An Osgood criterion for stochastic differential equations with an additive noise

Jorge A. León

Departamento de Control Automático
Cinvestav del IPN

Barcelona, 2011

Jointly with José Villa Morales
Content

1. Introduction and Osgood test
2. Comparison Theorem
3. Blow-up for a class of integral equations
4. Stochastic differential equations driven by an additive noise
5. Comparison with the Feller test for explosions
Consider

\[
\begin{aligned}
\frac{dv(t)}{dt} &= b(v(t)), \quad t > 0, \\
v(0) &= a.
\end{aligned}
\]
Consider

\[
\begin{align*}
\frac{dv(t)}{dt} &= b(v(t)), \quad t > 0, \\
v(0) &= a.
\end{align*}
\]

We define the explosion time as

\[
T = \sup\{ t > 0 : |v(t)| < \infty \}.
\]
Osgood criterion

Consider

\[\begin{align*}
\frac{dv(t)}{dt} &= b(v(t)), \quad t > 0, \\
v(0) &= a.
\end{align*} \]

(H1) \(a \in \mathbb{R} \) and \(b : \mathbb{R} \to \mathbb{R}_+ \) is a positive, non-decreasing and locally Lipschitz function.
Osgood criterion

Consider

\[
\begin{cases}
\frac{dv(t)}{dt} = b(v(t)), & t > 0, \\
v(0) = a.
\end{cases}
\]

(H1) \(a \in \mathbb{R} \) and \(b : \mathbb{R} \rightarrow \mathbb{R}_+ \) is a positive, non-decreasing and locally Lipschitz function.

Remark

Under (H1), there exists a maximal interval on which above equation has a unique solution.
Osgood criterion

Consider

\[
\begin{aligned}
\frac{dv(t)}{dt} &= b(v(t)), \quad t > 0, \\
v(0) &= a.
\end{aligned}
\]

\((H1)\) \(a \in \mathbb{R}\) and \(b : \mathbb{R} \to \mathbb{R}_+\) is a positive, non-decreasing and locally Lipschitz function.

Observe that

\[
\frac{v'(t)}{b(v(t))} = 1 \Rightarrow \int_0^t \frac{v'(s)}{b(v(s))} ds = \int_0^t 1 ds = t.
\]
Osgood criterion

Consider

\[
\begin{cases}
\frac{dv(t)}{dt} = b(v(t)), & t > 0, \\
v(0) = a.
\end{cases}
\]

\textbf{(H1)} \ a \in \mathbb{R} \text{ and } b : \mathbb{R} \to \mathbb{R}_+ \text{ is a positive, non-decreasing and locally Lipschitz function.}

Observe that

\[
\frac{v'(t)}{b(v(t))} = 1 \Rightarrow \int_0^t \frac{v'(s)}{b(v(s))} ds = \int_0^t 1 ds = t.
\]

Hence

\[
\int_a^{v(t)} \frac{dy}{b(y)} = \int_{v(0)}^{v(t)} \frac{dy}{b(y)} = t.
\]
Osgood criterion

\[\int_a^{v(t)} \frac{dy}{b(y)} = t. \]

Define

\[B(x) = \int_a^x \frac{dy}{b(y)}, \quad x \geq a. \]

Therefore \(B(v(t)) = t. \) Thus

\[v(t) = B^{-1}(t), \quad 0 < t < B(\infty). \]
Osgood criterion

\[\int_a^{v(t)} \frac{dy}{b(y)} = t. \]

Define

\[B(x) = \int_a^x \frac{dy}{b(y)}, \quad x \geq a. \]

Therefore \(B(v(t)) = t. \) Thus

\[v(t) = B^{-1}(t), \quad 0 < t < B(\infty). \]

In this case the explosion time is

\[B(\infty) = \int_a^\infty \frac{ds}{b(s)}. \]
A basic example

Consider the following non-linear ordinary differential equation

\[
\begin{align*}
\frac{dv(t)}{dt} &= (v(t))^2, & t > 0, \\
v(0) &= a.
\end{align*}
\]
Consider the following non-linear ordinary differential equation

\[
\begin{aligned}
\frac{dv(t)}{dt} &= (v(t))^2, \quad t > 0, \\
v(0) &= a.
\end{aligned}
\]

For \(a > 0 \), there is a unique solution \(v \), in the interval \(0 < t < 1/a \):

\[
v(t) = \frac{1}{1/a - t}.
\]
A basic example

Consider the following non-linear ordinary differential equation

\[
\begin{cases}
\frac{dv(t)}{dt} = (v(t))^2, & t > 0, \\
v(0) = a.
\end{cases}
\]

For \(a > 0 \), there is a unique solution \(v \), in the interval \(0 < t < 1/a \):

\[v(t) = \frac{1}{1/a - t}. \]

The number \(T = 1/a \) is the explotion time.
A basic example

Consider the following non-linear ordinary differential equation

\[\begin{aligned}
\frac{dv(t)}{dt} &= (v(t))^2, \quad t > 0, \\
v(0) &= a.
\end{aligned} \]

For \(a < 0 \), there is a unique solution \(v \), in the interval \(0 < t < 1/a \):

\[v(t) = -\frac{1}{t - 1/a}. \]

In this case the explosion time is \(T = \infty \).
A basic example

Consider the following non-linear ordinary differential equation

\[
\begin{align*}
\frac{dv(t)}{dt} &= (v(t))^2, \quad t > 0, \\
v(0) &= a.
\end{align*}
\]

Remark

Note that

\[
\int_a^\infty \frac{dx}{x^2}
\]

is finite if and only if \(a > 0 \).
Suppose that g is a measurable function such that

$$\limsup_{t \to \infty} \left(\inf_{0 \leq h \leq 1} g(t + h) \right) = \infty,$$

and b is a positive and nondecreasing function. The solution of the integral equation

$$X_t = a + \int_0^t b(X_s) ds + g(t), \quad t \geq 0,$$
Main result

Suppose that g is a measurable function such that

$$\limsup_{t \to \infty} \left(\inf_{0 \leq h \leq 1} g(t + h) \right) = \infty,$$

and b is a positive and nondecreasing function. The solution of the integral equation

$$X_t = a + \int_0^t b(X_s)ds + g(t), \quad t \geq 0,$$

explodes in finite time if and only if $\int_\infty^\infty \frac{ds}{b(s)} < \infty$.

As an example, we see that g can represent the paths of some stochastic processes.
<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and Osgood test</td>
</tr>
<tr>
<td>2</td>
<td>Comparison Theorem</td>
</tr>
<tr>
<td>3</td>
<td>Blow-up for a class of integral equations</td>
</tr>
<tr>
<td>4</td>
<td>Stochastic differential equations driven by an additive noise</td>
</tr>
<tr>
<td>5</td>
<td>Comparison with the Feller test for explosions</td>
</tr>
</tbody>
</table>
Comparison Theorem

Lemma

Assume that b satisfies Hypothesis (H1), $a_1 > a_2$ and $T > 0$. Also assume that u and v are two measurable functions on $[0, T]$ such that

$$v(t) \geq a_1 + \int_0^t b(v(s))ds, \quad t \in [0, T],$$

and

$$u(t) = a_2 + \int_0^t b(u(s))ds, \quad t \in [0, T].$$

Then, $v \geq u$ on $[0, T]$.

Jorge A. León (Cinvestav-IPN)
Comparison Theorem

Lemma

Assume that b satisfies Hypothesis $(H1)$, $a_1 < a_2$ and $T > 0$. Also assume that u and v are two measurable functions on $[0, T]$ such that

$$v(t) \leq a_1 + \int_0^t b(v(s)) \, ds, \quad t \in [0, T],$$

and

$$u(t) = a_2 + \int_0^t b(u(s)) \, ds, \quad t \in [0, T].$$

Then, $v \leq u$ on $[0, T]$.
Comparison Theorem

Lemma

Assume that b satisfies Hypothesis $(H1)$, $a_1 > a_2$ and $T > 0$. Also assume that u and v are two measurable functions on $[0, T]$ such that

$$v(t) \geq a_1 + \int_0^t b(v(s)) \, ds, \quad t \in [0, T],$$

and

$$u(t) = a_2 + \int_0^t b(u(s)) \, ds, \quad t \in [0, T].$$

Then, $v \geq u$ on $[0, T]$.

Proof: Note that the facts that $a_1 > a_2$ and u is continuous yield

$$\{ t \in [0, T] : v(s) \geq u(s), \ s \in [0, t] \} \neq \emptyset.$$
Proof

Thus, we only need to show

\[\tilde{T} = \sup\{ t \in (0, T] : v(s) \geq u(s), \ s \in [0, t] \} = T. \]
Proof

\[\tilde{T} = \sup\{ t \in (0, \, T] : v(s) \geq u(s), \, s \in [0, \, t]\} = T. \]

But, if it is not so, then Hypothesis (H1) and the continuity of the integral lead to write

\[
v(\tilde{T} + t) - u(\tilde{T} + t) \geq a_1 - a_2 + \int_0^{\tilde{T} + t} [b(v(s)) - b(u(s))] \, ds
\]

\[
\geq a_1 - a_2 + \int_{\tilde{T}}^{\tilde{T} + t} [b(v(s)) - b(u(s))] \, ds
\]

\[
\geq \frac{a_1 - a_2}{2} > 0,
\]

for \(t \) small enough. Therefore \(\tilde{T} \) cannot be the supremum. \(\square \)
Contents

1. Introduction and Osgood test
2. Comparison Theorem
3. Blow-up for a class of integral equations
4. Stochastic differential equations driven by an additive noise
5. Comparison with the Feller test for explosions
Main result

Now we study the explosion in finite time of the solution to

\[X_t = a + \int_0^t b(X_s)ds + g(t), \quad t \geq 0. \]
Main result

Now we study the explosion in finite time of the solution to

$$X_t = a + \int_0^t b(X_s)ds + g(t), \quad t \geq 0.$$

Here $a \in \mathbb{R}$, b satisfies Hypothesis (H1) and (H2) $g : [0, \infty) \to \mathbb{R}$ is a function with left and right-limits such that

$$\limsup_{t \to \infty} \left(\inf_{0 \leq h \leq 1} g(t + h) \right) = \infty.$$
Main result

Theorem

Let Hypotheses \((H1)\) and \((H2)\) hold. Then, the solution of equation

\[
X_t = a + \int_0^t b(X_s)ds + g(t), \quad t \geq 0.
\]

exploits in finite time if and only if

\[
\int_{\cdot}^{\infty} \frac{ds}{b(s)} < \infty.
\]
Main result

Theorem

Let Hypotheses (H1) and (H2) hold. Then, the solution of equation

\[X_t = a + \int_0^t b(X_s)ds + g(t), \quad t \geq 0. \]

exploits in finite time if and only if

\[\int_0^\infty \frac{ds}{b(s)} < \infty. \]

Proof: Necessity: Suppose that \(X \) exploits at the time \(T_e < \infty \).
Set \(M := \sup_{0 \leq t \leq T_e} |g(t)| \). Then,

\[X_t \leq (a + M) + \int_0^t b(X_s)ds, \quad t \in [0, T_e]. \]
Proof

Suppose that \(X \) exploits at the time \(T_e < \infty \). Set
\[
M := \sup_{0 \leq t \leq T_e} |g(t)|.
\]
Then,
\[
X_t \leq (a + M) + \int_0^t b(X_s)ds, \quad t \in [0, T_e].
\]

Hence, our comparison result implies that the solution of
\[
u(t) = (a + M + 1) + \int_0^t b(u(s))ds, \quad t \geq 0,
\]
exploits in the interval \([0, T_e]\).
Proof

Suppose that X exploits at the time $T_e < \infty$. Set $M := \sup_{0 \leq t \leq T_e} |g(t)|$. Then,

$$X_t \leq (a + M) + \int_0^t b(X_s)ds, \quad t \in [0, T_e].$$

Hence, our comparison result implies that the solution of

$$u(t) = (a + M + 1) + \int_0^t b(u(s))ds, \quad t \geq 0,$$

exploits in the interval $[0, T_e]$, which allows to conclude that

$$\int_{\cdot}^\infty \frac{ds}{b(s)} < \infty$$

because of Osgood criterion.
Theorem

Let Hypotheses (H1) and (H2) hold. Then, the solution of equation

\[X_t = a + \int_0^t b(X_s)ds + g(t), \quad t \geq 0. \]

exploits in finite time if and only if

\[\int_{\cdot}^{\infty} \frac{ds}{b(s)} < \infty. \]

Proof: Sufficiency: Now assume that the solution \(X \) of does not exploit in finite time.
Proof

Now assume that the solution X of does not exploit in finite time. So, using Hypothesis (H2), we can find an increasing sequence $\{t_n : n \in \mathbb{N}\}$ such that $t_n \uparrow \infty$ and

$$\inf_{0 \leq h \leq 1} g(t_n + h) \uparrow \infty, \quad \text{as } n \to \infty.$$
Proof

Now assume that the solution X of does not exploit in finite time. So, using Hypothesis (H2), we can find an increasing sequence $\{t_n : n \in \mathbb{N}\}$ such that $t_n \uparrow \infty$ and

$$\inf_{0 \leq h \leq 1} g(t_n + h) \uparrow \infty, \quad \text{as } n \rightarrow \infty.$$

On the other hand, Hypothesis (H1) yields that

$$X_{t+t_n} \geq a + \int_{t_n}^{t+t_n} b(X_s)ds + g(t + t_n)$$

$$\geq a + \int_{0}^{t} b(X_{s+t_n})ds + \inf_{0 \leq h \leq 1} g(t_n + h), \quad t \in [0, 1].$$
Proof

Now assume that the solution X of does not exploit in finite time. So, using Hypothesis (H2), we can find an increasing sequence \(\{t_n : n \in \mathbb{N}\} \) such that $t_n \uparrow \infty$ and

\[
\inf_{0 \leq h \leq 1} g(t_n + h) \uparrow \infty, \quad \text{as } n \to \infty.
\]

On the other hand, Hypothesis (H1) yields that

\[
X_{t+t_n} \geq a + \int_{t_n}^{t+t_n} b(X_s)ds + g(t + t_n)
\]

\[
\geq a + \int_{0}^{t} b(X_{s+t_n})ds + \inf_{0 \leq h \leq 1} g(t_n + h), \quad t \in [0, 1].
\]

Then, the solution of the equation

\[
u(t) = \frac{1}{2} \left(a + \inf_{0 \leq h \leq 1} g(t_n + h) \right) + \int_{0}^{t} b(u(s))ds, \quad t \geq 0,
\]

cannot exploit in the interval $[0, 1]$ due to comparison Lemma.
Proof

Now assume that the solution X of does not exploit in finite time. So, using Hypothesis (H2), we can find an increasing sequence \(\{t_n : n \in \mathbb{N}\} \) such that $t_n \uparrow \infty$ and

$$\inf_{0 \leq h \leq 1} g(t_n + h) \uparrow \infty, \quad \text{as } n \to \infty.$$

Then, the solution of the equation

$$u(t) = \frac{1}{2} \left(a + \inf_{0 \leq h \leq 1} g(t_n + h) \right) + \int_0^t b(u(s))ds, \quad t \geq 0,$$

cannot exploit in the interval $[0, 1]$ due to comparison Lemma. In other words, the time of explosion of equation

$$\int_0^\infty \frac{ds}{2^{-1}(a + \inf_{0 \leq h \leq 1} g(t_n + h)) b(s)}$$

is bigger than 1.
Proof

Now assume that the solution \(X \) of \(X \) does not exploit in finite time. So, using Hypothesis (H2), we can find an increasing sequence \(\{t_n : n \in \mathbb{N}\} \) such that \(t_n \uparrow \infty \) and

\[
\inf_{0 \leq h \leq 1} g(t_n + h) \uparrow \infty, \quad \text{as } n \to \infty. \tag{1}
\]

Then, the solution of the equation

\[
u(t) = \frac{1}{2} \left(a + \inf_{0 \leq h \leq 1} g(t_n + h) \right) + \int_0^t b(u(s))ds, \quad t \geq 0,
\]

cannot exploit in the interval \([0, 1]\) due to comparison Lemma. In other words, the time of explosion

\[
\int_0^\infty \int_{2^{-1}(a+\inf_{0 \leq h \leq 1} g(t_n+h))}^{\infty} \frac{ds}{b(s)}
\]

of this equation is bigger than 1.

Finally, (1) gives \(\int_0^\infty \frac{ds}{b(s)} = \infty \).
Contents

1. Introduction and Osgood test
2. Comparison Theorem
3. Blow-up for a class of integral equations
4. Stochastic differential equations driven by an additive noise
5. Comparison with the Feller test for explosions
Main result

Here we show two classes of processes Z, whose paths satisfy Hypothesis ($H2$), with probability 1. Consequently, we can analyze the explosion in finite time of the solution to

$$X_t = a + \int_0^t b(X_s)ds + Z_t, \quad t \geq 0,$$

where $a \in \mathbb{R}$.
Bifractional Brownian motion

The bifractional Brownian motion (bBm) with parameters $H \in (0, 1)$ and $K \in (0, 1]$ was introduced by Houdré and Villa (2003). It is a centered Gaussian process $B_{H,K} = \{B_{H,K}(t) : t \geq 0\}$ with covariance function

$$R_{H,K}(t, s) = \frac{1}{2^K} \left\{ (t^{2H} + s^{2H})^K - |t - s|^{2HK} \right\}$$

such that, for $s, t \geq 0$, the inequalities

$$2^{-K}|t - s|^{2HK} \leq E \left[(B_{H,K}(t) - B_{H,K}(s))^2 \right] \leq 2^{1-K}|t - s|^{2HK}$$

hold.

$B_H := B_{H,1}$ is the fractional Brownian motion with Hurst parameter H and $W := B_{1/2,1}$ is the Brownian motion.
Bifractional Brownian motion: The law of the iterated logarithm

Lemma

With probability 1,

\[
\limsup_{t \to \infty} \frac{B_{H,K}(t)}{\psi_{H,K}(t)} = 1,
\]

with

\[
\psi_{H,K}(t) := \sqrt{2t^{2HK} \log \log t}, \quad t > e.
\]
The law of the iterated logarithm

Proof: In order to see that the result is true, we proceed as in the Brownian case. That is, we only need to observe that the definition of $B_{H,K}$ yields that the process

$$\tilde{B}_{H,K}(t) = \begin{cases}
0, & t = 0, \\
t^{2HK} B_{H,K}(\frac{1}{t}), & t > 0
\end{cases}$$

is also a bBm with parameters H and K, and that

$$\limsup_{t \to \infty} \frac{B_{H,K}(t)}{\psi_{H,K}(t)} = \limsup_{h \downarrow 0} \frac{\tilde{B}_{H,K}(h)}{\sqrt{2h^{2HK} \log \log h^{-1}}} = 1.$$

The last equality is an immediate consequence of Arcones (1995) (Corollary 3.1).
Lemma

With probability 1,

$$\sup_{s,t \in [n, n+2]} \frac{|B_{H,K}(t) - B_{H,K}(s)|}{\psi_{H,K}(n)} \to 0, \quad \text{as } n \to \infty,$$

where

$$\psi_{H,K}(t) := \sqrt{2t^{2HK} \log \log t}, \quad t > e.$$
Proof

For each \(n \in \mathbb{N} \) consider the centered Gaussian process
\(\{ B_{H,K}(t + n) - B_{H,K}(n) : t \in [0, 2] \} \). Then, from inequality (2) and Carmona et al. (2003) (Lemma 5.2), we have that for \(p \geq 1/HK \), there exists a constant \(C > 0 \), that only depends on \(H, K \) and \(p \), such that

\[
E \left[\left(\sup_{s,t \in [n,n+2]} |B_{H,K}(t) - B_{H,K}(s)| \right)^p \right] \leq C2^{pHK}.
\]

Hence,

\[
E \left[\sum_{n=1}^{\infty} \left(\sup_{s,t \in [n,n+2]} \frac{|B_{H,K}(t) - B_{H,K}(s)|}{\psi_{H,K}(n)} \right)^p \right] \leq \sum_{n=1}^{\infty} \frac{C2^{pHK}}{\psi_{H,K}(n)^p} < \infty.
\]
Bifractional Brownian motion

\[X_t = a + \int_0^t b(X_s)\,ds + Z_t, \quad t \geq 0, \]
Bifractional Brownian motion

\[X_t = a + \int_0^t b(X_s)ds + Z_t, \quad t \geq 0, \]

Theorem

Assume that Hypothesis (H1) is satisfied and that the process Z is the bifractional Brownian motion \(B_{H,K} \). Then, the solution of above equation explodes in finite time with probability 1 if and only if

\[\int_{-\infty}^{\infty} \frac{ds}{b(s)} < \infty. \]
Bifractional Brownian motion

\[X_t = a + \int_0^t b(X_s)ds + Z_t, \quad t \geq 0, \]

Theorem

Assume that Hypothesis (H1) is satisfied and that the process \(Z \) is the bifractional Brownian motion \(B_{H,K} \). Then, the solution of above equation explodes in finite time with probability 1 if and only if

\[\int_{-\infty}^{\infty} \frac{ds}{b(s)} < \infty. \]

Proof: we only need to see that the paths of \(B_{H,K} \) are as in Hypothesis (H2) with probability 1.
Proof

Toward this end, let $\omega_0 \in \Omega$. Then,

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h) = B_{H,K}(\omega_0, t) + \inf_{0 \leq h \leq 1} (B_{H,K}(\omega_0, t + h) - B_{H,K}(\omega_0, t))$$
Proof

Toward this end, let $\omega_0 \in \Omega$. Then,

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h)$$

$$= B_{H,K}(\omega_0, t) + \inf_{0 \leq h \leq 1} (B_{H,K}(\omega_0, t + h) - B_{H,K}(\omega_0, t))$$

$$\geq B_{H,K}(\omega_0, t) + \inf_{0 \leq h \leq 1} (- |B_{H,K}(\omega_0, t + h) - B_{H,K}(\omega_0, t)|)$$
Proof

Toward this end, let $\omega_0 \in \Omega$. Then,

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h)$$

$$= B_{H,K}(\omega_0, t) + \inf_{0 \leq h \leq 1} (B_{H,K}(\omega_0, t + h) - B_{H,K}(\omega_0, t))$$

$$\geq B_{H,K}(\omega_0, t) + \inf_{0 \leq h \leq 1} (- |B_{H,K}(\omega_0, t + h) - B_{H,K}(\omega_0, t)|)$$

$$= B_{H,K}(\omega_0, t) - \left(\sup_{0 \leq h \leq 1} \frac{|B_{H,K}(\omega_0, t + h) - B_{H,K}(\omega_0, t)|}{\psi_{H,K}([t])} \right) \psi_{H,K}([t]),$$

where $[t]$ is the integer part of t.
Proof

Toward this end, let $\omega_0 \in \Omega$. Then,

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h)$$

$$\geq B_{H,K}(\omega_0, t) - \left(\sup_{0 \leq h \leq 1} \frac{|B_{H,K}(\omega_0, t + h) - B_{H,K}(\omega_0, t)|}{\psi_{H,K}([t])} \right) \psi_{H,K}([t]),$$

Lemma

With probability 1,

$$\sup_{s, t \in [n, n+2]} \frac{|B_{H,K}(t) - B_{H,K}(s)|}{\psi_{H,K}(n)} \to 0, \quad \text{as } n \to \infty,$$

where

$$\psi_{H,K}(t) := \sqrt{2t^{2HK} \log \log t}, \quad t > e.$$
Proof

Therefore, for t large enough,

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h) \geq B_{H,K}(\omega_0, t) - \frac{1}{4} \psi_{H,K}([t]).$$
Proof

Therefore, for t large enough,

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h) \geq B_{H,K}(\omega_0, t) - \frac{1}{4} \psi_{H,K}([t])$$

$$= \frac{B_{H,K}(\omega_0, t)}{\psi_{H,K}(t)} \psi_{H,K}(t) - \frac{1}{4} \psi_{H,K}([t]).$$
Proof

Therefore, for t large enough,

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h) \geq B_{H,K}(\omega_0, t) - \frac{1}{4} \psi_{H,K}([t])$$

$$= \frac{B_{H,K}(\omega_0, t)}{\psi_{H,K}(t)} \psi_{H,K}(t) - \frac{1}{4} \psi_{H,K}([t]).$$

Lemma

With probability 1,

$$\limsup_{t \to \infty} \frac{B_{H,K}(t)}{\psi_{H,K}(t)} = 1,$$

with

$$\psi_{H,K}(t) := \sqrt{2t^{2HK} \log \log t}, \quad t > e.$$
Proof

Hence, there exists a sequence $0 < t_n \uparrow \infty$ such that

$$
\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t_n + h) \geq \frac{1}{2}\psi_{H,K}(t_n) - \frac{1}{4}\psi_{H,K}([t_n])
$$

$$
\geq \frac{1}{4}\psi_{H,K}([t_n]) \to \infty.
$$
Proof

Hence, there exists a sequence $0 < t_n \uparrow \infty$ such that

$$\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t_n + h) \geq \frac{1}{2} \psi_{H,K}(t_n) - \frac{1}{4} \psi_{H,K}([t_n])$$

$$\geq \frac{1}{4} \psi_{H,K}([t_n]) \rightarrow \infty.$$

Thus,

$$\limsup_{t \rightarrow \infty} \left(\inf_{0 \leq h \leq 1} B_{H,K}(\omega_0, t + h) \right) = \infty.$$
Let $\beta \in (0, 1)$. Now we consider an increasing $1/\beta$-self similar process Z, whose trajectories satisfies Hypothesis (H2). The reader can consult Rivero (2003) (and references therein) for details.
Self-similar processes

Let $\xi = \{\xi_t : t \geq 0\}$ be a Lévy process. Set

$$A_t = \int_0^t \exp \left(\frac{\xi_s}{\alpha} \right) ds, \quad t \geq 0,$$

where $\alpha > 0$, and

$$\tau(t) = \inf \{ s : A_s > t \},$$

the time change related to A.
Self-similar processes

Let $\xi = \{\xi_t : t \geq 0\}$ be a Lévy process. Set

$$A_t = \int_0^t \exp\left(\frac{\xi_s}{\alpha}\right) ds, \quad t \geq 0,$$

where $\alpha > 0$, and

$$\tau(t) = \inf\{s : A_s > t\},$$

the time change related to A. Then, the process

$$Z_t = x \exp\left(\xi_{\tau(tx^{-1/\alpha})}\right), \quad t \geq 0,$$

with $x > 0$, is an α-self similar Markov process.
Self-similar processes

It is well-known that the law of ξ is characterized by its Laplace transform

$$E \left(\exp(-\lambda \xi_t) \right) = \exp(-t\phi(\lambda)), \quad t \geq 0 \text{ and } \lambda \geq 0.$$
Self-similar processes

It is well-known that the law of ξ is characterized by its Laplace transform

$$E(\exp(-\lambda \xi_t)) = \exp(-t\phi(\lambda)), \quad t \geq 0 \text{ and } \lambda \geq 0.$$

Here, by the Lévy-Khintchine’s formula, ϕ has the form

$$\phi(\lambda) = d\lambda + \int_{(0,\infty)} (1 - \exp(-\lambda x))\Pi(dx),$$

where d is called the drift coefficient and Π the Lévy measure associated with ξ.
Self-similar processes

It is well-known that the law of ξ is characterized by its Laplace transform

$$ E(\exp(-\lambda \xi_t)) = \exp(-t\phi(\lambda)), \quad t \geq 0 \text{ and } \lambda \geq 0. $$

Here, by the Lévy-Khintchine's formula, ϕ has the form

$$ \phi(\lambda) = d\lambda + \int_{(0,\infty)} (1 - \exp(-\lambda x)) \Pi(dx), $$

where d is called the drift coefficient and Π the Lévy measure associated with ξ.

Now consider $\beta \in (0, 1)$ and the measure

$$ \Pi(dx) = \frac{\beta \exp(x)}{\Gamma(1 - \beta)(\exp(x) - 1)^{1+\beta}} dx. \quad (3) $$
Theorem

Let Z be the $1/\beta$-self similar Markov process related to a subordinator with zero drift and Lévy measure (3). Then, under Hypothesis (H1), the solution of equation

$$X_t = a + \int_0^t b(X_s) ds + Z_t, \quad t \geq 0,$$

explodes in finite time with probability 1 if and only if

$$\int_0^\infty \frac{ds}{b(s)} < \infty.$$
Proof

The result follows from Theorem M and from the fact that

\[
\liminf_{t \to \infty} \frac{Z_t}{t^{1/\beta}(\log \log t)^{(\beta-1)/\beta}} = \beta(1 - \beta)^{(1-\beta)/\beta},
\]

which is proven in Rivero (2003) (see p. 469). \(\square\)
Contents

1 Introduction and Osgood test
2 Comparison Theorem
3 Blow-up for a class of integral equations
4 Stochastic differential equations driven by an additive noise
5 Comparison with the Feller test for explosions
Feller test

Let $\mathcal{W} = \{\mathcal{W}_t : t \geq 0\}$ be a Brownian motion. We can use the Feller test to see if the solution of a stochastic differential equation of the form

$$dX_t = b(X_t)dt + \sigma(X_t)d\mathcal{W}_t, \quad t > 0,$$

$$X_0 = a,$$

explodes in finite time, with probability 1, knowing only the coefficients b and σ.
Let $\mathcal{W} = \{ \mathcal{W}_t : t \geq 0 \}$ be a Brownian motion. We can use the Feller test to see if the solution of a stochastic differential equation of the form

$$dX_t = b(X_t)dt + \sigma(X_t)d\mathcal{W}_t, \quad t > 0,$$

$$X_0 = a,$$

explodes in finite time, with probability 1, knowing only the coefficients b and σ.

In our case (i.e., $\sigma \equiv 1$), this test can be expressed as follows:
Feller test

Let $\rho(x) = \int_0^x \exp \left(-2 \int_0^s b(r)dr \right) ds$ and $v(x) = 2 \int_0^x \frac{\rho(x) - \rho(y)}{\rho'(y)} dy$.

Proposition (Feller test)

The explosion time T_e of the solution X of the equation

$$dX_t = b(X_t)dt + dW_t, \quad t > 0,$$

$$X_0 = a,$$

is finite with probability 1 if and only if, one of the following conditions holds: (i) $v(\infty) < \infty$ and $v(-\infty) < \infty$,

(ii) $v(\infty) < \infty$ and $\rho(-\infty) = -\infty$,

(iii) $v(-\infty) < \infty$ and $\rho(\infty) = \infty$.
Example

Let us consider

\[dX_t = X_t^2 \, dt + dW_t, \quad X_0 = -1. \]
Example

Let us consider

\[dX_t = X_t^2 \, dt + dW_t, \quad X_0 = -1. \]

Here \(b(x) = x^2 \), \(\sigma(x) = 1 \).
Example

Let us consider

\[dX_t = X_t^2 dt + dW_t, \quad X_0 = -1.\]

Here \(b(x) = x^2, \sigma(x) = 1.\) Then

\[
\rho(x) = \int_0^x \exp \left(-2 \int_0^s r^2 dr \right) ds
= \int_0^x e^{-\frac{2}{3}s^3} ds.
\]
Example

Let us consider

\[dX_t = X_t^2 \, dt + dW_t, \quad X_0 = -1. \]

Here \(b(x) = x^2, \sigma(x) = 1. \) Then

\[
\rho(x) = \int_0^x \exp \left(-2 \int_0^s r^2 \, dr \right) \, ds
\]

\[
= \int_0^x e^{-\frac{2}{3} s^3} \, ds.
\]

Hence

\[
v(x) = 2 \int_0^x \int_0^y e^{\frac{2}{3} (z^3 - y^3)} \, dz \, dy \Rightarrow v(\infty) = 2 \int_0^\infty \int_0^y e^{\frac{2}{3} (z^3 - y^3)} \, dz \, dy.
\]
Example

Let us consider

\[dX_t = X_t^2 \, dt + dW_t, \; X_0 = -1. \]

Then

\[
\rho(x) = \int_0^x \exp \left(-2 \int_0^s r^2 \, dr \right) \, ds
= \int_0^x e^{-\frac{2}{3}s^3} \, ds.
\]

Hence

\[
v(x) = 2 \int_0^x \int_0^y e^{\frac{2}{3}(z^3 - y^3)} \, dz \, dy \Rightarrow v(\infty) = 2 \int_0^\infty \int_0^y e^{\frac{2}{3}(z^3 - y^3)} \, dz \, dy.
\]

So we study

\[
\int_0^\infty \int_0^y e^{\frac{2}{3}(z^3 - y^3)} \, dz \, dy = \left(\int_0^1 + \int_1^\infty \right) \left(\int_0^y e^{\frac{2}{3}(z^3 - y^3)} \, dz \right) \, dy.
\]
\[\int_1^\infty \int_0^y e^{\frac{2}{3}(z^3-y^3)} \, dz \, dy = \int_0^1 e^{\frac{2}{3}z^3} \, dz \int_1^\infty e^{-\frac{2}{3}y^3} \, dy \]
\[+ \int_1^\infty e^{\frac{2}{3}z^3} \left(\int_z^\infty e^{-\frac{2}{3}y^3} \, dy \right) \, dz. \]
Example

\[
\int_1^\infty \int_0^y e^{\frac{2}{3}(z^3-y^3)} \, dz \, dy = \int_0^1 e^{\frac{2}{3}z^3} \, dz \int_1^\infty e^{-\frac{2}{3}y^3} \, dy \\
+ \int_1^\infty e^{\frac{2}{3}z^3} \left(\int_z^\infty e^{-\frac{2}{3}y^3} \, dy \right) \, dz.
\]

On the other hand

\[
\int_z^\infty e^{-\frac{2}{3}y^3} \, dy \leq \int_z^\infty \frac{y^2}{z^2} e^{-\frac{2}{3}y^3} \, dy = \frac{1}{z^2} \int_z^\infty y^2 e^{-\frac{2}{3}y^3} \, dy \\
= \left. \frac{1}{z^2} \left(-\frac{e^{-\frac{2}{3}y^3}}{2} \right) \right|_{z}^{\infty} = \frac{e^{-\frac{2}{3}z^3}}{2z^3}.
\]

Using this,

\[
\int_1^\infty e^{\frac{2}{3}z^3} \left(\int_z^\infty e^{-\frac{2}{3}y^3} \, dy \right) \, dz \leq \int_1^\infty e^{\frac{2}{3}z^3} \left(\frac{e^{-\frac{2}{3}z^3}}{2z^2} \right) \, dz = \frac{1}{2} < \infty.
\]
Example

This implies $v(\infty) < \infty$. Moreover

$$\rho(-\infty) = \int_{0}^{-\infty} e^{-\frac{2}{3}s^3} ds = -\infty.$$

By Feller test, $P(T_e < \infty) = 1$.
Theorem

Let \(b \) satisfy Hypothesis (\(H1 \)). Then we have

(i) \(\rho(-\infty) = -\infty \).

(ii) \(\int_{0}^{\infty} \frac{ds}{b(s)} < \infty \) if and only if \(v(\infty) < \infty \).
Feller test

Theorem

Let b satisfy Hypothesis (H1). Then we have

(i) $\rho(-\infty) = -\infty$.

(ii) $\int_0^\infty \frac{ds}{b(s)} < \infty$ if and only if $v(\infty) < \infty$.

Remark: The Feller test is proven using the Itô’s calculus. However, when $Z B_{H,K}$, we cannot use this important tool because, in general, $B_{H,K}$ is not a semimartingale.
Proof

(i) Observe that

$$
\rho(-\infty) = -\int_{-\infty}^{0} \exp \left(2 \int_{s}^{0} b(r) dr \right) ds \\
\leq -\int_{-\infty}^{0} \exp \left(2b(s)(-s) \right) ds \\
\leq -\int_{-\infty}^{0} \exp (0) ds = -\infty.
$$
Proof

(ii) Suppose $\int_0^\infty \frac{ds}{b(s)} < \infty$. Then

$$v(\infty) \leq 2 \int_0^\infty \int_y^\infty \frac{b(s)}{b(y)} \exp\left(-2 \int_0^s b(r) dr\right) \exp\left(2 \int_0^y b(t) dt\right) ds dy$$

$$= 2 \int_0^\infty \frac{1}{b(y)} \exp\left(2 \int_0^y b(t) dt\right) \left(\int_y^\infty b(s) \exp\left(-2 \int_0^s b(r) dr\right) ds\right) dy$$

$$= \int_0^\infty \frac{ds}{b(s)},$$

where, in order to evaluate the integral, we used that

$$\int_0^\infty b(r) dr \geq b(0) \int_0^\infty dr = \infty.$$
Conversely, now let us assume that $v(\infty) < \infty$. We first note that

$$\int_0^\infty \frac{1}{b(s)} \exp \left(-2 \int_0^s b(r)dr \right) ds \leq \int_0^\infty \frac{1}{b(s)} \exp (-2b(0)s) ds \leq \frac{1}{b(0)} \int_0^\infty \exp (-2b(0)s) ds < \infty.$$
Proof

Conversely, now let us assume that \(v(\infty) < \infty \). We first note that

\[
\int_0^\infty \frac{1}{b(s)} \exp \left(-2 \int_0^s b(r) \, dr \right) \, ds \\
\leq \frac{1}{b(0)} \int_0^\infty \exp (-2b(0)s) \, ds < \infty. \tag{4}
\]

On the other hand, Fubini theorem yields

\[
v(\infty) = 2 \int_0^\infty \int_0^s \exp \left(-2 \int_0^s b(r) \, dr \right) \exp \left(2 \int_0^y b(t) \, dt \right) \, dy \, ds \\
\geq \int_0^\infty \frac{1}{b(s)} \exp \left(-2 \int_0^s b(r) \, dr \right) \left[\exp \left(2 \int_0^s b(r) \, dr \right) - 1 \right] \, ds \\
= \int_0^\infty \frac{1}{b(s)} \left[1 - \exp \left(-2 \int_0^s b(r) \, dr \right) \right] \, ds.
\]

Hence, (4) implies that \(\int_0^\infty \frac{ds}{b(s)} < \infty \). Thus the proof is complete. \(\square \)
References:

Gracias por la Atención