imatge de diagramació imatge de diagramació imatge de diagramació
logos universitats participants  Seminari de Geometria Algebraica de Barcelona imatge de diagramació
UB UPC UAB   imatge de diagramació
imatge de diagramació imatge de diagramació imatge de diagramació
imatge de diagramació
Index anual
Seminari 2017/2018
Seminari 2016/2017
Seminari 2015/2016
Seminari 2014/2015
Seminari 2013/2014
Seminari 2012/2013
Seminari 2011/2012
Seminari 2010/2011
Seminari 2009/2010
Seminari 2008/2009
Seminari 2007/2008
Seminari 2006/2007
Seminari 2005/2006
Seminari 2004/2005
Seminari 2003/2004
Seminari 2002/2003
Seminari 2001/2002
 
icona d'informació

Contacta amb els organitzadors:
Joaquim Roé
Martí Lahoz

imatge de diagramació
Seminari de Geometria Algebraica 2018/2019 imatge de diagramació
imatge de diagramació

Conferenciant

Títol Data i hora
ARCADES Doctoral School II and ESR Days 3 a 7 de setembre, IMUB
Constantin Shramov
Steklov Math Inst & NRU HSE
Moscou, Rússia

Contact:
ignasi.mundet at ub.edu
Automorphisms of Kaehler manifolds I will survey various results about finite groups acting by automorphisms and birational automorphisms of Kaehler manifolds. I will show that in many cases such groups enjoy the Jordan property, similar to subgroups of general linear groups.
The talk is based on joint works with Yu. Prokhorov.
Divendres 7 de setembre, 15h, Aula T2, FMI-UB
Martín Sombra
ICREA - UB
The zero set of the independence polynomial of a graph In statistical mechanics, the independence polynomial of a graph G arises as the partition function of the hardcore lattice gas model on G. The distribution of the zeros of these polynomials when G→∞ is relevant for the study of this model and, in particular, to the determination of its phase transitions. In this talk, I will review the known results on the location of these zeros, with emphasis on the case of rooted regular trees of fixed degree and varying depth k ≥ 0. Our main result states that for these graphs, the zero sets of their independence polynomials converge as k→∞ to the bifurcation measure, in the sense of DeMarco, of a certain family of dynamical systems on the Riemann sphere.
This is ongoing work with Juan Rivera-Letelier (Rochester)
Divendres 28 de setembre, 15h, Aula T2, FMI-UB
Alberto F. Boix
Ben-Gurion U. of the Negev
Beer-Sheva, Israel

Contact:
szarzuela at ub.edu
A Characteristic Free Approach to Finite Determinacy Finite determinacy for mappings has been classically thoroughly studied in numerous scenarios in the real and complex-analytic category and in the differentiable case. It means that the map-germ is determined, up to a given equivalence relation, by a finite part of its Taylor expansion. The equivalence relation is usually given by a group action and the first step is always to reduce the determinacy question to an “infinitesimal determinacy”, i.e. to the tangent spaces at the orbits of the group action.
The goal of this talk is to formulate a universal approach to finite determinacy in arbitrary characteristic, not necessarily over a field, for a large class of group actions; along the way, we introduce the notion of “pairs of (weak) Lie type”, which are groups together with a substitute for the tangent space at the unit element, such that the group is locally approximated by its tangent space, in a precise sense. This construction may be regarded as a sort of replacement of the exponential/logarithmic maps and is of independent interest. In this generality we establish the “determinacy versus infinitesimal determinacy” criteria, a far reaching generalization of numerous classical and recent results, together with some new applications.
The content of this talk is based on joint work with Gert–Martin Greuel (Universität Kaiserslautern, Germany) and Dmitry Kerner (Ben–Gurion University of the Negev, Israel)
Divendres 5 d'octubre, 15h, Aula T2, FMI-UB
Roberto Gualdi
U. Bordeaux - UB - CRM

Contact:
sombra at ub.edu
Height of cycles in toric varieties We present in this talk some relations between suitable heights of cycles in toric varieties and the combinatorics of the defining Laurent polynomials. To do this, we associate to any Laurent polynomial f with coefficients in an adelic field two families of concave functions on a certain real vector space: the upper functions and the Ronkin functions of f. For the choice of an adelic semipositive toric metrized divisor D, we give upper bounds for the D-height of a complete intersection in a toric variety in terms of the upper functions of the defining Laurent polynomials. In the one-codimensional case, we prove an exact formula relating the D-height of a hypersurface to the Ronkin function of the associated Laurent polynomial, generalizing the well-known equality for the canonical case. Our approach involves mixed integrals, Legendre-Fenchel duality and other notions from convex geometry.
Divendres 19 d'octubre, 15h, Aula T2, FMI-UB
Francisco Presas
ICMAT, Madrid

Contact:
ignasi.mundet at ub.edu
Homotopy type of the space of smooth embeddings of \(\Large{\mathbb{S}}^1\) in \(\Large{\mathbb{R}}^4\) via Engel geometry. We introduce the space of horizontal embeddings for the standard Engel distribution in the Euclidean 4-space. We prove that the space of smooth embeddings of the circle into R⁴ is simply connected (classical result), by checking that the space of horizontal embeddings has homotopy type very related to the space of smooth embeddings (they are related by an h-principle). We extend the method to sketch the computation of the \(\pi_2\) of that space showing that is Z\(\oplus\)Z (more modern result). We finally comment on work in progress further generalizing the techniques by using Manifold calculus to try to compute the whole homotopy type of this space.
This is joint work with E. Fernández and X. Martínez-Aguinaga.
Divendres 26 d'octubre, 15h, Aula T2, FMI-UB
Pedro González Pérez
UCM, Madrid

Contact:
TBA
Divendres 9 de novembre, 15h, Aula T2, FMI-UB
Joana Cirici
UB
TBA
Divendres 16 de novembre, 15h, Aula T2, FMI-UB
Diletta Martinelli
School of Mathematics
Edinburgh, Escòcia (UK)

Contact:
marti.lahoz at ub.edu
TBA
Divendres 23 de novembre, 15h, Aula T2, FMI-UB
Bernd Sturmfels
Max Plank Institut Leipzig (Alemanya)

Contact:
cdandrea at ub.edu
Moment Varieties of Polytopes The moments of the uniform distribution on a convex polytope are rational functions in its vertex coordinates. We study the projective varieties parametrized by these moments. This is work with Kathlen Kohn and Boris Shapiro. On our journey, we encounter Hankel determinantal ideals, splines, cumulants, multisymmetric functions, and invariants of nonreductive groups. While moment varieties are complicated, they offer many nice open problems. Article
Dilluns 26 de novembre, 15h, aula T1, FMI-UB
Vincenzo Antonelli
Politecnico di Torino, Itàlia

Contact:
miro at ub.edu
TBA
Divendres 30 de novembre, 15h, Aula T2, FMI-UB
Enrico Carlini
Politecnico di Torino
Itàlia

Contact:
alessandro.oneto at upc.edu
TBA
Divendres 30 de novembre, 16h, Aula T2, FMI-UB
imatge de diagramació
imatge de diagramació


imatge de diagramació
imatge de diagramació imatge de diagramació imatge de diagramació imatge de diagramació imatge de diagramació
  Universitat de Barcelona Universitat Politècnica de Catalunya
Universitat Autònoma de Barcelona