Seminari de Geometria Algebraica 2007/2008 (UB-UPC) Divendres 30 de maig a les 16h. a l'aula B1 http://atlas.mat.ub.es/sga

On the ideals of general binary orbits

Jaydeep Chipalkatti

University of Manitoba, Canada

Let us identify \mathbb{P}^d with the set of binary forms

$$A = \sum_{i=0}^{d} a_i x_1^{d-i} x_2^i, \qquad (a_i \in \mathbf{C})$$

of order d (distinguished up to scalars). The special linear group SL_2 acts on \mathbb{P}^d via a change of variables in $\{x_1, x_2\}$. Given a general binary d-ic A, let $X_A \subseteq \mathbb{P}^d$ denote the closure of its SL_2 -orbit. One should like to know the (equivariant) minimal generators for the defining ideal of the variety X_A .

This problem seems to be very difficult for general d, but I have succeeded in arriving at a computational solution for all $d \leq 8$. I will explain the classical invariant theory involved in the solution, as well as a curious phenomenon called 'combinatorially invisible generators'.