F-thresholds, a conjecture on multiplicity of ideals and core of ideals.

Kei-ichi Watanabe (Nihon University, Tokyo)

This is a joint work with C. Humeke, M. Mustață and S. Takagi.

We define F-thresholds $c^J(\mathfrak{a})$ for pair of ideals (J,\mathfrak{a}) satisfying $\mathfrak{a} \subset \sqrt{J}$ in a Noetherian local or graded ring (R,\mathfrak{m}) . This notion was introduced by Mustață to describe "jumping numbers" of multiplier ideals (in rings of characteristic 0) by characteristic p method for regular rings.

We have a conjecture comparing multiplicity of J and \mathfrak{a}), when J, \mathfrak{a} are \mathfrak{m} primary ideals and J is a parameter ideal.

Conjecture A. $e(\mathfrak{a}) \geq \left(\frac{d}{c^{J}(\mathfrak{a})}\right)^{d} e(J)$, where $d = \dim R$ and $e(\mathfrak{a}), e(J)$ denotes the multiplicity of \mathfrak{a}, J .

This conjecture is a generalization of a theorem of de Fernex, Ein and Mustață which gives a lower bound of $e(\mathfrak{a})$ by log canonical threshold of \mathfrak{a} .

Conjecture A was proved in the case of graded rings when J, $\mathfrak a$ are generated by homogeneous parameters.

In this talk, I talk on the relationship of Conjecture A with the following conjecture concerning core of ideals, where for an ideal \mathfrak{a} , core(\mathfrak{a}) is defined as the intersection of all the reductions of \mathfrak{a} . I will explain that for certain rings, Conjecture A is equivalent to the following conjecture.

Conjecture B. Let \mathfrak{a}, J be \mathfrak{m} primary ideals and J be a parameter ideal. If $J \supset \operatorname{core}(\mathfrak{a})$, then $e(J) \leq e(\mathfrak{a})$?