Seminari de Geometria Algebraica 2007/2008 (UB-UPC)

Dimecres 23 d'abril de 9:00 a 11:00 a l'aula 007 FME (UPC)
http://atlas.mat.ub.es/sga

Growth of degrees of polynomial maps of \mathbb{C}^{2} and dynamics III

Charles Favre
CNRS-IMJ,França

General abstract

Suppose one is given a dominant polynomial map $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. Its degree $\operatorname{deg}(F)$ then determines its general behavior F near infinity.
When interested in the dynamics of F, one is naturally lead to study the sequence $\operatorname{deg}\left(F^{n}\right)$ and try to control it when n tends to infinity. The general aim of this mini-course is to describe in details this sequence following my recent work in collaboration with S. Boucksom and M. Jonsson. In particular we shall show that the sequence $\operatorname{deg}\left(F^{n}\right)^{1 / n}$ admits a limit (called the asymptotic degree) which is always a quadratic integer; and that $\operatorname{deg}\left(F^{n}\right)$ satisfies a finite linear recurrence relation with integer coefficients. These results are the building blocks for a finer dynamical analysis of the map F.

Talk 3: Cohomological methods

To get a precise control of the growth of degrees, we look at the action of a polynomial map on the cohomology of the space X obtained by blowing up \mathbb{P}^{2} at all points at infinity. The intersection form allows one to introduce a natural Hilbert space in this infinite dimensional vector space which is preserved by the action of polynomial maps. A spectral analysis of their actions gives the control of the sequence of degrees.

