Density Analysis of BSDEs

Thibaut Mastrolia
Joint work in progress with Dylan Possamaï and Anthony Réveillac

CEREMADE
Université Paris Dauphine

Two-day Workshop on Finance and Stochastics,
Barcelona, November 26-27th 2013
Financial market model:

- \(W := (W_t)_{t \in [0, \tau]} \) a Brownian motion defined on the probability space \((\Omega, (\mathcal{F}_t)_{t \in [0, \tau]}, \mathbb{P})\)

- Risk-free asset \(S^0 := (S^0_t)_{t \in [0, \tau]} \),
 \[
 dS^0_t = S^0_t r \, dt
 \]

- Asset \(S := (S_t)_{t \in [0, \tau]} \),
 \[
 dS_t = S_t \left(\theta_t \, dt + dW_t \right),
 \]
 where \(\theta \) is predictable and bounded.
Motivation: pricing and hedging problems in finance

Investing strategy \((r = 0)\): \((x, (\Pi_t)_t)\) such that the associated wealth process denoted \((X_t^{x,\Pi})_t\) and defined for all \(t \in [0, T]\) by:

\[
X_t^{x,\Pi} := x + \int_0^t \Pi_u \frac{dS_u}{S_u} = x + \int_0^t \Pi_u (dW_u + \theta_u du).
\]
Investing strategy ($r = 0$): $(x, (\Pi_t)_t)$ such that the associated wealth process denoted $(X^{x, \Pi}_t)_t$ and defined for all $t \in [0, T]$ by:

$$X^{x, \Pi}_t := x + \int_0^t \Pi_u \frac{dS_u}{S_u} = x + \int_0^t \Pi_u (dW_u + \theta_u du).$$

- Utility function $U(x) := -e^{-\alpha x}$
Motivation: pricing and hedging problems in finance

Investing strategy ($r = 0$): $(x, (\Pi_t)_t)$ such that the associated wealth process denoted $(X_t^{x,\Pi})_t$ and defined for all $t \in [0, T]$ by:

$$X_t^{x,\Pi} := x + \int_0^t \Pi_u \frac{dS_u}{S_u} = x + \int_0^t \Pi_u (dW_u + \theta_u du).$$

- Utility function $U(x) := -e^{-\alpha x}$
- Utility maximisation problem:

$$V(x) := \sup_{\Pi \in A} \mathbb{E}[U(X_T^{x,\Pi} - F)],$$

where F is a \mathcal{F}_T measurable variable (the liability of the investor).
Hu, Imkeller and Müller have showed that it can be reduced to solve a BSDE (Backward Stochastic Differential Equation) of the form:

\[Y_t = F + \int_t^T h(s, Y_s, Z_s)ds - \int_t^T Z_s dW_s, \quad Y_T = F \]

with an explicit formula for the generator \(h \), where \((Y, Z)\) is a pair of adapted processes "regular enough".
Hu, Imkeller and Müller have showed that it can be reduced to solve a BSDE (Backward Stochastic Differential Equation) of the form:

\[Y_t = F + \int_t^T h(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s, \quad Y_T = F \]

with an explicit formula for the generator \(h \), where \((Y, Z)\) is a pair of adapted processes "regular enough".

The value is given by \(V(x) = -e^{-\alpha(x-Y_0)} \).

Optimal strategies are characterized by \(Z_t \).
If we are in the Markovian case, we consider the Forward BSDE:

\[
\begin{aligned}
X_t &= X_0 + \int_0^t b(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dW_s \\
Y_t &= g(X_T) + \int_t^T h(s, X_s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dW_s, \quad t \in [0, T]
\end{aligned}
\]
If we are in the Markovian case, we consider the Forward BSDE:

\[
\begin{align*}
X_t &= X_0 + \int_0^t b(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dW_s \\
Y_t &= g(X_T) + \int_t^T h(s, X_s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dW_s, \quad t \in [0, T]
\end{align*}
\]

Problem: Solve numerically this kind of equation.
If we are in the Markovian case, we consider the Forward BSDE:

\[
\begin{align*}
X_t &= X_0 + \int_0^t b(s, X_s)ds + \int_0^t \sigma(s, X_s)dW_s \\
Y_t &= g(X_T) + \int_t^T h(s, X_s, Y_s, Z_s)ds - \int_t^T Z_s dW_s, \quad t \in [0, T]
\end{align*}
\]

Problem: Solve numerically this kind of equation.

Idea: Get the existence of densities for the Y process and for the Z process with estimates of these densities.
Let $\mathcal{H} = L^2([0, T], dt)$.
Malliavin calculus and densities estimates

- Let $\mathcal{H} = L^2([0, T], dt)$.
- Let \mathcal{C} the space of random variables of the form:

$$F = f(W_{t_1}, ..., W_{t_n}), \ (t_1, ..., t_n) \in [0, T]^n, \ f \in C_b(\mathbb{R}^n).$$
Let $\mathcal{H} = L^2([0, T], dt)$.
Let C the space of random variables of the form:

$$F = f(W_{t_1}, \ldots, W_{t_n}), \ (t_1, \ldots, t_n) \in [0, T]^n, \ f \in C_b(\mathbb{R}^n).$$

The Malliavin derivative DF of F is the \mathcal{H}-valued random variable defined as:

$$DF = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(W_{t_1}, \ldots, W_{t_n})1_{[0,t_i]}.$$
Let $\mathcal{H} = L^2([0, T], dt)$.

Let \mathcal{C} the space of random variables of the form:

$$F = f(W_{t_1}, \ldots, W_{t_n}), \ (t_1, \ldots, t_n) \in [0, T]^n, \ f \in C_b(\mathbb{R}^n).$$

The Malliavin derivative DF of F is the \mathcal{H}-valued random variable defined as:

$$DF = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(W_{t_1}, \ldots, W_{t_n}) 1_{[0,t_i]}.$$

We denote by $\mathbb{D}^{1,2}$ the closure of \mathcal{C} with respect to the Sobolev norm $\| \cdot \|_{1,2}$ defined as:

$$\|F\|_{1,2} := \mathbb{E}[|F|^2] + \mathbb{E} \left[\int_0^T |D_tF|^2 dt \right].$$
Theorem (Bouleau-Hirsch)

Assume that $\|DF\|_{L^2([0,T])} > 0$ a.s., then F has a probability distribution which is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}, denoted by ρ_F.
Assume that $DF = \Phi_F(W)$ where $\Phi_F : \mathbb{R}^H \to \mathcal{H}$. We set:

$$g_F(x) = \int_0^{+\infty} e^{-u} \mathbb{E} \left[\mathbb{E}^* \left[\langle \Phi_F(W), \tilde{\Phi}_F^u(W) \rangle_{L^2([0,T])} \right| F = x \right] du$$
Assume that \(DF = \Phi_F(W) \) where \(\Phi_F : \mathbb{R}^H \rightarrow \mathcal{H} \). We set:

\[
g_F(x) = \int_{0}^{+\infty} e^{-u} \mathbb{E} \left[\mathbb{E}^* \left[\langle \Phi_F(W), \tilde{\Phi}_u^F(W) \rangle_{L^2([0, T])} \right| F = x \right] du
\]

- Where \(\tilde{\Phi}_u^F(W) := \Phi_F(e^{-u} W + \sqrt{1 - e^{-2u}} W^*) \)
- With \(W^* \) an independent copy of \(W \) defined on a probability space \((\Omega^*, \mathcal{F}^*, \mathbb{P}^*)\)
- Where \(\mathbb{E}^* \) is the expectation under \(\mathbb{P}^* \).
Assume that $DF = \Phi_F(W)$ where $\Phi_F : \mathbb{R}^\mathcal{H} \to \mathcal{H}$. We set:

$$g_F(x) = \int_0^{+\infty} e^{-u} \mathbb{E} \left[\mathbb{E}^* \left[\langle \Phi_F(W), \tilde{\Phi}_u^F(W) \rangle_{L^2([0,T])} \right] | F = x \right] \, du$$

- Where $\tilde{\Phi}_u^F(W) := \Phi_F(e^{-u}W + \sqrt{1 - e^{-2u}}W^*)$
- With W^* an independent copy of W defined on a probability space $(\Omega^*, \mathcal{F}^*, \mathbb{P}^*)$
- Where \mathbb{E}^* is the expectation under \mathbb{P}^*.

Theorem (Nourdin-Viens)

F has a density ρ_F with respect to the Lebesgue measure if and only if the random variable $g_F(F)$ is positive a.s.. In this case, the support of ρ_F is a closed interval of \mathbb{R} and for all $x \in \text{supp}(\rho_F)$:

$$\rho_F(x) = \frac{\mathbb{E}(|F|)}{2g_F(x)} \exp \left(- \int_0^x \frac{udu}{g_F(u)} \right)$$
We make the classical assumption:

\[h : [0, T] \times \mathbb{R}^3 \rightarrow \mathbb{R} \text{ is Lipschitz in } (x, y, z) \text{ with Lipschitz constants respectively } k_x, k_y, k_z, \text{ i.e. for all } (x, x', y, y', z, z') \in \mathbb{R}^6: \]

\[|h(x, y, z) - h(x', y', z')| \leq k_x |x - x'| + k_y |y - y'| + k_z |z - z'|. \]
Theorem (Antonelli-Kohatsu Higa (2005))

Assume that L holds (plus some conditions on the coefficients b, σ, g and h). We set $K := k_b + k_y + k_\sigma k_z$. Let $t \in (0, T]$. If for some $A \subset \mathbb{R}$ such that $\mathbb{P}(X_T \in A | X_t) > 0$:

\[
\begin{cases}
g e^{-\text{sgn}(g)KT} + h(t) \int_t^T e^{-\text{sgn}(h(s))Ks} ds & \geq 0 \\
g^A e^{-\text{sgn}(g^A)KT} + h(t) \int_t^T e^{-\text{sgn}(h(s))Ks} ds & > 0
\end{cases}
\]

or

\[
\begin{cases}
\bar{g} e^{-\text{sgn}(\bar{g})KT} + \bar{h}(t) \int_t^T e^{-\text{sgn}(\bar{h}(s))Ks} ds & \leq 0 \\
\bar{g}^A e^{-\text{sgn}(\bar{g}^A)KT} + \bar{h}(t) \int_t^T e^{-\text{sgn}(\bar{h}(s))Ks} ds & < 0,
\end{cases}
\]

is met, then Y_t has a probability distribution that is absolutely continuous with respect to the Lebesgue measure.
These conditions are sufficient but not necessary. As shown in the following example.
These conditions are sufficient but not necessary. As shown in the following example.

Example (M., Possamaï, Réveillac).

Let $T = 1$, $g(x) = x$, $X = W$, $h(s, x, y, z) = (s - 2)x$.

(2) is not satisfied for any $t \in [0, T]$.

(1) is not satisfied for any $t \in [0, \frac{3 - \sqrt{5}}{2})$.

However for all $t \in [0, 1]$:

$$Y_t = \mathbb{E} \left[W_1 + \int_t^1 (s - 2) W_s ds \bigg| \mathcal{F}_t \right]$$

$$= W_t (1 + \int_t^1 (s - 2) ds) = W_t \left(-\frac{1}{2} + 2t - \frac{t^2}{2} \right),$$

admits a density with respect to the Lebesgue measure except when $t = 2 - \sqrt{3}$.
Antonelli and Kohatsu-Higa have proved an other theorem with upper order conditions on h when it does not depend on z. Let:

$$\tilde{g}(x) := g'(x) + (T - t)h_x(T, x, g(x)),$$

$$\tilde{h}(s, x, y, z) := -\left(h_{xt} - hh_{xy} + \frac{1}{2}(h_{xxx} + 2zh_{xxy} + z^2h_{xxy})
+ h_y h_x + \sigma_x h_{xx} + z\sigma_x h_{xy}\right)(s, x, y).$$
Theorem (Antonelli-Kohatsu Higa)

Assume that h does not depend on the variable z and suppose that $L)$ holds (plus some conditions on the coefficients). Let $t \in (0, T]$. If for some $A \in \mathbb{R}$ such that $\mathbb{P}(X_T \in A | X_t) > 0$:

\[
\begin{align*}
\tilde{g} e^{-\text{sgn}(\tilde{g}) KT} + \tilde{h}(t) \int_t^T e^{-\text{sgn}(\tilde{h}(s)) KS} (T - s) ds & \geq 0 \\
\tilde{g}^A e^{-\text{sgn}(\tilde{g}^A) KT} + \tilde{h}(t) \int_t^T e^{-\text{sgn}(\tilde{h}(s)) KS} (T - s) ds & > 0
\end{align*}
\]

or

\[
\begin{align*}
\tilde{g} e^{-\text{sgn}(\tilde{g}) KT} + \tilde{h}(t) \int_t^T e^{-\text{sgn}(\tilde{h}(s)) KS} (T - s) ds & \leq 0 \\
\tilde{g}^A e^{-\text{sgn}(\tilde{g}^A) KT} + \tilde{h}(t) \int_t^T e^{-\text{sgn}(\tilde{h}(s)) KS} (T - s) ds & < 0
\end{align*}
\]

is met, then Y_t has a probability distribution which is absolutely continuous with respect to the Lebesgue measure.
We study now the existence of a density for Y and Gaussian estimates of this density in the general case.

\[
\begin{align*}
H1 & : \text{For all } \theta \leq T, g \in C_b^1(\mathbb{R}), \ 0 < c \leq g'(X_T)D_\theta X_T \leq C, \text{ a.s.} \\
H2 & : 0 \leq h_x \leq C \\
H3 & : 0 \leq \sigma \leq C \text{ and } ||[b, \sigma]| \leq M\sigma
\end{align*}
\]
We study now the existence of a density for Y and Gaussian estimates of this density in the general case.

$$
\begin{align*}
H1 & : \text{For all } \theta \leq T, g \in C^1_b(\mathbb{R}), \ 0 < c \leq g'(X_T)D_\theta X_T \leq C, \text{a.s.} \\
H2 & : 0 \leq h_x \leq C \\
H3 & : 0 \leq \sigma \leq C \text{ and } ||b, \sigma|| \leq M\sigma
\end{align*}
$$

Theorem (Aboura-Bourguin (2012))

Under the above assumptions $H1),H2) \text{ and } H3)$, Y_t has a density for $t \in (0, T)$ denoted by ρ_{Y_t} satisfying:

$$
\frac{\mathbb{E}[|Y_t - \mathbb{E}[Y_t]|]}{2ct} \exp \left(- \frac{(y - \mathbb{E}[Y_t])^2}{2Ct} \right) \leq \rho_{Y_t}(y)
$$

$$
\rho_{Y_t}(y) \leq \mathbb{E}[|Y_t - \mathbb{E}[Y_t]|] \exp \left(- \frac{(y - \mathbb{E}[Y_t])^2}{2ct} \right).
$$
We study the quadratic case under the following assumption:

Q) $h : [0, T] \times \mathbb{R}^3 \to \mathbb{R}$ such that for all $(t, x, y, z) \in ([0, T] \times \mathbb{R}) :$

$$|h(t, x, y, z)| \leq K(1 + |y| + |z|^2)$$

for some $K > 0$.

Theorem (M., Possamaï, Réveillac)

Assume that Q) holds with some conditions on the coefficients (but not on the sign of DX_T). Fix $t \in (0, T]$. If for some $A \subset \mathbb{R}$ such that $\mathbb{P}(X_T \in A | X_t) > 0$, $g' \geq 0$, $g'_A > 0$ and $h(t) \geq 0$ (resp. $g' \leq 0$, $g'_A < 0$ and $h(t) \leq 0$), then Y_t has a probability distribution which is absolutely continuous with Lebesgue measure.
We study the quadratic case under the following assumption:

\[Q \) \quad h : [0, T] \times \mathbb{R}^3 \to \mathbb{R} \text{ such that for all } (t, x, y, z) \in ([0, T] \times \mathbb{R}) : \\
|h(t, x, y, z)| \leq K(1 + |y| + |z|^2) \text{ for some } K > 0.\]

Theorem (M., Possamaï, Réveillac)

Assume that Q) holds with some conditions on the coefficients (but not on the sign of \(DX_T \)). Fix \(t \in (0, T] \). If for some \(A \subset \mathbb{R} \) such that \(\mathbb{P}(X_T \in A|X_t) > 0, g' \geq 0, g'_A > 0 \text{ and } h(t) \geq 0 \) (resp. \(g' \leq 0, g'_A < 0 \text{ and } h(t) \leq 0 \)), then \(Y_t \) has a probability distribution which is absolutely continuous with Lebesgue measure.

Notice that in this theorem we do not need a sign for \(DX_T \).
We study the quadratic case under the following assumption:

\(h : [0, T] \times \mathbb{R}^3 \rightarrow \mathbb{R} \) such that for all \((t, x, y, z) \in ([0, T] \times \mathbb{R}) : |h(t, x, y, z)| \leq K(1 + |y| + |z|^2) \) for some \(K > 0 \).

Theorem (M., Possamaï, Réveillac)

Assume that \(Q \) holds with some conditions on the coefficients (but not on the sign of \(DX_T \)). Fix \(t \in (0, T] \). If for some \(A \subset \mathbb{R} \) such that \(\mathbb{P}(X_T \in A | X_t) > 0 \), \(g' \geq 0 \), \(g'_A > 0 \) and \(h(t) \geq 0 \) (resp. \(g' \leq 0 \), \(g'_A < 0 \) and \(\bar{h}(t) \leq 0 \)), then \(Y_t \) has a probability distribution which is absolutely continuous with Lebesgue measure.

Notice that in this theorem we do not need a sign for \(DX_T \).

In the proof we just need to control the norm of \(DX_T \).
Example Consider the BSDE:

\[Y_t = W_T + \int_t^T \frac{1}{2} |Z_s|^2 ds - \int_t^T Z_s dW_s. \]

Then:

according to the previous theorem, \(g' \equiv 1 > 0 \) so, \(Y_t \) admits a density for all \(t \in (0, T) \).
Example Consider the BSDE:

\[Y_t = W_T + \int_t^T \frac{1}{2} |Z_s|^2 ds - \int_t^T Z_s dW_s. \]

Then:

according to the previous theorem, \(g' \equiv 1 > 0 \) so, \(Y_t \) admits a density for all \(t \in (0, T] \).

Indeed, by the uniqueness of the solution to this BSDE: \(Y_t = W_t + \frac{1}{2} (T - t), \ Z_t = 1 \) and \(Y_t \) admits a density for all \(t \in (0, T] \).
Example Consider the BSDE:

\[Y_t = W_T + \int_t^T \frac{1}{2} |Z_s|^2 ds - \int_t^T Z_s dW_s. \]

Then:

according to the previous theorem, \(g' \equiv 1 > 0 \) so, \(Y_t \) admits a density for all \(t \in (0, T] \).

Indeed, by the uniqueness of the solution to this BSDE:

\[Y_t = W_t + \frac{1}{2} (T - t), \ Z_t = 1 \] and \(Y_t \) admits a density for all \(t \in (0, T] \).

Density existence for the \(Z \) process?
Aboura and Bourguin proved that Z_t admits a density under convexity and growth conditions for the terminal condition g and for the generator h when $h(x, y, z) = \tilde{f}(x, y) + \alpha z$ where α is constant.
Aboura and Bourguin proved that Z_t admits a density under convexity and growth conditions for the terminal condition g and for the generator h when $h(x, y, z) = \tilde{f}(x, y) + \alpha z$ where α is constant.

They have Gaussian estimates of this density when $h \in C^2_b(\mathbb{R})$ and $g \in C^2_b(\mathbb{R})$.
Aboura and Bourguin proved that Z_t admits a density under convexity and growth conditions for the terminal condition g and for the generator h when $h(x, y, z) = \tilde{f}(x, y) + \alpha z$ where α is constant.

They have Gaussian estimates of this density when $h \in C^2_b(\mathbb{R})$ and $g \in C^2_b(\mathbb{R})$.

Using the fact that Z_t can be represented by the Clark-Ocone formula and after, taking the Malliavin derivative of Z_t.

Thibaut Mastrolia
Density Analysis of BSDEs
We consider the following FBSDE:

\[
\begin{align*}
X_t &= X_0 + \int_0^t b(s, X_s)ds + \int_0^t \sigma(s, X_s)dW_s \\
Y_t &= g(X_T) + \int_t^T (\tilde{f}(s, X_s, Y_s) + h(Z_s))ds - \int_t^T Z_s dW_s.
\end{align*}
\]

Theorem (M., Possamaï, Réveillac)

Assume that $Q)$ holds with some conditions which ensure that $DX_T > 0$ and $D^2X_T \geq 0$ and assume that $\tilde{f}_x, \tilde{f}_{xx}, \tilde{f}_{xy}, \tilde{f}_{yy} \geq 0$. Then, if there exists $A \subset \mathbb{R}$ such that $\mathbb{P}(X_T \in A|X_t) > 0$, $g' \geq 0$, $g'' \geq 0$, $g'_A > 0$ and $h'' \geq 0$ then, for all $t \in (0, T]$, Z_t has a density with respect to the Lebesgue measure.
Assume now that there exists a function $f \in C^2(\mathbb{R})$ such that for all $t \in [0, T]: X_t = f(t, W_t)$.

Under this assumption, for all $0 \leq r, s \leq t \leq T$:

$$D_r Y_t = D_s Y_t$$

and

$$D_r Z_t = D_s Z_t, \quad \mathbb{P}\text{-a.s.}.$$

To simplify assume that $\tilde{f} \equiv 0$ (the generator of the BSDE depends only on z through h).

Theorem (M., Possamaï, Réveillac)

Assume that Q) and conditions on coefficients hold. Assume that $h'' \geq 0$ and $(g \circ f)'' \geq 0$. Then, if there exists $A \subset \mathbb{R}$ such that $\mathbb{P}(X_T \in A | X_t) > 0$ and $(g \circ f)''|_A > 0$, then for all $t \in (0, T]$ Z_t has a density with respect to the Lebesgue measure.
Assume now that there exists a function $f \in C^2(\mathbb{R})$ such that for all $t \in [0, T]$: $X_t = f(t, W_t)$.

Under this assumption, for all $0 \leq r, s \leq t \leq T$: $D_r Y_t = D_s Y_t$ and $D_r Z_t = D_s Z_t$, \mathbb{P}-a.s.
Densities existence: our contribution for Z

Assume now that there exists a function $f \in C^2(\mathbb{R})$ such that for all $t \in [0, T]$: $X_t = f(t, W_t)$.

Under this assumption, for all $0 \leq r, s \leq t \leq T$: $D_r Y_t = D_s Y_t$ and $D_r Z_t = D_s Z_t$, \mathbb{P}-a.s..

To simplify assume that $\tilde{f} \equiv 0$ (the generator of the BSDE depends only on z through h).
Assume now that there exists a function $f \in C^2(\mathbb{R})$ such that for all $t \in [0, T]: X_t = f(t, W_t)$.

Under this assumption, for all $0 \leq r, s \leq t \leq T$: $D_r Y_t = D_s Y_t$ and $D_r Z_t = D_s Z_t$, \mathbb{P}-a.s..

To simplify assume that $\tilde{f} \equiv 0$ (the generator of the BSDE depends only on z through h).

Theorem (M., Possamaï, Réveillac)

Assume that Q) and conditions on coefficients hold. Assume that $h'' \geq 0$ and $(g \circ f)'' \geq 0$. Then, if there exists $A \subset \mathbb{R}$ such that $\mathbb{P}(X_T \in A|X_t) > 0$ and $(g \circ f)''_A > 0$, then for all $t \in (0, T]$ Z_t has a density with respect to the Lebesgue measure.
Densities estimates: linear Feynman-Kac’s formula

\[
\begin{aligned}
\frac{\partial_t v(t, x)}{} + b(t, x) \cdot Dv(t, x) + \frac{1}{2} \text{Tr} \left[\sigma \sigma^T (t, x) D^2 v(t, x) \right] &= 0 \\
v(T, \cdot) &= g(\cdot).
\end{aligned}
\]

"⇔"

\[
\begin{aligned}
dX_{s}^{t, x} &= b(s, X_s^{t, x}) ds + \sigma(s, X_s^{t, x}) dW_s \\
X_t^{t, x} &= x.
\end{aligned}
\]
Densities estimates: linear Feynman-Kac’s formula

\[
\begin{aligned}
\begin{cases}
 \frac{\partial}{\partial t} v(t, x) + b(t, x) \cdot Dv(t, x) + \frac{1}{2} Tr. [\sigma \sigma^T (t, x) D^2 v(t, x)] = 0 \\
 v(T, \cdot) = g(\cdot).
\end{cases}
\end{aligned}
\]

⇔

\[
\begin{aligned}
\begin{cases}
 dX_{s,t,x} = b(s, X_{s,t,x}) ds + \sigma(s, X_{s,t,x}) dW_s \\
 X_{t,t,x} = x, \\
 v(t, x) = \mathbb{E}[g(X_{T,t,x}^t)] = P_{t,T} g(x), \quad (v \in C^{1,2})
\end{cases}
\end{aligned}
\]
Densities estimates: semi-linear Feynman-Kac's formula

\[
\begin{aligned}
\begin{cases}
\partial_t v(t, x) + b(t, x) \cdot Dv(t, x) + \frac{1}{2} \text{Tr.}[\sigma \sigma^T(t, x)D^2v(t, x)] = h(t, \cdot, v, \sigma^T \cdot Dv) \\
v(T, \cdot) = g(\cdot).
\end{cases}
\end{aligned}
\]

" ⇔ "

\[
\begin{aligned}
\begin{cases}
dX_{s}^{t, x} = b(s, X_{s}^{t, x})ds + \sigma(s, X_{s}^{t, x})dW_s; \quad X_{t}^{t, x} = x. \\
dY_{s}^{t, x} = h(t, X_{s}^{t, x}, Y_{s}^{t, x}, Z_{s}^{t, x})ds - Z_{s}^{t, x}dW_s; \quad Y_{T}^{t, x} = g(X_{T}^{t, x}).
\end{cases}
\end{aligned}
\]
Densities estimates: semi-linear Feynman-Kac’s formula

\[
\begin{cases}
\partial_t v(t, x) + b(t, x) \cdot Dv(t, x) + \frac{1}{2} \text{Tr} [\sigma \sigma^T (t, x) D^2 v(t, x)] = h(t, \cdot, v, \sigma^T \cdot Dv) \\
\n\vspace{0.3cm}
\n\nu(T, \cdot) = g(\cdot).
\end{cases}
\]

"⇔"

\[
\begin{cases}
\begin{aligned}
\quad dX_{s}^{t,x} &= b(s, X_{s}^{t,x}) ds + \sigma(s, X_{s}^{t,x}) dW_s; \quad X_{t}^{t,x} = x.
\quad \\
\quad dY_{s}^{t,x} &= h(t, X_{s}^{t,x}, Y_{s}^{t,x}, Z_{s}^{t,x}) ds - Z_{s}^{t,x} dW_s; \quad Y_{T}^{t,x} = g(X_{T}^{t,x}).
\end{aligned}
\end{cases}
\]

\[
\nu(t, x) = Y_{t}^{t,x}, \quad (\nu \in C^{1,2})
\]
\[
\begin{align*}
\begin{cases}
\partial_t v(t, x) + b(t, x) \cdot Dv(t, x) + \frac{1}{2} \text{Tr} [\sigma \sigma^T (t, x) D^2 v(t, x)] = h(t, \cdot, v, \sigma^T \cdot Dv) \\
v(T, \cdot) = g(\cdot).
\end{cases}
\end{align*}
\]

"⇔"

\[
\begin{align*}
\begin{cases}
\quad dX^{t,x}_s = b(s, X^{t,x}_s) ds + \sigma(s, X^{t,x}_s) dW_s; \quad X^{t,x}_t = x. \\
\quad dY^{t,x}_s = h(t, X^{t,x}_s, Y^{t,x}_s, Z^{t,x}_s) ds - Z^{t,x}_s dW_s; \quad Y^{t,x}_T = g(X^{t,x}_T).
\end{cases}
\end{align*}
\]

\[
v(t, x) = Y^{t,x}_t, \quad (v \in C^{1,2})
\]

Rk.: \(h \equiv 0 \implies Y^{t,x}_s = \mathbb{E}[g(X^{t,x}_T)|\mathcal{F}_s]. \)
Let \(u(t, W_t) := v(t, X_t) \) where \(X_t =: f(t, W_t) \). Then,
\(u(t, W_t) := Y_t \) and \(u'(t, W_t) = v'(t, X_t)f'(t, W_t) := Z_t \).
Densities estimates

Let $u(t, W_t) := v(t, X_t)$ where $X_t := f(t, W_t)$. Then, $u(t, W_t) := Y_t$ and $u'(t, W_t) = v'(t, X_t) f'(t, W_t) := Z_t$.

Let $\alpha^*_u := \inf\{\alpha > 0, \ u(t, x) = \mathcal{O}(x^\alpha)\}$.

Assume that $\alpha^*_u' \in (0, +\infty)$ and $\alpha^*_u'' \in (0, +\infty)$. Then, there exist $C > 0$, $\delta > 0$ and $\gamma \in (0, 1)$ such that for all $t \in (0, T]$ the probability distribution of Z_t has a law which admits a density ρ_{Z_t} such that for all $z \in \mathbb{R}$:

$$
E\left[|Z_t - E[Z_t]|^2\right] \leq \rho_{Z_t}(z) \leq E\left[|Z_t - E[Z_t]|^2\right] e^{-\frac{z^2}{2t\delta^2}} \leq \rho_{Z_t}(z) \leq E\left[|Z_t - E[Z_t]|^2\right] e^{-\frac{1}{2t\delta^2} \int_{E[Z_t]} z \ - \ E[Z_t] \ dx} \ 1 + |x|^2 \gamma
$$

A same result holds for Y_t (we just use the first derivative of u).
Densities estimates

Let $u(t, W_t) := \nu(t, X_t)$ where $X_t =: f(t, W_t)$. Then, $u(t, W_t) := Y_t$ and $u'(t, W_t) = \nu'(t, X_t)f'(t, W_t) := Z_t$.

Let $\alpha_u^* := \inf\{\alpha > 0, \ u(t, x) = O(x^\alpha)\}$.

P) Assume that $\alpha_{u'}^* \in (0, +\infty)$ and $\alpha_{u''}^* \in (0, +\infty)$.
Densities estimates

Let \(u(t, W_t) := v(t, X_t) \) where \(X_t =: f(t, W_t) \). Then,
\(u(t, W_t) := Y_t \) and \(u'(t, W_t) = v'(t, X_t)f'(t, W_t) := Z_t \).

Let \(\alpha_u^* := \inf\{\alpha > 0, \ u(t, x) = O(x^\alpha)\} \).

P) Assume that \(\alpha_u^* \in (0, +\infty) \) and \(\alpha_{u'}^* \in (0, +\infty) \).

Theorem (M., Possamaï, Réveillac)

Assume Q) and P) hold. Suppose that there exists \(\delta > 0 \) such that
\((g \circ f)'' \geq \delta > 0 \) and \(h'' \geq 0 \). Then, there exist \(C > 0, \delta > 0 \) and
\(\gamma \in (0, 1) \) such that for all \(t \in (0, T] \) the probability distribution of \(Z_t \)
has a law which admits a density \(\rho_{Z_t} \) such that for all \(z \in \mathbb{R} \):

\[
\frac{\mathbb{E}[|Z_t - \mathbb{E}[Z_t]|]}{2tC(1 + |z|^{2\gamma})} e^{-\frac{z^2}{2t\delta^2}} \leq \rho_{Z_t}(z) \leq \frac{\mathbb{E}[|Z_t - \mathbb{E}[Z_t]|]}{2t\delta^2} e^{-\frac{1}{2t\delta^2} \int_0^z \left[1 - e^{-\mathbb{E}[Z_t]} \right] \frac{xdx}{1+|x|^{2\gamma}}}.
\]

A same result holds for \(Y_t \) (we just use the first derivative of \(u \)).
Densities estimates

Let \(u(t, W_t) := v(t, X_t) \) where \(X_t =: f(t, W_t) \). Then, \(u(t, W_t) := Y_t \) and \(u'(t, W_t) = v'(t, X_t)f'(t, W_t) := Z_t \).

Let \(\alpha_u^* := \inf \{ \alpha > 0, \ u(t, x) = \mathcal{O}(x^\alpha) \} \).

P) Assume that \(\alpha_u^* \in (0, +\infty) \) and \(\alpha_u^{*'} \in (0, +\infty) \).

Theorem (M., Possamaï, Réveillac)

Assume Q) and P) hold. Suppose that there exists \(\delta > 0 \) such that \((g \circ f)'' \geq \delta > 0 \) and \(h'' \geq 0 \). Then, there exist \(C > 0, \delta > 0 \) and \(\gamma \in (0, 1) \) such that for all \(t \in (0, T] \) the probability distribution of \(Z_t \) has a law which admits a density \(\rho_{Z_t} \) such that for all \(z \in \mathbb{R} \):

\[
\frac{\mathbb{E}[|Z_t - \mathbb{E}[Z_t]|]}{2tC(1 + |z|^{2\gamma})} e^{-\frac{z^2}{2t\delta^2}} \leq \rho_{Z_t}(z) \leq \frac{\mathbb{E}[|Z_t - \mathbb{E}[Z_t]|]}{2t\delta^2} e^{-\frac{1}{2t\delta^2} \int_0^z -\mathbb{E}[Z_t] \frac{xdx}{1 + |x|^{2\gamma}}}
\]

A same result holds for \(Y_t \) (we just use the first derivative of \(u \)).