1)


(−∆)sϕ1 ≥ 1 in B4 \B1

ϕ1 ≡ 0 in B1

0 ≤ ϕ1 ≤ C1(|x| − 1)s in B4 \B1

1 ≤ ϕ1 ≤ C1 in Rn \B4 .

The upper barrier for |u| will be constructed by scaling and translating the super-
solution from Lemma 2.6. The conclusion of this barrier argument is the following.

Lemma 2.7. Let Ω be a bounded domain satisfying the exterior ball condition and
let g ∈ L∞(Ω). Let u be the solution of (1.1). Then,

|u(x)| ≤ C‖g‖L∞(Ω)δ
s(x) for all x ∈ Ω ,

where C is a constant depending only on Ω and s.

In the proof of Lemma 2.7 it will be useful the following

Claim 2.8. Let Ω be a bounded domain and let g ∈ L∞(Ω). Let u be the solution
of (1.1). Then,

‖u‖L∞(Rn) ≤ C(diam Ω)2s‖g‖L∞(Ω)

where C is a constant depending only on n and s.

Proof. The domain Ω is contained in a large ball of radius diam Ω. Then, by scaling
the explicit (super)solution for the ball given by (1.4) we obtain the desired bound.

�

We next give the
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Proof of Lemma 2.7. Since Ω satisfies the exterior ball condition, there exists ρ0 > 0
such that every point of ∂Ω can be touched from outside by a ball of radius ρ0. Then,
by scaling and translating the supersolution ϕ1 from Lemma 2.6, for each of this
exterior tangent balls Bρ0 we find an upper barrier in B2ρ0 \ Bρ0 vanishing in Bρ0 .
This yields the bound u ≤ Cδs in a ρ0-neighborhood of ∂Ω. By using Claim 2.8 we
have the same bound in all of Ω. Repeating the same argument with −u we find
|u| ≤ Cδs, as wanted. �

The following lemma gives interior estimates for u and yields, as a corollary, that
every bounded weak solution u of (1.1) in a C1,1 domain is Cs(Rn).

Lemma 2.9. Let Ω be a bounded domain satisfying the exterior ball condition,
g ∈ L∞(Ω), and u be the solution of (1.1). Then, u ∈ Cβ(Ω) for all β ∈ (0, 2s) and
for all x0 ∈ Ω we have the following seminorm estimate in BR(x0) = Bδ(x0)/2(x0):

(2.2) [u]Cβ(BR(x0)) ≤ CRs−β‖g‖L∞(Ω),

where C is a constant depending only on Ω, s, and β.

Proof. Recall that if u solves (1.1) in the weak sense and ηε is the standard mollifier
then (−∆)s(u ∗ ηε) = g ∗ ηε in BR for ε small enough. Hence, we can regularize u,
obtain the estimates, and then pass to the limit. In this way we may assume that u
is smooth.

Note that BR(x0) ⊂ B2R(x0) ⊂ Ω. Let ũ(y) = u(x0 +Ry). We have that

(2.3) (−∆)sũ(y) = R2sg(x0 +Ry) in B1 .

Furthermore, using that |u| ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
δs in Ω —by Lemma 2.7—

we obtain

(2.4) ‖ũ‖L∞(B1) ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs

and, observing that |ũ(y)| ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs(1 + |y|s) in all of Rn,

(2.5) ‖(1 + |y|)−n−2sũ(y)‖L1(Rn) ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs,

with C depending only on Ω and s.
Next we use Corollary 2.5, which taking into account (2.3), (2.4), and (2.5), yields

‖ũ‖Cβ(B1/4) ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs

for all β ∈ (0, 2s), where C = C(Ω, s, β).
Finally, we observe that

[u]Cβ(BR/4(x0)) = R−β[ũ]Cβ(B1/4).

Hence, by an standard covering argument, we find the estimate (2.2) for the Cβ

seminorm of u in BR(x0). �

We now prove the Cs regularity of u.
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Proof of Proposition 1.1. By Lemma 2.9, taking β = s we obtain

(2.6)
|u(x)− u(y)|
|x− y|s

≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
for all x, y such that y ∈ BR(x) with R = δ(x)/2. We want to show that (2.6)
holds, perhaps with a bigger constant C = C(Ω, s), for all x, y ∈ Ω, and hence for
all x, y ∈ Rn (since u ≡ 0 outside Ω).

Indeed, observe that after a Lipschitz change of coordinates, the bound (2.6)
remains the same except for the value of the constant C. Hence, we can flatten the
boundary near x0 ∈ ∂Ω to assume that Ω∩Bρ0(x0) = {xn > 0}∩B1(0). Now, (2.6)
holds for all x, y satisfying |x − y| ≤ γxn for some γ = γ(Ω) ∈ (0, 1) depending on
the Lipschitz map.

Next, let z = (z′, zn) and w = (w′, wn) be two points in {xn > 0} ∩ B1/4(0), and
r = |z −w|. Let us define z̄ = (z′, zn + r), z̄ = (z′, zn + r) and zk = (1− γk)z + γkz̄
and wk = γkw + (1 − γk)w̄, k ≥ 0. Then, using that bound (2.6) holds whenever
|x− y| ≤ γxn, we have

|u(zk+1)− u(zk)| ≤ C|zk+1 − zk|s = C|γk(z − z̄)(γ − 1)|s ≤ Cγk|z − z̄|.

Moreover, since xn > r in all the segment joining z̄ and w̄, splitting this segment
into a bounded number of segments of length less than γr, we obtain

|u(z̄)− u(w̄)| ≤ C|z̄ − w̄|s ≤ Crs.

Therefore,

|u(z)− u(w)| ≤
∑
k≥0

|u(zk+1)− u(zk)|+ |u(z̄)− u(w̄)|+
∑
k≥0

|u(wk+1)− u(wk)|

≤

(
C
∑
k≥0

(
γkr
)s

+ Crs

)(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
≤ C

(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
|z − w|s,

as wanted. �

The following lemma is similar to Proposition 2.2 but it involves the weighted
norms introduced above. It will be used to prove Proposition 1.4 and Theorem 1.5.

Lemma 2.10. Let s and α belong to (0, 1), and β > 0. Let U be an open set with
nonempty boundary. Assume that neither β nor β + 2s is an integer, and α < 2s.
Then,

(2.7) ‖w‖(−α)
β+2s;U ≤ C

(
‖w‖Cα(Rn) + ‖(−∆)sw‖(2s−α)

β;U

)
for all w with finite right hand side. The constant C depends only on n, s, α, and
β.
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Proof. Step 1. We first control the Cβ+2s norm of w in balls BR(x0) with R = dx0/2.
Let x0 ∈ U and R = dx0/2. Define w̃(y) = w(x0 +Ry)− w(x0) and note that

‖w̃‖Cα(B1) ≤ Rα[w]Cα(Rn)

and
‖(1 + |y|)−n−2sw̃(y)‖L1(Rn) ≤ C(n, s)Rα[w]Cα(Rn).

This is because

|w̃(y)| = |w(x0 +Ry)− w(x0)| ≤ Rα|y|α[w]Cα(Rn)

and α < 2s. Note also that

‖(−∆)sw̃‖Cβ(B1) = R2s+β‖(−∆)sw‖Cβ(BR(x0)) ≤ Rα‖(−∆)sw‖(2s−α)
β;U .

Therefore, using Corollary 2.4 we obtain that

‖w̃‖Cβ+2s(B1/2) ≤ CRα
(
[w]Cα(Rn) + ‖(−∆)sw‖(2s−α)

β;U

)
,

where the constant C depends only on n, s, α, and β. Scaling back we obtain

k∑
l=1

Rl−α‖Dlw‖L∞(BR/2(x0)) +R2s+β−α[w]Cβ+2s(BR/2(x0)) ≤

≤ C
(
‖w‖Cα(Rn) + ‖(−∆)sw‖(2s−α)

α;U

)
,

(2.8)

where k denotes the greatest integer less that β + 2s and C = C(n, s). This bound
holds, with the same constant C, for each ball BR(x0), x0 ∈ U , where R = dx0/2.

Step 2. Next we claim that if (2.8) holds for each ball Bdx/2(x), x ∈ U , then (2.7)
holds. It is clear that this already yields

(2.9)
k∑
l=1

dk−αx sup
x∈U
|Dku(x)| ≤ C

(
‖w‖Cα(Rn) + ‖(−∆)sw‖(2s−α)

β;U

)
where k is the greatest integer less than β + 2s.

To prove this claim we only have to control [w]
(−α)
β+2s;U —see Definition 1.3. Let

γ ∈ (0, 1) be such that β + 2s = k + γ. We next bound

|Dkw(x)−Dkw(y)|
|x− y|γ

when dx ≥ dy and |x − y| ≥ dx/2. This will yield the bound for [w]
(−α)
β+2s;U , because

if |x− y| < dx/2 then y ∈ Bdx/2(x), and that case is done in Step 1.
We proceed differently in the cases k = 0 and k ≥ 1. If k = 0, then

dβ+2s−α
x

w(x)− w(y)

|x− y|2s+β
=

(
dx
|x− y|

)β+2s−α
w(x)− w(y)

|x− y|α
≤ C‖w‖Cα(Rn).

If k ≥ 1, then

dβ+2s−α
x

|Dkw(x)−Dkw(y)|
|x− y|γ

≤
(

dx
|x− y|

)γ
dβ+2s−α−γ
x |Dkw(x)−Dkw(y)| ≤ C‖w‖(−α)

k;U ,
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where we have used that β + 2s− α− γ = k − α.
Finally, noting that for x ∈ BR(x0) we have R ≤ dx0 ≤ 3R, (2.7) follows from

(2.8), (2.9) and the definition of ‖w‖(−α)
α+2s;U in (1.3). �

Finally, to end this section, we prove Proposition 1.4.

Proof of Proposition 1.4. Set α = s in Lemma 2.10. �

Remark 2.11. When g is continuous, the notions of bounded weak solution and
viscosity solution of (1.1) —and hence of (1.6)— coincide.

Indeed, let u ∈ Hs(Rn) be a weak solution of (1.1). Then, from Proposition 1.1
it follows that u is continuous up to the boundary. Let uε and gε be the standard
regularizations of u and g by convolution with a mollifier. It is immediate to verify
that, for ε small enough, we have (−∆)suε = gε in every subdomain U ⊂⊂ Ω in the
classical sense. Then, noting that uε → u and gε → g locally uniformly in Ω, and
applying the stability property for viscosity solutions [9, Lemma 4.5], we find that
u is a viscosity solution of (1.1).

Conversely, every viscosity solution of (1.1) is a weak solution. This follows from
three facts: the existence of weak solution, that this solution is a viscosity solution
as shown before, and the uniqueness of viscosity solutions [9, Theorem 5.2].

As a consequence of this, if g is continuous, any viscosity solution of (1.1) belongs
to Hs(Rn) —since it is a weak solution. This fact, which is not obvious, can also
be proved without using the result on uniqueness of viscosity solutions. Indeed,
it follows from Proposition 1.4 and Lemma 4.4, which yield a stronger fact: that
(−∆)s/2u ∈ Lp(Rn) for all p < ∞. Note that although we have proved Proposition
1.4 for weak solutions, its proof is also valid —with almost no changes— for viscosity
solutions.

3. Boundary regularity

In this section we study the precise behavior near the boundary of the solution
u to problem (1.1), where g ∈ L∞(Ω). More precisely, we prove that the function
u/δs|Ω has a Cα(Ω) extension. This is stated in Theorem 1.2.

This result will be a consequence of the interior regularity results of Section 2 and
an oscillation lemma near the boundary, which can be seen as the nonlocal analog
of Krylov’s boundary Harnack principle; see Theorem 4.28 in [15].

The following proposition and lemma will be used to establish Theorem 1.2. They
are proved in the Appendix.

Proposition 3.1 (1-D solution in half space, [7]). The function ϕ0, defined by

(3.1) ϕ0(x) =

{
0 if x ≤ 0

xs if x ≥ 0 ,

satisfies (−∆)sϕ0 = 0 in R+.
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The lemma below gives a subsolution in B1 \B1/4 whose support is B1 ⊂ Rn and
such that it is comparable to (1− |x|)s in B1.

Lemma 3.2 (Subsolution). There exist C2 > 0 and a radial function ϕ2 = ϕ2(|x|)
satisfying

(3.2)


(−∆)sϕ2 ≤ 0 in B1 \B1/4

ϕ2 = 1 in B1/4

ϕ2(x) ≥ C2(1− |x|)s in B1

ϕ2 = 0 in Rn \B1 .

To prove Hölder regularity of u/δs|Ω up to the boundary, we will control the
oscillation of this function in sets near ∂Ω whose diameter goes to zero. To do it,
we will set up an iterative argument as it is done for second order equations.

Let us define the sets in which we want to control the oscillation and also auxiliary
sets that are involved in the iteration.

Definition 3.3. Let κ > 0 be a fixed small constant and let κ′ = 1/2 + 2κ. We
may take, for instance κ = 1/16, κ′ = 5/8. Given a point x0 in ∂Ω and R > 0 let us
define

DR = DR(x0) = BR(x0) ∩ Ω

and

D+
κ′R = D+

κ′R(x0) = Bκ′R(x0) ∩ {x ∈ Ω : −x · ν(x0) ≥ 2κR} ,
where ν(x0) is the unit outward normal at x0; see Figure 3.1. By C1,1 regularity of
the domain, there exists ρ0 > 0, depending on Ω, such that the following inclusions
hold for each x0 ∈ ∂Ω and R ≤ ρ0:

(3.3) BκR(y) ⊂ DR(x0) for all y ∈ D+
κ′R(x0) ,

and

(3.4) B4κR(y∗ − 4κRν(y∗)) ⊂ DR(x0) and BκR(y∗ − 4κRν(y∗)) ⊂ D+
κ′R(x0)

for all y ∈ DR/2, where y∗ ∈ ∂Ω is the unique boundary point satisfying |y − y∗| =
dist(y, ∂Ω). Note that, since R ≤ ρ0, y ∈ DR/2 is close enough to ∂Ω and hence the
point y∗ − 4κRν(y∗) lays on the line joining y and y∗; see Remark 3.4 below.

Remark 3.4. Throughout the paper, ρ0 > 0 is a small constant depending only on
Ω, which we assume to be a bounded C1,1 domain. Namely, we assume that (3.3)
and (3.4) hold whenever R ≤ ρ0, for each x0 ∈ ∂Ω, and also that every point on ∂Ω
can be touched from both inside and outside Ω by balls of radius ρ0. In other words,
given x0 ∈ ∂Ω, there are balls of radius ρ0, Bρ0(x1) ⊂ Ω and Bρ0(x2) ⊂ Rn \ Ω,

such that Bρ0(x1) ∩Bρ0(x2) = {x0}. A useful observation is that all points y in the
segment that joins x1 and x2 —through x0— satisfy δ(y) = |y − x0|. Recall that
δ = dist( · , ∂Ω).
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Ω

BR

BR/2

Bκ′R

DR

D+
κ′R

x0

y∗

Figure 3.1. The sets DR and D+
κ′R

In the rest of this section, by |(−∆)su| ≤ K we mean that either (−∆)su = g in
the weak sense for some g ∈ L∞ satisfying ‖g‖L∞ ≤ K or that u satisfies −K ≤
(−∆)su ≤ K in the viscosity sense.

The first (and main) step towards Theorem 1.2 is the following.

Proposition 3.5. Let Ω be a bounded C1,1 domain, and u be such that |(−∆)su| ≤ K
in Ω and u ≡ 0 in Rn \ Ω, for some constant K. Given any x0 ∈ ∂Ω, let DR be as
in Definition 3.3.

Then, there exist α ∈ (0, 1) and C depending only on Ω and s —but not on x0—
such that

(3.5) sup
DR

u/δs − inf
DR

u/δs ≤ CKRα

for all R ≤ ρ0, where ρ0 > 0 is a constant depending only on Ω.

To prove Proposition 3.5 we need three preliminary lemmas. We start with the
first one, which might be seen as the fractional version of Lemma 4.31 in [15]. Recall
that κ′ ∈ (1/2, 1) is a fixed constant throughout the section. It may be useful to
regard the following lemma as a bound by below for infDR/2 u/δ

s, rather than an

upper bound for infD+
κ′R

u/δs.

Lemma 3.6. Let Ω be a bounded C1,1 domain, and u be such that u ≥ 0 in all of
Rn and |(−∆)su| ≤ K in DR, for some constant K. Then, there exists a positive
constant C, depending only on Ω and s, such that

(3.6) inf
D+
κ′R

u/δs ≤ C
(

inf
DR/2

u/δs +KRs
)

for all R ≤ ρ0, where ρ0 > 0 is a constant depending only on Ω.

Proof. Step 1. We do first the case K = 0. Let R ≤ ρ0, and let us call m =
infD+

κ′R
u/δs ≥ 0. We have u ≥ mδs ≥ m(κR)s on D+

κ′R. The second inequality is a

consequence of (3.3).
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We scale the subsolution ϕ2 in Lemma 3.2 as follows, to use it as lower barrier:

ψR(x) := (κR)sϕ2

(
x

4κR

)
.

By (3.2) we have 
(−∆)sψR ≤ 0 in B4κR \BκR

ψR = (κR)s in BκR

ψR ≥ 4−sC2(4κR− |x|)s in B4κR \BκR

ψR ≡ 0 in Rn \B4κR .

Given y ∈ DR/2, we have either y ∈ D+
κ′R or δ(y) < 4κR, by (3.4). If y ∈ D+

κ′R it
follows from the definition of m that m ≤ u(y)/δ(y)s. If δ(y) < 4κR, let y∗ be the
closest point to y on ∂Ω and ỹ = y∗+4κν(y∗). Again by (3.4), we have B4κR(ỹ) ⊂ DR

and BκR(ỹ) ⊂ D+
κ′R. But recall that u ≥ m(κR)s in D+

κ′R, (−∆)su = 0 in Ω, and
u ≥ 0 in Rn. Hence, u(x) ≥ mψR(x− ỹ) in all Rn and in particular u/δs ≥ 4−sC2m
on the segment joining y∗ and ỹ, that contains y. Therefore,

(3.7) inf
D+
κ′R

u/δs ≤ C inf
DR/2

u/δs .

Step 2. If K > 0 we consider ũ to be the solution of{
(−∆)sũ = 0 in DR

ũ = u in Rn \DR.

By Step 1, (3.7) holds with u replaced by ũ.
On the other hand, w = ũ − u satisfies |(−∆)sw| ≤ K and w ≡ 0 outside DR.

Recall that points of ∂Ω can be touched by exterior balls of radius less than ρ0.
Hence, using the rescaled supersolution KR2sϕ1(x/R) from Lemma 2.6 as upper
barrier and we readily prove, as in the proof of Lemma 2.7, that

|w| ≤ C1KR
sδs in DR .

Thus, (3.6) follows. �

The second lemma towards Proposition 3.5, which might be seen as the fractional
version of Lemma 4.35 in [15], is the following.

Lemma 3.7. Let Ω be a bounded C1,1 domain, and u be such that u ≥ 0 in all of
Rn and |(−∆)su| ≤ K in DR, for some constant K. Then, there exists a positive
constant C, depending on Ω and s, such that

(3.8) sup
D+
κ′R

u/δs ≤ C
(

inf
D+
κ′R

u/δs +KRs
)

for all R ≤ ρ0, where ρ0 > 0 is a constant depending only on Ω.
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Proof. Step 1. Consider first the case K = 0. In this case (3.8) follows from the
Harnack inequality for the fractional Laplacian [18] —note that we assume u ≥ 0
in all Rn. Indeed, by (3.3), for each y ∈ D+

κ′R we have BκR(y) ⊂ DR and hence
(−∆)su = 0 in BκR(y). Then we may cover D+

κ′R by a finite number of balls
BκR/2(yi), using the same (scaled) covering for all R ≤ ρ0, to obtain

sup
BκR/2(yi)

u ≤ C inf
BκR/2(yi)

u.

Then, (3.8) follows since (κR/2)s ≤ δs ≤ (3κR/2)s in BκR/2(yi) by (3.3).
Step 2. When K > 0, we prove (3.8) by using a similar argument as in Step 2 in

the proof of Proposition 3.6. �

Before proving Lemma 3.9 we give an extension lemma —see [11, Theorem 1,
Section 3.1] where the case α = 1 is proven in full detail.

Lemma 3.8. Let α ∈ (0, 1] and V ⊂ Rn a bounded domain. There exists a (non-
linear) map E : C0,α(V )→ C0,α(Rn) satisfying

E(w) ≡ w in V , [E(w)]C0,α(Rn) ≤ [w]C0,α(V ), and ‖E(w)‖L∞(Rn) ≤ ‖w‖L∞(V )

for all w ∈ C0,α(V ).

Proof. It is immediate to check that

E(w)(x) = min

{
min
z∈V

{
w(z) + [w]Cα(V )|z − x|α

}
, ‖w‖L∞(V )

}
satisfies the conditions since, for all x, y, z in Rn,

|z − x|α ≤ |z − y|α + |y − x|α .
�

We can now give the third lemma towards Proposition 3.5. This lemma, which is
related to Proposition 3.1, is crucial. It states that δs|Ω, extended by zero outside
Ω, is an approximate solution in a neighborhood of ∂Ω inside Ω.

Lemma 3.9. Let Ω be a bounded C1,1 domain, and δ0 = δχΩ be the distance function
in Ω extended by zero outside Ω. Let α = min{s, 1− s}, and ρ0 be given by Remark
3.4. Then,

(−∆)sδs0 belongs to Cα(Ωρ0) ,

where Ωρ0 = Ω ∩ {δ < ρ0}. In particular,

|(−∆)sδs0| ≤ CΩ in Ωρ0 ,

where CΩ is a constant depending only on Ω and s.

Proof. Fix a point x0 on ∂Ω and denote, for ρ > 0, Bρ = Bρ(x0). Instead of proving
that

(−∆)sδs0 = cn,sPV

∫
Rn

δ0(x)s − δ0(y)s

|x− y|n+2s
dy



THE DIRICHLET PROBLEM FOR THE FRACTIONAL LAPLACIAN 17

is Cα(Ω ∩Bρ0) —as a function of x—, we may equivalently prove that

(3.9) PV

∫
B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy belongs to Cα(Ω ∩Bρ0).

This is because the difference

1

cn,s
(−∆)sδs0 − PV

∫
B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy =

∫
Rn\B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy

belongs to Cs(Bρ0), since δs0 is Cs(Rn) and |x|−n−2s is integrable and smooth outside
a neighborhood of 0.

To see (3.9), we flatten the boundary. Namely, consider a C1,1 change of variables
X = Ψ(x), where Ψ : B3ρ0 → V ⊂ Rn is a C1,1 diffeomorphism, satisfying that ∂Ω
is mapped onto {Xn = 0}, Ω ∩ B3ρ0 is mapped into Rn

+, and δ0(x) = (Xn)+. Such
diffeomorphism exists because we assume Ω to be C1,1. Let us respectively call V1

and V2 the images of Bρ0 and B2ρ0 under Ψ. Let us denote the points of V × V
by (X, Y ). We consider the functions x and y, defined in V , by x = Ψ−1(X) and
y = Ψ−1(Y ). With these notations, we have

x− y = −DΨ−1(X)(X − Y ) +O
(
|X − Y |2

)
,

and therefore

(3.10) |x− y|2 = (X − Y )TA(X)(X − Y ) +O
(
|X − Y |3

)
,

where

A(X) =
(
DΨ−1(X)

)T
DΨ−1(X)

is a symmetric matrix, uniformly positive definite in V2. Hence,

PV

∫
B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy = PV

∫
V2

(Xn)s+ − (Yn)s+

|(X − Y )TA(X)(X − Y )|
n+2s

2

g(X, Y )dY,

where we have denoted

g(X, Y ) =

(
(X − Y )TA(X)(X − Y )

|x− y|2

)n+2s
2

J(Y )

and J = | detDΨ−1|. Note that we have g ∈ C0,1(V2 × V2), since Ψ is C1,1 and we
have (3.10).

Now we are reduced to proving that

(3.11) ψ1(X) := PV

∫
V2

(Xn)s+ − (Yn)s+

|(X − Y )TA(X)(X − Y )|
n+2s

2

g(X, Y )dY,

belongs to Cα(V +
1 ) (as a function of X), where V +

1 = V1 ∩ {Xn > 0}.
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To prove this, we extend the Lipschitz function g ∈ C0,1(V2 × V2) to all Rn.
Namely, consider the function g∗ = E(g) ∈ C0,1(Rn × Rn) provided by Proposition
3.8, which satisfies

g∗ ≡ g in V2 × V2 and ‖g∗‖C0,1(Rn×Rn) ≤ ‖g‖C0,1(V2×V2) .

By the same argument as above, using that V1 ⊂⊂ V2, we have that ψ1 ∈ Cα(V +
1 )

if and only if so is the function

ψ(X) = PV

∫
Rn

(Xn)s+ − (Yn)s+

|(X − Y )TA(X)(X − Y )|
n+2s

2

g∗(X, Y )dY.

Furthermore, from g∗ define g̃ ∈ C0,1(V2×Rn) by g̃(X,Z) = g∗(X,X+MZ) detM ,
where M = M(X) = DΨ(X). Then, using the change of variables Y = X + MZ
we deduce

ψ(X) = PV

∫
Rn

(Xn)s+ −
(
en · (X +MZ)

)s
+

|Z|n+2s
g̃(X,Z)dZ.

Next, we prove that ψ ∈ Cα(Rn), which concludes the proof. Indeed, taking into
account that the function (Xn)s+ is s-harmonic in Rn

+ —by Proposition 3.1— we
obtain

PV

∫
Rn

(e′ ·X ′)s+ − (e′ · (X ′ + Z))s+
|Z|n+2s

dZ = 0

for every e′ ∈ Rn and for every X ′ such that e′ ·X ′ > 0. Thus, letting e′ = eTnM and
X ′ = M−1X we deduce

PV

∫
Rn

(Xn)s+ −
(
en · (X +MZ)

)s
+

|Z|n+2s
dZ = 0

for every X such that (eTnM) · (M−1X) > 0, that is, for every X ∈ Rn
+.

Therefore, it holds

ψ(X) =

∫
Rn

φ(X, 0)− φ(X,Z)

|Z|n+2s

(
g̃(X,Z)− g̃(X, 0)

)
dZ,

where

φ(X,Z) = (en · (X +MZ))s+

satisfies [φ]Cs(V2×Rn) ≤ C, and ‖g̃‖C0,1(V2×Rn) ≤ C.

Let us finally prove that ψ belongs to Cα(V +
1 ). To do it, let X and X̄ be in V +

1 .
Then, we have

ψ(X)− ψ(X̄) =

∫
Rn

Θ(X, X̄, Z)

|Z|n+2s
dZ,
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where

Θ(X,X̄, Z) =
(
φ(X, 0)− φ(X,Z)

)(
g̃(X,Z)− g̃(X, 0)

)
−
(
φ(X̄, 0)− φ(X̄, Z)

)(
g̃(X̄, Z)− g̃(X̄, 0)

)
=
(
φ(X, 0)− φ(X,Z)− φ(X̄, 0) + φ(X̄, Z)

)(
g̃(X,Z)− g̃(X, 0)

)
−
(
φ(X̄, 0)− φ(X̄, Z)

)(
g̃(X,Z)− g̃(X, 0)− g̃(X̄, Z) + g̃(X̄, 0)

)
.

(3.12)

Now, on the one hand, it holds

(3.13) |Θ(X, X̄, Z)| ≤ C|Z|1+s,

since [φ]Cs(V2×Rn) ≤ C and ‖g̃‖C0,1(V2×Rn) ≤ C.
On the other hand, it also holds

(3.14) |Θ(X, X̄, Z)| ≤ C|X − X̄|s min{|Z|, |Z|s}.
Indeed, we only need to observe that∣∣g̃(X,Z)− g̃(X, 0)− g̃(X̄, Z) + g̃(X̄, 0)

∣∣ ≤ C min
{

min{|Z|, 1}, |X − X̄|
}

≤ C min{|Z|1−s, 1}|X − X̄|s.

Thus, letting r = |X − X̄| and using (3.13) and (3.14), we obtain

|ψ(X)− ψ(X̄)| ≤
∫
Rn

|Θ(X, X̄, Z)|
|Z|n+2s

dZ

≤
∫
Br

C|Z|1+s

|Z|n+2s
dZ +

∫
Rn\Br

Crs min{|Z|, |Z|s}
|Z|n+2s

dZ

≤ Cr1−s + C max{r1−s, rs} ,
as desired. �

Next we prove Proposition 3.5.

Proof of Proposition 3.5. By considering u/K instead of u we may assume that K =
1, that is, that |(−∆)su| ≤ 1 in Ω. Then, by Claim 2.8 we have ‖u‖L∞(Rn) ≤ C for
some constant C depending only on Ω and s.

Let ρ0 > 0 be given by Remark 3.4. Fix x0 ∈ ∂Ω. We will prove that there exist
constants C0 > 0, ρ1 ∈ (0, ρ0), and α ∈ (0, 1), depending only on Ω and s, and
monotone sequences (mk) and (Mk) such that, for all k ≥ 0,

(3.15) Mk −mk = 4−αk , −1 ≤ mk ≤ mk+1 < Mk+1 ≤Mk ≤ 1 ,

and

(3.16) mk ≤ C−1
0 u/δs ≤Mk in DRk = DRk(x0) , where Rk = ρ14−k.

Note that (3.16) is equivalent to the following inequality in BRk instead of DRk —
recall that DRk = BRk ∩ Ω.

(3.17) mkδ
s
0 ≤ C−1

0 u ≤Mkδ
s
0 in BRk = BRk(x0) , where Rk = ρ14−k .
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If there exist such sequences, then (3.5) holds for all R ≤ ρ1 with C = 4αC0/ρ
α
1 .

Then, by increasing the constant C if necessary, (3.5) holds also for every R ≤ ρ0.
Next we construct {Mk} and {mk} by induction.
By Lemma 2.7, we find that there exist m0 and M0 such that (3.15) and (3.16)

hold for k = 0 provided we pick C0 large enough depending on Ω and s.
Assume that we have sequences up to mk and Mk. We want to prove that there

exist mk+1 and Mk+1 which fulfill the requirements. Let

(3.18) uk = C−1
0 u−mkδ

s
0 .

We will consider the positive part u+
k of uk in order to have a nonnegative function

in all of Rn to which we can apply Lemmas 3.6 and 3.7. Let uk = u+
k −u

−
k . Observe

that, by induction hypothesis,

(3.19) u+
k = uk and u−k = 0 in BRk .

Moreover, C−1
0 u ≥ mjδ

s
0 in BRj for each j ≤ k. Therefore, by (3.18) we have

uk ≥ (mj −mk)δ
s
0 ≥ (mj −Mj +Mk −mk)δ

s
0 ≥ (−4−αj + 4−αk)δs0 in BRj .

But clearly 0 ≤ δs0 ≤ Rs
j = ρs14−js in BRj , and therefore using Rj = ρ14−j

uk ≥ −ρ−α1 Rs
j(R

α
j −Rα

k ) in BRj for each j ≤ k .

Thus, since for every x ∈ BR0 \BRk there is j < k such that

|x− x0| < Rj = ρ14−j ≤ 4|x− x0|,
we find

(3.20) uk(x) ≥ −ρ−α1 Rα+s
k

∣∣∣∣4(x− x0)

Rk

∣∣∣∣s(∣∣∣∣4(x− x0)

Rk

∣∣∣∣α − 1

)
outside BRk .

By (3.20) and (3.19), at x ∈ BRk/2(x0) we have

0 ≤ −(−∆)su−k (x) = cn,s

∫
x+y/∈BRk

u−k (x+ y)

|y|n+2s
dy

≤ cn,s ρ
−α
1

∫
|y|≥Rk/2

Rα+s
k

∣∣∣∣ 8yRk

∣∣∣∣s(∣∣∣∣ 8yRk

∣∣∣∣α − 1

)
|y|−n−2s dy

= Cρ−α1 Rα−s
k

∫
|z|≥1/2

|8z|s(|8z|α − 1)

|z|n+2s
dz

≤ ε0ρ
−α
1 Rα−s

k ,

where ε0 = ε0(α) ↓ 0 as α ↓ 0 since |8z|α → 1.
Therefore, writing u+

k = C−1
0 u−mkδ

s
0 + u−k and using Lemma 3.9, we have

|(−∆)su+
k | ≤ C−1

0 |(−∆)su|+mk|(−∆)sδs0|+ |(−∆)s(u−k )|
≤ (C−1

0 + CΩ) + ε0ρ
−α
1 Rα−s

k

≤
(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα−s
k in DRk/2.
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In the last inequality we have just used Rk ≤ ρ1 and α ≤ s.
Now we can apply Lemmas 3.6 and 3.7 with u in its statements replaced by u+

k ,
recalling that

u+
k = uk = C−1

0 u−mkδ
s in DRk

to obtain

sup
D+
κ′Rk/2

(C−1
0 u/δs −mk) ≤ C

(
infD+

κ′Rk/2
(C−1

0 u/δs −mk) +
(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)

≤ C

(
infDRk/4(C

−1
0 u/δs −mk) +

(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)
.(3.21)

Next we can repeat all the argument “upside down”, that is, with the functions
uk = Mkδ

s−u instead of uk. In this way we obtain, instead of (3.21), the following:

(3.22) sup
D+
κ′Rk/2

(Mk−C−1
0 u/δs) ≤ C

(
inf
DRk/4

(Mk−C−1
0 u/δs)+

(
C1ρ

s−α
1 +ε0ρ

−α
1

)
Rα
k

)
.

Adding (3.21) and (3.22) we obtain

Mk −mk ≤ C

(
inf
DRk/4

(C−1
0 u/δs −mk) + inf

DRk/4
(Mk − C−1

0 u/δs) +
(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)
= C

(
inf

DRk+1

C−1
0 u/δs − sup

DRk+1

C−1
0 u/δs +Mk −mk +

(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)
,

(3.23)

and thus, using that Mk −mk = 4−αk and Rk = ρ14−k,

sup
DRk+1

C−1
0 u/δs − inf

DRk+1

C−1
0 u/δs ≤

(
C−1
C

+ C1ρ
s
1 + ε0

)
4−αk .

Now we choose α and ρ1 small enough so that

C − 1

C
+ C1ρ

s
1 + ε0(α) ≤ 4−α.

This is possible since ε0(α) ↓ 0 as α ↓ 0 and the constants C and C1 do not depend
on α nor ρ1 —they depend only on Ω and s. Then, we find

sup
DRk+1

C−1
0 u/δs − inf

DRk+1

C−1
0 u/δs ≤ 4−α(k+1),

and thus we are able to choose mk+1 and Mk+1 satisfying (3.15) and (3.16). �

Finally, we give the:

Proof of Theorem 1.2. Define v = u/δs|Ω and K = ‖g‖L∞(Ω). As in the proof of
Proposition 3.5, by considering u/K instead of u we may assume that |(−∆)su| ≤ 1
in Ω and that ‖u‖L∞(Ω) ≤ C for some constant C depending only on Ω and s.

First we claim that there exist constants C, M > 0, α̃ ∈ (0, 1) and β ∈ (0, 1),
depending only on Ω and s, such that
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(i) ‖v‖L∞(Ω) ≤ C.
(ii) For all x ∈ Ω, it holds the seminorm bound

[v]Cβ(BR/2(x)) ≤ C
(
1 +R−M

)
,

where R = dist(x,Rn \ Ω).
(iii) For each x0 ∈ ∂Ω and for all ρ > 0 it holds

sup
Bρ(x0)∩Ω

v − inf
Bρ(x0)∩Ω

v ≤ Cρα̃.

Indeed, it follows from Lemma 2.7 that ‖v‖L∞(Ω) ≤ C for some C depending only
on Ω and s. Hence, (i) is satisfied.

Moreover, if β ∈ (0, 2s), it follows from Lemma 2.9 that for every x ∈ Ω,

[u]Cβ(BR/2(x)) ≤ CR−β, β ∈ (0, 2s),

where R = δ(x). But since Ω is C1,1, then provided δ(x) < ρ0 we will have

‖δ−s‖L∞(BR/2(x)) ≤ CR−s and [δ−s]C0,1(BR/2(x)) ≤ CR−s−1

and hence, by interpolation,

[δ−s]Cβ(BR/2(x)) ≤ CR−s−β

for each β ∈ (0, 1). Thus, since v = uδ−s, we find

[v]Cβ(BR/2(x)) ≤ C
(
1 +R−s−β

)
for all x ∈ Ω and β < min{1, 2s}. Therefore hypothesis (ii) is satisfied. The
constants C depend only on Ω and s.

In addition, using Proposition 3.5 and that ‖v‖L∞(Ω) ≤ C, we deduce that hy-
pothesis (iii) is satisfied.

Now, we claim that (i)-(ii)-(iii) lead to

[v]Cα(Ω) ≤ C,

for some α ∈ (0, 1) depending only on Ω and s.
Indeed, let x, y ∈ Ω, R = dist(x,Rn \ Ω) ≥ dist(y,Rn \ Ω), and r = |x − y|. Let

us see that |v(x)− v(y)| ≤ Crα for some α > 0.
If r ≥ 1 then it follows from (i). Assume r < 1, and let p ≥ 1 to be chosen later.

Then, we have the following dichotomy:
Case 1. Assume r ≥ Rp/2. Let x0, y0 ∈ ∂Ω be such that |x−x0| = dist(x,Rn \Ω)

and |y − y0| = dist(y,Rn \ Ω). Then, using (iii) and the definition of R we deduce

|v(x)− v(y)| ≤ |v(x)− v(x0)|+ |v(x0)− v(y0)|+ |v(y0)− v(y)| ≤ CRα̃ ≤ Crα̃/p.

Case 2. Assume r ≤ Rp/2. Hence, since p ≥ 1, we have y ∈ BR/2(x). Then, using
(ii) we obtain

|v(x)− v(y)| ≤ C(1 +R−M)rβ ≤ C
(
1 + r−M/p

)
rβ ≤ Crβ−M/p.
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To finish the proof we only need to choose p > M/β and take α = min{α̃/p, β −
M/p}. �

4. Interior estimates for u/δs

The main goal of this section is to prove the Cγ bounds in Ω for the function u/δs

in Theorem 1.5.
To prove this result we find an equation for the function v = u/δs|Ω, that is derived

below. This equation is nonlocal, and thus, we need to give values to v in Rn \ Ω,
although we want an equation only in Ω. It might seem natural to consider u/δs,
which vanishes outside Ω since u ≡ 0 there, as an extension of u/δs|Ω. However,
such extension is discontinuous through ∂Ω, and it would lead to some difficulties.

Instead, we consider a Cα(Rn) extension of the function u/δs|Ω, which is Cα(Ω)
by Theorem 1.2. Namely, throughout this section, let v be the Cα(Rn) extension of
u/δs|Ω given by Lemma 3.8.

Let δ0 = δχΩ, and note that u = vδs0 in Rn. Then, using (1.1) we have

g(x) = (−∆)s(vδs0) = v(−∆)sδs0 + δs0(−∆)sv − Is(v, δs0)

in Ωρ0 = {x ∈ Ω : δ(x) < ρ0}, where

(4.1) Is(w1, w2)(x) = cn,s

∫
Rn

(
w1(x)− w1(y)

)(
w2(x)− w2(y)

)
|x− y|n+2s

dy

and ρ0 is a small constant depending on the domain; see Remark 3.4. Here, we have
used that (−∆)s(w1w2) = w1(−∆)sw2+w2(−∆)sw1−Is(w1, w2), which follows easily
from (1.2). This equation is satisfied pointwise in Ωρ0 , since g is Cα in Ω. We have
to consider Ωρ0 instead of Ω because the distance function is C1,1 there and thus we
can compute (−∆)sδs0. In all Ω the distance function δ is only Lipschitz and hence
(−∆)sδs0 is singular for s ≥ 1

2
.

Thus, the following is the equation for v:

(4.2) (−∆)sv =
1

δs0

(
g(x)− v(−∆)sδs0 + Is(v, δ

s
0)

)
in Ωρ0 .

From this equation we will obtain the interior estimates for v. More precisely, we
will obtain a priori bounds for the interior Hölder norms of v, treating δ−s0 Is(v, δ

s
0)

as a lower order term. For this, we consider the weighted Hölder norms given by
Definition 1.3.

Recall that, in all the paper, we denote Cβ the space Ck,β′ , where β = k+β′ with
k integer and β′ ∈ (0, 1].

In Theorem 1.2 we have proved that u/δs|Ω is Cα(Ω) for some α ∈ (0, 1), with
an estimate. From this Cα estimate and from the equation for v (4.2), we will find

next the estimate for ‖u/δs‖(−α)
γ;Ω stated in Theorem 1.5.

The proof of this result relies on some preliminary results below.
Next lemma is used to control the lower order term δ−s0 Is(v, δ

s
0) in the equation

(4.2) for v.
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Lemma 4.1. Let Ω be a bounded C1,1 domain, and U ⊂ Ωρ0 be an open set. Let s
and α belong to (0, 1) and satisfy α + s ≤ 1 and α < s. Then,

(4.3) ‖Is(w, δs0)‖(s−α)
α;U ≤ C

(
[w]Cα(Rn) + [w]

(−α)
α+s;U

)
,

for all w with finite right hand side. The constant C depends only on Ω, s, and α.

To prove Lemma 4.1 we need the next

Lemma 4.2. Let U ⊂ Rn be a bounded open set. Let α1, α2,∈ (0, 1) and β ∈ (0, 1]
satisfy αi < β for i = 1, 2, α1 + α2 < 2s, and s < β < 2s. Assume that w1, w2 ∈
Cβ(U). Then,
(4.4)

‖Is(w1, w2)‖(2s−α1−α2)
2β−2s;U ≤ C

(
[w1]Cα1 (Rn) + [w1]

(−α1)
β;U

)(
[w2]Cα2 (Rn) + [w2]

(−α2)
β;U

)
,

for all functions w1, w2 with finite right hand side. The constant C depends only on
α1, α2, n, β, and s.

Proof. Let x0 ∈ U and R = dx0/2, and denote Bρ = Bρ(x0). Let

K =
(

[w1]Cα1 (Rn) + [w1]
(−α1)
β;U

)(
[w2]Cα2 (Rn) + [w2]

(−α2)
β;U

)
.

First we bound |Is(w1, w2)(x0)|.

|Is(w1, w2)(x0)| ≤ C

∫
Rn

∣∣w1(x0)− w1(y)
∣∣∣∣w2(x0)− w2(y)

∣∣
|x0 − y|n+2s

dy

≤ C

∫
BR(0)

Rα1+α2−2β[w1]
(−α1)
β;U [w2]

(−α2)
β;U |z|2β

|z|n+2s
dz +

+ C

∫
Rn\BR(0)

[w1]Cα1 (Rn)[w2]Cα2 (Rn)|z|α1+α2

|z|n+2s
dz

≤ CRα1+α2−2sK .

Let x1, x2 ∈ BR/2(x0) ⊂ B2R(x0). Next, we bound |Is(w1, w2)(x1)−Is(w1, w2)(x2)|.
Let η be a smooth cutoff function such that η ≡ 1 on B1(0) and η ≡ 0 outside
B3/2(0). Define

ηR(x) = η

(
x− x0

R

)
and w̄i =

(
wi − wi(x0)

)
ηR , i = 1, 2 .

Note that we have

‖w̄i‖L∞(Rn) = ‖w̄i‖L∞(B3R/2) ≤
(

3R

2

)αi
[wi]Cαi (Rn)
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and

[w̄i]Cβ(Rn) ≤ C

(
[wi]Cβ(B3R/2)‖η‖L∞(B3R/2) + ‖wi − wi(0)‖L∞(B3R/2)[wi]Cβ(B3R/2)

)
≤ CRαi−β

(
[wi]Cαi (Rn) + [wi]

(−αi)
β;U

)
.

Let
ϕi = wi − wi(x0)− w̄i

and observe that ϕi vanishes in BR. Hence, ϕi(x1) = ϕi(x2) = 0, i = 1, 2. Next, let
us write

Is(w1, w2)(x1)− Is(w1, w2)(x2) = cn,s (J11 + J12 + J21 + J22) ,

where

J11 =

∫
Rn

(
w̄1(x1)− w̄1(y)

)(
w̄2(x1)− w̄2(y)

)
|x1 − y|n+2s

dy

−
∫
Rn

(
w̄1(x2)− w̄1(y)

)(
w̄2(x2)− w̄2(y)

)
|x2 − y|n+2s

dy ,

J12 =

∫
Rn\BR

−
(
w̄1(x1)− w̄1(y)

)
ϕ2(y)

|x1 − y|n+2s
+

(
w̄1(x2)− w̄1(y)

)
ϕ2(y)

|x2 − y|n+2s
dy ,

J21 =

∫
Rn\BR

−
(
w̄2(x1)− w̄2(y)

)
ϕ1(y)

|x1 − y|n+2s
+

(
w̄2(x2)− w̄2(y)

)
ϕ1(y)

|x2 − y|n+2s
dy ,

and

J22 =

∫
Rn\BR

ϕ1(y)ϕ2(y)

|x1 − y|n+2s
− ϕ1(y)ϕ2(y)

|x2 − y|n+2s
dy .

We now bound separately each of these terms.
Bound of J11. We write J11 = J1

11 + J2
11 where

J1
11 =

∫
Rn

(
w̄1(x1)− w̄1(x1 + z)− w̄1(x2) + w̄1(x2 + z)

)(
w̄2(x1)− w̄2(x1 + z)

)
|z|n+2s

dz,

J2
11 =

∫
Rn

(
w̄1(x2)− w̄1(x2 + z)

)(
w̄2(x1)− w̄2(x1 + z)− w̄2(x2) + w̄2(x2 + z)

)
|z|n+2s

dz .

To bound |J1
11| we proceed as follows

|J1
11| ≤

∫
Br(0)

Rα1−β[w1]
(−α1)
β;U |z|βRα2−β[w2]

(−α2)
β;U |z|β

|z|n+2s
dz+

+

∫
Rn\Br(0)

Rα1−β[w1]
(−α1)
β;U rβRα2−β[w2]

(−α2)
β;U |z|β

|z|n+2s
dz

≤ CRα1+α2−2βr2β−2sK .

Similarly, |J2
11| ≤ CRα1+α2−2βr2β−2sK.
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Bound of J12 and J21. We write J12 = J1
12 + J2

12 where

J1
12 =

∫
Rn\BR

−ϕ2(y)
w̄1(x1)− w̄1(x2)

|x1 − y|n+2s
dy

and

J2
12 =

∫
Rn\BR

−ϕ2(y)
(
w̄1(x2)− w̄1(y)

){ 1

|x1 − y|n+2s
− 1

|x2 − y|n+2s

}
dy .

To bound |J1
12| we recall that ϕ2(x1) = 0 and proceed as follows

|J1
12| ≤ C

∫
Rn\BR

|x1 − y|α2 [ϕ2]C0,α2 (Rn)

Rα1−β[w1]
(−α1)
β;U rβ

|x1 − y|n+2s
dy

≤ CRα1+α2−β−2srβK ≤ CRα1+α2−2βr2β−2sK.

We have used that [ϕ2]Cα2 (Rn) = [w − w̄]Cα2 (Rn) ≤ 2[w]Cα2 (Rn), r ≤ R, and β < 2s.
To bound |J2

12|, let Φ(z) = |z|−n−2s. Note that, for each γ ∈ (0, 1], we have

(4.5) |Φ(z1 − z)− Φ(z2 − z)| ≤ C|z1 − z2|γ|z|−n−2s−γ

for all z1, z2 in BR/2(0) and z ∈ Rn \BR(0). Then, using that ϕ2(x2) = 0,

|J2
12| ≤ C

∫
Rn\BR

|x2 − y|α1+α2 [ϕ2]Cα2 (Rn)[ϕ2]Cα2 (Rn)
|x1 − x2|2β−2s

|x2 − y|n+2β
dy

≤ CRα1+α2−2βr2β−2sK .

This proves that |J12| ≤ CRα1+α2−2βr2β−2sK. Changing the roles of α1 and α2 we
obtain the same bound for |J21|.

Bound of J22. Using again ϕi(xi) = 0, i = 1, 2, we write

J22 =

∫
Rn\BR

(
ϕ1(x1)− ϕ1(y)

)(
ϕ2(x1)− ϕ2(y)

)( 1

|x1 − y|n+2s
− 1

|x2 − y|n+2s

)
dy .

Hence, using again (4.5),

|J22| ≤ C

∫
Rn\BR

|x1 − y|α1+α2 [ϕ2]C0,α2 (Rn)[ϕ2]C0,α2 (Rn)

|x1 − x2|2β−2s

|x1 − y|n+2β
dy

≤ CRα1+α2−2βr2β−2sK .

Summarizing, we have proven that for all x0 such that dx = 2R and for all
x1, x2 ∈ BR/2(x0) it holds

|Is(δs0, w)(x0)| ≤ CRα1−α2−2sK

and

|Is(δs0, w)(x1)− Is(δs0, w)(x2)|
|x1 − x2|2β−2s

≤ CRα1+α2−2β
(
[w]

(−α)
α+s;U + [w]Cα(Rn)

)
.

This yields (4.4), as shown in Step 2 in the proof of Lemma 2.10. �
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Next we prove Lemma 4.1.

Proof of Lemma 4.1. The distance function δ0 is C1,1 in Ωρ0 and since U ⊂ Ωρ0 we
have dx ≤ δ0(x) for all x ∈ U . Hence, it follows that

[δs0]Cs(Rn) + [δs0]
(−s)
β;U ≤ C(Ω, β)

for all β ∈ [s, 2].
Then, applying Lemma 4.2 with w1 = w, w2 = δs0, α1 = α, α2 = s, and β = s+α,

we obtain

‖Is(w, δs0)‖(s−α)
2α;U ≤ C

(
[w]Cα(Rn) + [w]

(−α)
α+s;U

)
,

and hence (4.3) follows. �

Using Lemma 4.1 we can now prove Theorem 1.5 and Corollary 1.6.

Proof of Theorem 1.5. Let U ⊂⊂ Ωρ0 . We prove first that there exist α ∈ (0, 1) and
C, depending only on s and Ω —and not on U—, such that

‖u/δs‖(−α)
α+2s;U ≤ C

(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
.

Then, letting U ↑ Ωρ0 we will find that this estimate holds in Ωρ0 with the same
constant.

To prove this, note that by Theorem 1.2 we have

‖u/δs‖Cα(Ω) ≤ C
(
s,Ω

)
‖g‖L∞(Ω) .

Recall that v denotes the Cα(Rn) extension of u/δs|Ω given by Lemma 3.8, which
satisfies ‖v‖Cα(Rn) = ‖u/δs‖Cα(Ω). Since u ∈ Cα+2s(Ω) and δ ∈ C1,1(Ωρ0), it is clear

that ‖v‖(−α)
α+2s;U < ∞ —it is here where we use that we are in a subdomain U and

not in Ωρ0 . Next we obtain an a priori bound for this seminorm in U . To do it, we
use the equation (4.2) for v:

(−∆)sv =
1

δs

(
g(x)− v(−∆)sδs0 + I(δs0, v)

)
in Ωρ0 = {x ∈ Ω : δ(x) < ρ0} .

Now we will se that this equation and Lemma 2.10 lead to an a priori bound for

‖v‖(−α)
α+2s;U . To apply Lemma 2.10, we need to bound ‖(−∆)sv‖(2s−α)

α;U . Let us examine
the three terms on the right hand side of the equation.

First term. Using that

dx = dist(x, ∂U) < dist(x, ∂Ω) = δ(x)

for all x ∈ U we obtain that, for all α ≤ s,

‖δ−sg‖(2s−α)
α;U ≤ C

(
s,Ω

)
‖g‖(s−α)

α;Ω .

Second term. We know from Lemma 3.9 that, for α ≤ min{s, 1− s},
‖(−∆)sδs0‖Cα(Ωρ0 ) ≤ C

(
s,Ω) .
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Hence,

‖δ−sv(−∆)sδs0‖
(2s−α)
α;U ≤ diam(Ω)s‖δ−sv(−∆)sδs0‖

(s−α)
α;U ≤ C

(
s,Ω

)
‖v‖Cα(Rn)

≤ C
(
s,Ω

)
‖g‖L∞(Ω) .

Third term. From Lemma 4.1 we know that

‖I(v, δs0)‖(s−α)
α;U ≤ C(n, s, α)

(
‖v‖Cα(Rn) + [v]

(−α)
α+s;U

)
,

and hence

‖δ−sI(v, δs0)‖(2s−α)
α;U ≤ C(n, s,Ω, α)

(
‖v‖Cα(Rn) + [v]

(−α)
α+s;U

)
≤ C(n, s,Ω, α, ε0)‖v‖Cα(Rn) + ε0‖v‖(−α)

α+2s;U

for each ε0 > 0. The last inequality is by standard interpolation.
Now, using Lemma 2.10 we deduce

‖v‖(−α)
α+2s;U ≤ C

(
‖v‖Cα(Rn) + ‖(−∆)sv‖(2s−α)

α;U

)
≤ C

(
‖v‖Cα(Rn) + ‖δ−sg‖(2s−α)

α;U + ‖δ−sv(−∆)sδs0‖
(2s−α)
α;U + ‖I(v, δs0)‖(s−α)

α;U

)
≤ C(s,Ω, α, ε0)

(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
+ Cε0‖v‖(−α)

α+2s;U ,

and choosing ε0 small enough we obtain

‖v‖(−α)
α+2s;U ≤ C

(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
.

Furthermore, letting U ↑ Ωρ0 we obtain that the same estimate holds with U replaced
by Ωρ0 .

Finally, in Ω \ Ωρ0 we have that u is Cα+2s and δs is uniformly positive and C0,1.
Thus, we have u/δs ∈ Cγ(Ω \ Ωρ0), where γ = min{1, α + 2s}, and the theorem
follows. �

Next we give the

Proof of Corollary 1.6. (a) It follows from Proposition 1.1 that u ∈ Cs(Rn). The
interior estimate follow by applying repeatedly Proposition 1.4.

(b) It follows from Theorem 1.2 that u/δs|Ω ∈ Cα(Ω). The interior estimate
follows from Theorem 1.5. �

The following two lemmas are closely related to Lemma 4.2 and are needed in [20]
and in Remark 2.11 of this paper.

Lemma 4.3. Let U be an open domain and α and β be such that α ≤ s < β and
β − s is not an integer. Let k be an integer such that β = k + β′ with β′ ∈ (0, 1].
Then,

(4.6) [(−∆)s/2w]
(s−α)
β−s;U ≤ C

(
‖w‖Cα(Rn) + ‖w‖(−α)

β;U

)
,
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for all w with finite right hand side. The constant C depends only on n, s, α, and
β.

Proof. Let x0 ∈ U and R = dx0/2, and denote Bρ = Bρ(x0). Let η be a smooth
cutoff function such that η ≡ 1 on B1(0) and η ≡ 0 outside B3/2(0). Define

ηR(x) = η

(
x− x0

R

)
and w̄ =

(
w − w(x0)

)
ηR .

Note that we have

‖w̄‖L∞(Rn) = ‖w̄‖L∞(B3R/2) ≤
(

3R

2

)α
[w]Cα(Rn) .

In addition, for each 1 ≤ l ≤ k

‖Dlw̄‖L∞(Rn) ≤ C
l∑

m=0

‖Dm(w − w(x0))Dl−mηR‖L∞(B3R/2)

≤ CR−l+α

(
[w]Cα(Rn) +

l∑
m=1

[w]
(−α)
m,U

)
.

Hence, by interpolation, for each 0 ≤ l ≤ k − 1

‖Dlw̄‖Cl+β′ (Rn) ≤ CR−l−β
′+α

(
[w]Cα(Rn) +

l∑
m=1

[w]
(−α)
m,U

)
,

and therefore

(4.7) [Dkw̄]Cβ′ (Rn) ≤ CR−β+α‖w‖(−α)
β;U .

Let ϕ = w − w(x0) − w̄ and observe that ϕ vanishes in BR and, hence, ϕ(x1) =
ϕ(x2) = 0.

Next we proceed differently if β′ > s or if β′ < s. This is because Cβ−s equals
either Ck,β′−s or Ck−1,1+β′−s.

Case 1. Assume β′ > s. Let x1, x2 ∈ BR/2(x0) ⊂ B2R(x0). We want to bound

|Dk(−∆)s/2w(x1) − Dk(−∆)s/2w(x2)|, where Dk denotes any k-th derivative with
respect to a fixed multiindex. We have

(−∆)s/2w = (−∆)s/2w̄ + (−∆)s/2ϕ in BR/2 .

Then,

Dk(−∆)s/2w(x1)−Dk(−∆)s/2w(x2) = cn, s
2
(J1 + J2) ,

where

J1 =

∫
Rn

{
Dkw̄(x1)−Dkw̄(y)

|x1 − y|n+s
− Dkw̄(x2)−Dkw̄(y)

|x2 − y|n+s

}
dy

and

J2 = Dk

∫
Rn\BR

−ϕ(y)

|x1 − y|n+s
dy −Dk

∫
Rn\BR

−ϕ(y)

|x2 − y|n+s
dy .
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To bound |J1| we proceed as follows. Let r = |x1 − x2|. Then, using (4.7),

|J1| =
∣∣∣∣∫

Rn

Dkw̄(x1)−Dkw̄(x1 + z)−Dkw̄(x2) +Dkw̄(x2 + z)

|z|n+s
dz

∣∣∣∣
≤
∫
Br

Rα−β‖w‖(−α)
β;U |z|β

′

|z|n+s
dz +

∫
Rn\Br

Rα−β‖w‖(−α)
β;U rβ

′

|z|n+s
dz

≤ CRα−βrβ
′−s‖w‖(−α)

β;U .

Let us bound now |J2|. Writing Φ(z) = |z|−n−s and using that ϕ(x0) = 0,

|J2| =
∣∣∣∣∫

Rn\BR
ϕ(y)

(
DkΦ(x1 − y)−DkΦ(x2 − y)

)
dy

∣∣∣∣
≤ C

∫
Rn\BR

|x0 − y|α[w]Cα(Rn)
|x1 − x2|β

′−s

|x0 − y|n+β
dy

≤ CRα−βrβ
′−s[w]Cα(Rn),

where we have used that

|DkΦ(z1 − z)−DkΦ(z2 − z)| ≤ C|z1 − z2|β
′−s|z|−n−β

for all z1, z2 in BR/2(0) and z ∈ Rn \BR.
Hence, we have proved that

[(−∆)s/2w]Cβ−s(BR(x0)) ≤ CRα−β‖w‖(−α)
β;U .

Case 2. Assume β′ < s. Let x1, x2 ∈ BR/2(x0) ⊂ B2R(x0). We want to bound

|Dk−1(−∆)s/2w(x1)−Dk−1(−∆)s/2w(x2)|. We proceed as above but we now use

|Dk−1w̄(x1)−Dk−1w̄(x1 + y)−Dk−1w̄(x2) +Dk−1w̄(x2 + y)| ≤
≤
∣∣Dkw̄(x1)−Dkw̄(x2)

∣∣ |y|+ |y|1+β′‖w̄‖Cβ(Rn)

≤
(
|x1 − x2|β

′ |y|+ |y|1+β′
)
Rα−β‖w‖(−α)

β;U

in Br, and

|Dk−1w̄(x1)−Dk−1w̄(x1 + y)−Dk−1w̄(x2) +Dk−1w̄(x2 + y)| ≤
≤
∣∣Dkw̄(x1)−Dkw̄(x1 + y)

∣∣ |x1 − x2|+ |x1 − x2|1+β′‖w̄‖Cβ(Rn)

≤
(
|y|β′|x1 − x2|+ |x1 − x2|1+β′

)
Rα−β‖w‖(−α)

β;U

in Rn\Br. Then, as in Case 1 we obtain [(−∆)s/2w]Cβ−s(BR(x0)) ≤ CRα−β‖w‖(−α)
β;U .

This yields (4.6), as in Step 2 of Lemma 2.10. �

Next lemma is a variation of the previous one and gives a pointwise bound for
(−∆)s/2w. It is used in Remark 2.11.
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Lemma 4.4. Let U ⊂ Rn be an open set, and let β > s. Then, for all x ∈ U

|(−∆)s/2w(x)| ≤ C(‖w‖Cs(Rn) + ‖w‖(−s)
β;U )

(
1 + | log dist(x, ∂U)|

)
,

whenever w has finite right hand side. The constant C depends only on n, s, and β.

Proof. We may assume β < 1. Let x0 ∈ U and R = dx0/2, and define w̄ and ϕ as in
the proof of the previous lemma. Then,

(−∆)s/2w(x0) = (−∆)s/2w̄(x0) + (−∆)s/2ϕ(x0) = cn, s
2
(J1 + J2),

where

J1 =

∫
Rn

w̄(x0)− w̄(x0 + z)

|z|n+s
dz and J2 =

∫
Rn\BR

−ϕ(x0 + z)

|z|n+s
dz.

With similar arguments as in the previous proof we readily obtain |J1| ≤ C(1 +

| logR|)‖w‖(−s)
β;U and |J2| ≤ C(1 + | logR|)‖w‖Cs(Rn). �

Appendix A. Basic tools and barriers

In this appendix we prove Proposition 3.1 and Lemmas 3.2 and 2.6. Proposition
3.1 is well-known (see [7]), but for the sake of completeness we sketch here a proof
that uses the Caffarelli-Silvestre extension problem [8].

Proof of Proposition 3.1. Let (x, y) and (r, θ) be Cartesian and polar coordinates of
the plane. The coordinate θ ∈ (−π, π) is taken so that {θ = 0} on {y = 0, x > 0}.
Use that the function rs cos(θ/2)2s is a solution in the half-plane {y > 0} to the
extension problem [8],

div(y1−2s∇u) = 0 in {y > 0},

and that its trace on y = 0 is ϕ0. �

The fractional Kelvin transform has been studied thoroughly in [5].

Proposition A.1 (Fractional Kelvin transform). Let u be a smooth bounded func-
tion in Rn \ {0}. Let x 7→ x∗ = x/|x|2 be the inversion with respect to the unit
sphere. Define u∗(x) = |x|2s−nu(x∗). Then,

(A.1) (−∆)su∗(x) = |x|−2s−n(−∆)su(x∗) ,

for all x 6= 0.

Proof. Let x0 ∈ Rn\{0}. By subtracting a constant to u∗ and using (−∆)s|x|2s−n = 0
for x 6= 0, we may assume u∗(x0) = u(x∗0) = 0. Recall that

|x− y| = |x
∗ − y∗|
|x∗||y∗|

.
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Thus, using the change of variables z = y∗ = y/|y|2,

(−∆)su∗(x0) = cn,s PV

∫
Rn

−u∗(y)

|x0 − y|n+2s
dy

= cn,s PV

∫
Rn

−|y|2s−nu(y∗)

|x∗0 − y∗|n+2s
|x∗0|n+2s|y∗|n+2s dy

= cn,s|x0|−n−2s PV

∫
Rn

−|z|n−2su(z)

|x∗0 − z|n+2s
|z|n+2s |z|−2ndz

= cn,s|x0|−n−2s PV

∫
Rn

−u(z)

|x∗0 − z|n+2s
dz

= |x0|−n−2s(−∆)su(x∗0) .

�

Now, using Proposition A.1 we prove Lemma 2.6.

Proof of Lemma 2.6. Let us denote by ψ (instead of u) the explicit solution (1.4) to
problem (1.3) in B1, which satisfies

(A.2)


(−∆)sψ = 1 in B1

ψ ≡ 0 in Rn \B1

0 < ψ < C(1− |x|)s in B1 .

From ψ, the supersolution ϕ1 in the exterior of the ball is readily built using the
fractional Kelvin transform. Indeed, let ξ be a radial smooth function satisfying
ξ ≡ 1 in Rn \B5 and ξ ≡ 0 in B4, and define ϕ1 by

(A.3) ϕ1(x) = C|x|2s−nψ(1− |x|−1) + ξ(x) .

Observe that (−∆)sξ ≥ −C2 in B4, for some C2 > 0. Hence, if we take C ≥
42s+n(1 + C2), using (A.1), we have

(−∆)sϕ1(x) ≥ C|x|−2s−n + (−∆)sξ(x) ≥ 1 in B4 .

Now it is immediate to verify that ϕ1 satisfies (2.1) for some c1 > 0.
To see that ϕ1 ∈ Hs

loc(Rn) we observe that from (A.3) it follows

|∇ϕ1(x)| ≤ C(|x| − 1)s−1 in Rn \B1

and hence, using Lemma 4.4, we have (−∆)s/2ϕ1 ∈ Lploc(Rn) for all p <∞. �

Next we prove Lemma 3.2.

Proof of Lemma 3.2. We define

ψ1(x) = (1− |x|2)sχB1(x) .

Since (1.4) is the solution of problem (1.3), we have (−∆)sψ1 is bounded in B1.
Hence, for C > 0 large enough the function ψ = ψ1 + CχB1/4

satisfies (−∆)sψ ≤ 0

in B1 \ B1/4 and it can be used as a viscosity subsolution. Note that ψ is upper
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semicontinuous, as required to viscosity subsolutions, and it satisfies pointwise (if C
is large enough) 

ψ ≡ 0 in Rn \B1

(−∆)sψ ≤ 0 in B1 \B1/4

ψ = 1 in B1/4

ψ(x) ≥ c(1− |x|)s in B1.

If we want a subsolution which is continuous and Hs(Rn) we may construct it as
follows. We consider the viscosity solution (which is also a weak solution by Remark
2.11) of 

(−∆)sϕ2 = 0 in B1 \B1/4

ϕ2 ≡ 0 in Rn \B1

ϕ2 = 1 in B1/4.

Using ψ as a lower barrier, it is now easy to prove that ϕ2 satisfies (3.2) for some
constant c2 > 0. �
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