Seminari de Geometria Algebraica 2007/2008 (UB-UPC)

Dimarts 22 d'abril de 10:00 a 12:00 a l'aula 007 FME (UPC)
http://atlas.mat.ub.es/sga

Growth of degrees of polynomial maps of \mathbb{C}^{2} and dynamics II

Charles Favre
CNRS-IMJ,França

General abstract

Suppose one is given a dominant polynomial map $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. Its degree $\operatorname{deg}(F)$ then determines its general behavior F near infinity.
When interested in the dynamics of F, one is naturally lead to study the sequence $\operatorname{deg}\left(F^{n}\right)$ and try to control it when n tends to infinity. The general aim of this mini-course is to describe in details this sequence following my recent work in collaboration with S. Boucksom and M. Jonsson. In particular we shall show that the sequence $\operatorname{deg}\left(F^{n}\right)^{1 / n}$ admits a limit (called the asymptotic degree) which is always a quadratic integer; and that $\operatorname{deg}\left(F^{n}\right)$ satisfies a finite linear recurrence relation with integer coefficients. These results are the building blocks for a finer dynamical analysis of the map F.

Talk 2: Valuative methods
We introduce the space V of all normalized valuations at infinity. Following Berkovich's idea to study non-archimedean analytic spaces, we prove V is a real tree. We then start studying the action of a polynomial map on it. We show how this technique can be used to get information on the asymptotic degree.

