Seminari de Geometria Algebraica 2012/2013 (UB-UPC)

Divendres 26 d'octubre a les 15 hs , aula B1 FM-UB http://atlas.mat.ub.es/sga

About Nagata's conjecture

Stephanie Nivoche

Université de Nice

Let S be a finite set of distincts points in \mathbb{C}^{2}. For a positive integer l, define $\Omega(S, l)$ to be the least integer d such that there is a polynomial of degree d vanishing at each point of S with order at least l.
Nagata (59) conjectured that $\Omega(S, l) \geq l \sqrt{\operatorname{card}(S)}$ for $\operatorname{card}(S)>9$ and S generic, and he proved that this inequality is valid when $\operatorname{card}(S)$ is a perfect square.
Later a generalized conjecture was posed (Harbourne) : for a generic S in \mathbb{C}^{2} with $\operatorname{card}(S)>9$, we have $\sum_{A \in S} \operatorname{ord}(P, A) \leq \sqrt{\operatorname{card}(S)} \operatorname{deg}(P)$, for any polynomial P.
In this talk we will tackle this problem with an analytic point of view, by using pluripotential technics.

