A LONGITUDINAL AND SURVIVAL MODEL WITH HEALTH CARE USAGE FOR INSURED ELDERLY

Ramon Alemany Montserrat Guillén Xavier Piulachs Lozada

Riskcenter - IREA Universitat de Barcelona http://www.ub.edu/riskcenter

 $\label{thm:condition} \mbox{Evaluation for public policies for sustainable Long-Term Care in Spain} \\ \mbox{Workshop}$

 $3\mathrm{rd}$ - $4\mathrm{th}$ July 2014 - Barcelona

CONTENTS

- **1** INTRODUCTION AND GOALS
- 2 DATABASE: SPANISH HEALTH INSURANCE COMPANY
- **3** JOINT MODELING TECHNIQUES
- 4 RESULTS
- **6** DISCUSSION AND FUTURE RESEARCH

Contents

- **1** INTRODUCTION AND GOALS
- ② DATABASE: SPANISH HEALTH INSURANCE COMPANY
- 3 JOINT MODELING TECHNIQUES
- 4 RESULTS
- 5 DISCUSSION AND FUTURE RESEARCH

Scope of the work: Health insurance companies

The reasons leading to putting down this study are based on the following points:

- The gradual development of medical science leads to a larger number of years lived with disabilities (Robine and Michel, 2010).
- Policy holders are generally supposed to have a higher socio-economic level (Schoen et al, 2010).
- There is consequently a need of knowing how a greater elderly people cohort will evolve, as they are the principal beneficiaries of life expectancy improvements.

Proposed longitudinal variable of interest for a policy holder:

 $m{y} = ext{ANNUAL CUMULATIVE NUMBER OF ACTS}$ AT SPECIFIC TIME POINTS WITHIN STUDY PERIOD

Motivation (I)

MOTIVATION: Longitudinal studies with 2 outcomes, based on a) Repeated measurements of response variable and b) Time until a particular event.

1. INTRODUCTION 2. DATABASE 3. JOINT MODELING 4. RESULTS 5. DISCUSSION

1. INTRODUCTION AND GOALS

Motivation (I)

MOTIVATION: Longitudinal studies with 2 outcomes, based on a) Repeated measurements of response variable and b) Time until a particular event.

Motivation (I)

MOTIVATION: Longitudinal studies with 2 outcomes, based on a) Repeated measurements of response variable and b) Time until a particular event.

Motivation (II)

CLUE: Given the subject's longitudinal profile until time t (so the individual is still alive at t), we want to predict the probability of surviving until time $u > t \Rightarrow \text{PERSONALIZED SURVIVAL PREDICTION}$.

Survival prediction of a man who enters with 65 years at 1 Jan 2010 and is still alive at 1 Feb 2014

Motivation (III)

Therefore, it's a question of coupling longitudinal and survival information in one single model, which allows:

- To establish the degree of association between the value of the longitudinal variable with the event outcome.
- To estimate subject specific survival probabilities based on longitudinal outcome.
- To update personalized survival estimations as additional longitudinal information is collected.

Motivation (III)

Therefore, it's a question of coupling longitudinal and survival information in one single model, which allows:

- To establish the degree of association between the value of the longitudinal variable with the event outcome.
- To estimate subject specific survival probabilities based on longitudinal outcome.
- To update personalized survival estimations as additional longitudinal information is collected.

Motivation (IV)

However, the coupling of longitudinal and survival information is not without difficulties . . .

- If missing improperly handled, biased results (Prentice, 1982).
- The longitudinal response is often an endogenous variable.
- In some cases, the event of interest is only known to occur after a certain t ⇒ right-censored data.

Motivation (V)

How to achieve a simultaneous modeling of two processes?

Motivation (V)

How to achieve a simultaneous modeling of two processes?

Contents

- INTRODUCTION AND GOALS
- 2 DATABASE: SPANISH HEALTH INSURANCE COMPANY
- 3 JOINT MODELING TECHNIQUES
- 4 RESULTS
- 5 DISCUSSION AND FUTURE RESEARCH

2. DATABASE: SPANISH HEALTH INSURANCE COMPANY

Main characteristics of the study

- Spanish insurance company with the history of requests of all its members in the last eight years.
- The study period is fixed from 1 Jan 2010 and 1 Feb 2014.
- A subject enters the study when achieves at least 65 years within the observation period.
- Subjects requests' during the four years before their study entry are treated as a baseline covariate.
- Monitoring of subjects elderly 65.
- Distribution by sex:

```
11912 men (39%) with 409 events (3.4%). 18668 women (61%) with 933 events (5.0%).
```

• **GOAL:** To evaluate, in a personalized way, the existing degree of association between the frequency of use of medical services with the risk of mortality.

2. DATABASE: SPANISH HEALTH INSURANCE COMPANY

Database(I): Main variables

VARIABLE	DESCRIPTION
OBS	Request identification: $r = 1, 2, \dots, 133857$
ID	Subject identifier: $i = 1, 2, \dots, 30580$
SEX	Gender of the subject: $0 = Male$, $1 = Female$
OBSTIME	Age (years) over 65 at each of subject's time points
CUMFENT	Cumulative number of requests in the 4 years before entry
CUM	Cumulative number of requests at each time point
TIME	Final observation time (years), which may correspond to an
	event or to a right-censored data.
CENS	Censoring indicator: $0 = \text{Right-censored}, 1 = \text{Event}$

2. DATABASE: SPANISH HEALTH INSURANCE COMPANY

The Database (II): CUM transformation

- The longitudinal variable *CUM* derives from the health status (endogenous character) with highly positive skewed distribution.
- To accommodate normality of residuals, a logarithmic transformed scale was implemented:

$$LOG.CUM_{ij} = \log\{1 + CUM_{ij}\}\$$

For the i-th man, i = 1, ..., 11912, at t_{ij} time point, $j = 1, ..., n_i$ For the i-th woman, i = 1, ..., 18668, at t_{ij} time point, $j = 1, ..., n_i$

(Verbeke and Molenberghs, 2000) (Slate and Turnbull, 2010)

Contents

- INTRODUCTION AND GOALS
- 2 DATABASE: SPANISH HEALTH INSURANCE COMPANY
- 3 JOINT MODELING TECHNIQUES
- 4 RESULTS
- 5 DISCUSSION AND FUTURE RESEARCH

Longitudinal data analysis (I): Inferential objectives

Research questions in longitudinal studies:

- Effect of covariates on an outcome.
- Association between outcomes.
- Subject specific prediction.

(Rizopoulos and Lesaffre, 2012)

Longitudinal data analysis (II): Assumptions

Main assumptions:

- Let denote y_{ij} the response variable on the i-th subject, i = 1, ..., n, observed at time point t_{ij} , $j = 1, ..., n_i$.
- The outcome is linearly related to a set of p explanatory covariates and q random effects.
- Let assume that the longitudinal outcomes for the *i*-th subject, $\mathbf{y}_i = (y_{i1}, y_{i2}, \dots, y_{in_i})^{\mathrm{T}}$, are normally distributed.

Longitudinal data analysis (III): General equation

Linear mixed model equation:

$$\left\{egin{aligned} \mathbf{y}_i &= \mathbf{X}_i oldsymbol{eta} + \mathbf{Z}_i \mathbf{b}_i + oldsymbol{arepsilon}_i \ \mathbf{b}_i &\sim \mathcal{N}_q(\mathbf{0}, \mathbf{D}) \ oldsymbol{arepsilon}_i &\sim \mathcal{N}_{n_i}(\mathbf{0}, \sigma^2 \mathbf{I}_{n_i}) \end{aligned}
ight.$$

- \mathbf{X}_i and \mathbf{Z}_i design matrices for fixed and random effects, respectively.
- β and \mathbf{b}_i vectors for the fixed effects and random effects, respectively.
- $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ independent of $\{\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \dots, \boldsymbol{\varepsilon}_n\}$.
- Conditional formulation: $\mathbf{y}_i | \mathbf{b}_i \sim \mathcal{N}_{n_i}(\mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}_i, \sigma^2 \mathbf{I}_{n_i})$ and $\mathbf{b}_i \sim \mathcal{N}_q(\mathbf{0}, \mathbf{D})$

(Laird and Ware, 1982) (Verbeke and Molenberghs, 2000)

y = LOG.CUM

y = LOG.CUM

Survival analysis (I): Notation and definitions

Let T^* be a non-negative continuous random variable denoting the survival time:

- Survival function: $S(t) = \Pr(T^* > t) = 1 F(t)$, for $t \ge 0$.
- Hazard function: $h(t) = \lim_{\Delta t \to 0^+} \frac{\Pr(t < T^* < t + \Delta t | T^* > t)}{\Delta t}$.

Under the presence of right-censoring:

- T^* is the true survival time.
- C is the potential censoring time.
- For the *i*-th subject: $T_i = \min\{T_i^*, C_i\}$ and $\delta_i = I(T_i^* \leq C_i)$.

Survival analysis (II): PH Cox Model

Semi-parametric estimation: PH Cox Model (Cox, 1972)

$$h_i(t|\mathbf{w}_i) = h_0(t) \exp(\boldsymbol{\gamma}^{\mathrm{T}} \mathbf{w}_i),$$

$$\mathbf{w}_i = (w_{i1}, w_{i2}, \dots, w_{ip})^{\mathrm{T}}$$

$$\boldsymbol{\gamma} = (\gamma_1, \gamma_2, \dots, \gamma_p)^{\mathrm{T}}$$

The Cox model can be extended to handle exogenous time-dependent covariates (Andersen and Gill, 1982).

But often measurements taken on the subjects are related to inherent biological changes: **endogenous covariates**.

- We only know the response value at specific time points.
- They are typically measured with error.

Survival analysis (II): PH Cox Model

Semi-parametric estimation: PH Cox Model (Cox, 1972)

$$h_i(t|\mathbf{w}_i) = h_0(t) \exp(\boldsymbol{\gamma}^{\mathrm{T}} \mathbf{w}_i),$$

$$\mathbf{w}_i = (w_{i1}, w_{i2}, \dots, w_{ip})^{\mathrm{T}}$$
$$\boldsymbol{\gamma} = (\gamma_1, \gamma_2, \dots, \gamma_p)^{\mathrm{T}}$$

The Cox model can be extended to handle exogenous time-dependent covariates (Andersen and Gill, 1982).

But often measurements taken on the subjects are related to inherent biological changes: **endogenous covariates**.

- We only know the response value at specific time points.
- They are typically measured with error.

It is therefore necessary to implement: JOINT MODELING TECHNIQUES

(Rizopoulos, 2010)

Joint Modeling framework: Fitted joint model

In our particular database:

For the
$$i$$
-th man, $i=1,\ldots,11912,$ at time t
For the i -th woman, $i=1,\ldots,18668,$ at time t

Longitudinal submodel

$$\begin{cases} LOG.CUM_i(t) = \boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1 t} + \varepsilon_i(t) \\ \boldsymbol{\beta} = (\beta_0, \beta_1)^{\mathrm{T}} \\ b_{i0} \sim \mathcal{N}(0, \sigma_{b_0}^2) \\ \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

Joint Modeling framework: Fitted joint model

In our particular database:

$$\left\{ \begin{array}{l} \text{For the } i\text{--th man, } i=1,\ldots,11912\text{, at time } t \\ \text{For the } i\text{--th woman, } i=1,\ldots,18668\text{, at time } t \end{array} \right.$$

Longitudinal submodel

$$\begin{cases} LOG.CUM_i(t) = \boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1 t} + \varepsilon_i(t) \\ \boldsymbol{\beta} = (\beta_0, \beta_1)^{\mathrm{T}} \\ b_{i0} \sim \mathcal{N}(0, \sigma_{b_0}^2) \\ \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

Survival submodel

$$h_i(t|\mathbf{w}_i) = h_0(t)R_i(t)\exp{\gamma LOG.CUMFENT_i}$$
.

Joint Modeling framework: Fitted joint model

In our particular database:

For the
$$i$$
-th man, $i=1,\ldots,11912,$ at time t
For the i -th woman, $i=1,\ldots,18668,$ at time t

Longitudinal submodel

$$\begin{cases} LOG.CUM_i(t) = \boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1 t} + \varepsilon_i(t) \\ \boldsymbol{\beta} = (\beta_0, \beta_1)^{\mathrm{T}} \\ b_{i0} \sim \mathcal{N}(0, \sigma_{b_0}^2) \\ \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

Survival submodel

$$h_i(t|\mathbf{w}_i) = h_0(t)R_i(t)\exp\{\gamma LOG.CUMFENT_i\}.$$

JOINT MODEL

$$h_i(t|\mathcal{M}_i(t), \mathbf{w}_i) = h_0(t)R_i(t)\exp\{\gamma LOG.CUMFENT_i + \alpha(\boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1 t})\}$$

R.Alemany, M.Guillén, X.Piulachs

Contents

- INTRODUCTION AND GOALS
- DATABASE: SPANISH HEALTH INSURANCE COMPANY
- 3 JOINT MODELING TECHNIQUES
- 4 RESULTS
- 5 DISCUSSION AND FUTURE RESEARCH

$$h_i(t|\mathcal{M}_i(t), \mathbf{w}_i) = h_0(t)R_i(t)\exp\{\gamma LOG.CUMFENT_i + \alpha(\boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1}\boldsymbol{t})\}$$

	JM for men		JM for women	
Parameters	Estimate	95% CI	Estimate	95% CI
Longitudinal				
β_0	2.140	(2.100, 2.180)	2.158	(2.123, 2.192)
β_1	0.170	(0.167, 0.172)	0.157	(0.155, 0.159)
σ	0.332	=	0.314	=
σ_{b_0}	1.648	=	1.791	=
Survival γ	-1.174	(-1.306,-1.042)	-0.964	(-1.042, -0.887)
Association α Goodness of fit	1.437	(1.275, 1.598)	1.273	(1.179, 1.367)
AIC	92173.49	_	144097.5	-

$$h_i(t|\mathcal{M}_i(t), \mathbf{w}_i) = h_0(t)R_i(t)\exp\{\gamma LOG.CUMFENT_i + \alpha(\boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1}t)\}$$

	JM for men		JM for women	
Parameters	Estimate	95% CI	Estimate	95% CI
Longitudinal				
β_0	2.140	(2.100, 2.180)	2.158	(2.123, 2.192)
β_1	0.170	(0.167, 0.172)	0.157	(0.155, 0.159)
σ	0.332	=	0.314	=
σ_{b_0}	1.648	=	1.791	=
Survival γ	-1.174	(-1.306,-1.042)	-0.964	(-1.042, -0.887)
Association α Goodness of fit	1.437	(1.275, 1.598)	1.273	(1.179, 1.367)
AIC	92173.49	-	144097.5	-

$$h_i(t|\mathcal{M}_i(t), \mathbf{w}_i) = h_0(t)R_i(t)\exp\{\gamma LOG.CUMFENT_i + \alpha(\boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1}t)\}$$

	JM for men		JM for women	
Parameters	Estimate	95% CI	Estimate	95% CI
Longitudinal				
β_0	2.140	(2.100, 2.180)	2.158	(2.123, 2.192)
β_1	0.170	(0.167, 0.172)	0.157	(0.155, 0.159)
σ	0.332	_	0.314	_
σ_{b_0}	1.648	=	1.791	_
Survival γ	-1.174	(-1.306,-1.042)	-0.964	(-1.042, -0.887)
Association α Goodness of fit	1.437	(1.275, 1.598)	1.273	(1.179, 1.367)
AIC	92173.49	_	144097.5	_

$$h_i(t|\mathcal{M}_i(t), \mathbf{w}_i) = h_0(t)R_i(t)\exp\{\gamma LOG.CUMFENT_i + \alpha(\boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1}t)\}$$

	JM for men		JM for women	
Parameters	Estimate	95% CI	Estimate	95% CI
Longitudinal				
β_0	2.140	(2.100, 2.180)	2.158	(2.123, 2.192)
β_1	0.170	(0.167, 0.172)	0.157	(0.155, 0.159)
σ	0.332	_	0.314	_
σ_{b_0}	1.648	=	1.791	-
Survival γ	-1.174	(-1.306,-1.042)	-0.964	(-1.042, -0.887)
Association α Goodness of fit	1.437	(1.275, 1.598)	1.273	(1.179, 1.367)
AIC	92173.49	_	144097.5	_

Joint modeling results (I): Estimation by sex

$$h_i(t|\mathcal{M}_i(t), \mathbf{w}_i) = h_0(t)R_i(t)\exp\{\gamma LOG.CUMFENT_i + \alpha(\boldsymbol{\beta_0} + \boldsymbol{b_{i0}} + \boldsymbol{\beta_1}t)\}$$

	JM for men		JM for women	
Parameters	Estimate	95% CI	Estimate	95% CI
Longitudinal				
β_0	2.140	(2.100, 2.180)	2.158	(2.123, 2.192)
β_1	0.170	(0.167, 0.172)	0.157	(0.155, 0.159)
σ	0.332	=	0.314	=
σ_{b_0}	1.648	=	1.791	=
Survival γ	-1.174	(-1.306,-1.042)	-0.964	(-1.042, -0.887)
Association α Goodness of fit	1.437	(1.275, 1.598)	1.273	(1.179, 1.367)
AIC	92173.49	_	144097.5	-

Joint modeling results (II): Dynamic predictions

Comparison: Two women aged 65 at 1st Jan 2010 with 25 requests each one but with very different longitudinal profiles.

Survival prediction of awoman aged 65 at 1 Jan 2010, with STRONG growth in requests

Joint modeling results (II): Dynamic predictions

Comparison: Two women aged 65 at 1st Jan 2010 with 25 requests each one but with very different longitudinal profiles.

Survival prediction of awoman aged 65 at 1 Jan 2010, with STRONG growth in requests

Joint modeling results (II): Dynamic predictions

Comparison: Two women aged 65 at 1st Jan 2010 with 25 requests each one but with very different longitudinal profiles.

Survival prediction of awoman aged 65 at 1 Jan 2010, with STRONG growth in requests

Joint modeling results (II): Dynamic predictions

Comparison: Two women aged 65 at 1st Jan 2010 with 25 requests each one but with very different longitudinal profiles.

Survival prediction of awoman aged 65 at 1 Jan 2010, with STRONG growth in requests

Joint modeling results (II): Dynamic predictions

Comparison: Two women aged 65 at 1st Jan 2010 with 25 requests each one but with very different longitudinal profiles.

Survival prediction of awoman aged 65 at 1 Jan 2010, with STRONG growth in requests

Joint modeling results (II): Dynamic predictions

Comparison: Two women aged 65 at 1st Jan 2010 with 25 requests each one but with very different longitudinal profiles.

Contents

- INTRODUCTION AND GOALS
- DATABASE: SPANISH HEALTH INSURANCE COMPANY
- 3 JOINT MODELING TECHNIQUES
- 4 RESULTS
- **6** DISCUSSION AND FUTURE RESEARCH

5. DISCUSSION AND FUTURE RESEARCH

Discussion and Conclusions

CONCLUSIONS

- The fitted joint model indicates that the observed number of cumulated requests is highly associated with the risk of death (event of interest).
- The baseline cumulated acts has a protective effect.
- The joint modeling techniques allow to obtain an unbiased and personalized estimate of the the impact of y = LOG.CUM trajectories on time to mortality event. As longitudinal information was collected for all subjects, the joint modeling methodology has allowed to continuously update the predictions of their survival probabilities.

5. DISCUSSION AND FUTURE RESEARCH

Future Research

TO GO FURTHER ...

- Different types of acts need to be distinguished
- To relate the subject specific profile to an estimated cost.
- To consider extensions of the standard joint modeling approach (e.g. the subject-specific slope $m'_{i}(t)$).

1. INTRODUCTION 2. DATABASE 3. JOINT MODELING 4. RESULTS 5. DISCUSSION

REFERENCES

MAIN REFERENCES:

- Modeling of Policyholder Behavior for Life Insurance and Annuity Products, (Campbell et al., 2014)
- Regression models and life-tables, (Cox et al., 2014)
- Joint Models for Longitudinal and Time-to-Event Data, (Rizopoulos, 2012)
- Looking Forward to a General Theory on Population Aging, (Robine and Michel, 2004)
- How Health Insurance Design Affects Access To Care And Costs, By Income, In Eleven Countries, (Schoen et al., 2010)
- Joint modeling of longitudinal and time-to-event data: An overview, (Tsiatis et al., 2004)
- Linear Mixed Models for Longitudinal Data, (Verbeke and Mohlenbergs, 2010)

ACKNOWLEDGEMENTS

THANK YOU VERY MUCH FOR YOUR ATTENTION!