Riemann-Roch theorem for \mathcal{D} -modules

Pierre Schapira

Abstract. An elliptic pair on a complex manifold X is the data of a coherent \mathcal{D}_X -module \mathcal{M} and an \mathbb{R} -constructible sheaf F such that the intersection of the characterictic variety of \mathcal{M} and the microsupport of F is contained in the zero-section of T^*X . If this intersection is compact, then the cohomology of the complex of solutions $\operatorname{RHom}_{\mathcal{D}}(\mathcal{M} \otimes F, \mathcal{O}_X)$ is finite dimensional over \mathbb{C} and its index $\chi(X; \mathcal{M}, F)$ is given by the formula (Schapira-Schneiders):

$$\chi(X; \mathcal{M}, F) = \int_{T^*X} \mu eu(\mathcal{M}) \cup \mu eu(F).$$

Here $\mu eu(\mathcal{M})$ is the microlocal Euler class of \mathcal{M} and $\mu eu(F)$ is Kashiwara's microlocal Euler class of F.

In this talk, we shall explain the meaning of this formula and its links with classical Riemann-Roch and Atiyah-Singer theorems.