HANKEL PLANES

Let k be an algebraically closed field of characteristic 0 . A Hankel matrix $H \in k^{p+1, m+1}$ (sometimes called catalecticant) is a matrix of type

$$
H=\left(\begin{array}{ccccc}
\lambda_{0} & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{m} \\
\lambda_{1} & \lambda_{2} & \lambda_{3} & \ldots & \lambda_{m+1} \\
\lambda_{2} & \lambda_{3} & \lambda_{4} & \ldots & \lambda_{m+2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\lambda_{p} & \lambda_{p+1} & \lambda_{p+2} & \ldots & \lambda_{m+p}
\end{array}\right)
$$

Such matrices arise in many parts of mathematics and are stricly connected with the standard rational normal curve $X_{m} \subseteq \mathbb{P}^{m}$.

We consider the following problem: given a matrix (written by its rows)

$$
A=\left(\begin{array}{c}
A^{0} \\
A^{1} \\
\vdots \\
A^{m}
\end{array}\right) \in k^{m+1, n+1}
$$

using these rows one can construct, for any integer $p \geq 0$, the block Toeplitz matrix

$$
T_{A}(p)=\left(\begin{array}{cccc}
A^{0} & \mathbf{0} & \ldots & \mathbf{0} \\
A^{1} & A^{0} & \cdots & \mathbf{0} \\
A^{2} & A^{1} & \cdots & \mathbf{0} \\
\ldots & \ldots & \cdots & \cdots \\
A^{m} & A^{m-1} & \cdots & \cdots \\
\mathbf{0} & A^{m} & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\mathbf{0} & \mathbf{0} & \cdots & A^{m}
\end{array}\right) \in k^{m+p+1,(n+1)(p+1)}
$$

where $\mathbf{0}=(0,0, \ldots, 0)$ is the null vector.
We want to determine the rank of $T_{A}(p)$ starting from the rank of A; more precisely, denoting by $R(p) \subseteq k^{m+p+1}$ the vector space of relations among the rows of $T_{A}(p)$, our problem is to determine $R(p)$ for any $p>0$ when $R=R(0)$ is given.

The connection between the ranks of these matrices is not purely numerical and requires a deep analysis of the space R. As one can expect this problem strongly involves X_{m} and moreover allows to define new geometric objects of the projective space \mathbb{P}^{m} - the Hankel planes - whose geometric properties are related with X_{m}.

