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QUESTIONS:

When is a moduli space non-empty?
⇐⇒ existence and obstructions to the existence
of solutions of (Euler–Lagrange) equations

Geometry of a moduli space?

USEFUL TOOLS (SOMETIMES):

Geometry of quotients of manifolds by Lie
group actions in (∞- and finite-dimensional)
symplectic and algebraic geometry

SPECIFIC PROBLEM OF THIS TALK:

Moduli of vortices coupled to a metric (or
gravity) on a compact Riemann surface

Very specific 20-year-old problem — the same
methods have been applied to other problems
[Atiyah, Bott, Donaldson, Hitchin. . .]
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1. Abelian vortices on a compact Riemann surface

Ginzburg–Landau theory of superconductivity on a surface

Physics:

FA = field strength tensor of U(1)-connection A

φ = electron wave-function density amplitude (Cooper pairs)

action functional depends on an order parameter λ:

S(A, φ) =

∫
X

(
|FA|2 + |dAφ|2 +

λ

4
(|φ|2 − τ)2

)
ωX

Complex geometry:

X compact Riemann surface

ωX fixed Kähler 2-form on X

L −→ X holomorphic line bundle

φ ∈ H0(X , L) holomorphic section of L

In the so-called Bogomol’nyi phase λ = 1,

Euler–Lagrange equations ⇐⇒ vortex equation
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Vortex equation

for a Hermitian metric h on L:

iΛFh + |φ|2h = τ

Fh ∈ Ω2(X ) curvature 2-form of Chern connection of h on L

ΛFh = g j k̄Fj k̄ ∈ iC∞(X ) contraction of Fh with ωX

| · |h ∈ C∞(X ) pointwise norm on L associated to h

τ ∈ R constant parameter

Vortex = solution of the vortex equation

Integrating, i.e. applying 1
vol(X )

∫
X (−)ωX to the vortex equation,

deg L + ‖φ‖2
L2 = τ

where deg L := 2π
vol(X )

∫
X c1(L), ‖φ‖2

L2 := 1
vol(X )

∫
X |φ|

2
hωX , so

φ 6= 0⇐⇒ τ > deg L
φ = 0⇐⇒ τ = deg L
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Theorem

Existence of vortices ⇐⇒ τ ≥ deg L

If φ = 0, by Hodge Theorem, existence ⇐⇒ deg L = τ

For φ 6= 0, there are several proofs:

— Noguchi (1987, τ = 1): direct proof using tools of analysis
— Bradlow (1990): reduces to Kazdan–Warner equation in

Riemannian geometry
— Garćıa-Prada (1991): dimensional reduction of Hermitian

Yang–Mills equation from 2 to 1 complex dimension

Previous work by Taubes (1980) on R2, after work by Witten
(1977) on R1,1.

We will now review the proof by Garćıa-Prada via dimensional
reduction of Hermitian Yang–Mills equations
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2. Hermitian Yang–Mills equation

Generalization of instanton equation to Kähler manifolds

Data: M compact Kähler manifold with n = dimCM

ωM fixed Kähler 2-form on M

E −→ M holomorphic vector bundle

Hermitian Yang–Mills equation (HYM)

for a Hermitian metric H on E :

iΛFH = µ(E ) IdE

FH = curvature 2-form of Chern connection of H on E

ΛFH = g j k̄Fj k̄ : E −→ E = contraction of FH with ωM

Taking traces in the equation and
∫
M(−) dvolM :

µ(E ) = slope of E :=
deg E

rankE

where deg E = 2π
vol(X )

∫
M c1(E ) ∧ ωn−1

M .
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Recall the Donaldson–Uhlenbeck–Yau Theorem:

It is a correspondence between:

gauge theory: Hermitian Yang–Mills equation on E

algebraic geometry: polystability of E

Definition (Mumford–Takemoto)

E is stable if µ(E ′) < µ(E ) for all coherent subsheaves E ′ ( E .

E is polystable if E ∼= ⊕Ei with Ei stable of the same slope.

Theorem (Donaldson, Uhlenbeck–Yau, 1986–87)

∃ Hermitian Yang–Mills metric on E ⇐⇒ E is polystable.

For n = 1: Narasimhan–Seshadri (1965), Donaldson (1983)

The HYM equation and the proof have symplectic meaning.
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3. Dimensional reduction of HYM to vortices

Work by Garćıa-Prada 1991 (previous work by Witten 1977; Taubes 1980)

Come back to pair (L, φ) over compact Riemann surface X :

Associate a rank 2 holomorphic vector bundle E over X × P1:

0 −→ p∗L −→ E −→ q∗OP1(2) −→ 0

P1 := CP1, p : X × P1 → X and q : X × P1 → P1 projections

By Künneth formula, these extensions are parametrized by φ:

Ext1(q∗OP1(2), p∗L) ∼= H1(X × P1, p∗L⊗ q∗OP1(−2))

∼= H0(X , L)⊗ H1(P1,OP1(−2)) ∼= H0(X , L) 3 φ,

using Serre duality H1(P1,OP1(−2)) ∼= H0(P1,OP1)∗ ∼= C.
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SU(2)-action:

SU(2) acts on X × P1:

— on X : trivially
— on P1: via P1 ∼= SU(2)/U(1)

SU(2) acts trivally on H0(X , L) ∼= Ext1(q∗OP1(2), p∗L) =⇒
holomorphic extension E is SU(2)-invariant.

SU(2)-invariant Kähler metric on X × P1:

ωτ = p∗ωX ⊕
4

τ
q∗ωP1

where τ > 0 and ωP1 = Fubini–Study metric.

Theorem (existence of vortices on L −→ X )

∃ τ -vortex on X ks +3
KS

Garćıa-Prada

��

τ > deg LKS

Garćıa-Prada

��
∃SU(2)-inv. ωτ -HYM metric ks

Donaldson–Uhlenbeck–Yau +3E ωτ -polystable
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Some generalizations: non-abelian vortices

Higher rank [Bradlow 1991]:

Replace L→ X by higher-rank holomorphic vector bundle E → X ,
and X by a compact Kähler manifold =⇒
study gauge equations for pairs (E , φ) with φ ∈ H0(X ,E ).
Define τ -stability for (V , φ) and show equivalence with existence of
solutions of a ‘non-abelian τ -vortex equation’.

Holomorphic chains [ & O. a Garćıa-Prada, 2001]:

SU(2)-equivariant holomorphic vector bundles on X × P1 are
equivalent to ‘holomorphic chains’

Em
φm−→ Em−1

φm−1−→ · · · φ1−→ E0

=⇒ useful to understand topology of moduli of Higgs bundles.

Holomorphic quiver bundles [ & O. Garćıa-Prada, 2003]:

G -equivariant holomorphic vector bundles on X × G/P, for a flag
manifold G/P, are equivalent to holomorphic (Q,R)-bundles, for a
quiver with relations (Q,R) depending on P ⊂ G .
=⇒ correspondence between stability and quiver vortex equations.
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Example: when G/P = P2,

the quiver Q is

u u u u u u u
u u u u u u

u u u u u
u u u u

u u u
u u
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I I I I
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N
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N
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N

N

the relations R are ’commutative diagrams’.
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4. The Kähler–Yang–Mills equations

Goal: apply dimensional reduction to HYM coupled to gravity

Data:
M compact (Kählerian) complex manifold with dimCM = n
E −→ M holomorphic vector bundle over M

The Kähler–Yang–Mills equations (KYM)

for a Kähler metric g on M and a Hermitian metric H on E :

iΛgFH = µ(E ) IdE

Sg − αΛ2
g Tr F 2

H = C

Sg scalar curvature of g

Tr F 2
H ∈ Ω4(M), so contraction Λ2

g Tr F 2
H ∈ C∞(M)

α > 0 coupling constant

C ∈ R determined by the topology
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The Kähler–Yang–Mills equations were introduced in:

M. Garćıa-Fernández, Coupled equations for Kähler metrics
and Yang–Mills connections. PhD Thesis. ICMAT, Madrid,
2009, arXiv:1102.0985 [math.DG]

, M. Garćıa-Fernández and O. Garćıa-Prada, Coupled
equations for Kähler metrics and Yang–Mills connections,
Geometry and Topology 17 (2013) 2731–2812

As far as we know, these equations have no physical meaning (as
a coupling of Yang–Mills fields to gravity), but they do have a
symplectic meaning.
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The symplectic origin of the KYM equations

Let E be C∞ complex vector bundle over M and fix:

H Hermitian metric on E

ω symplectic form on M

Define two ∞-dimensional manifolds:

J := {complex structures J : TM → TM on (M, ω)}
A := {unitary connections A on (E ,H)}

Define P := set of pairs (J,A) ∈ J ×A such that:

(M, J, ω) is Kähler (i.e. J ∈ J )

A induces a holomorphic structure ∂̄A on E over (M, J)

J and A have canonical symplectic structures ωJ and ωA.

Symplectic form on P: ωα := (ωJ + αωA)|P for fixed α 6= 0
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Group action:

Fujiki–Donaldson:

H := {Hamiltonian symplectomorphisms (M, ω)→ (M, ω)}
Symplectic action of group H on (J , ωJ ) has moment map
µJ : J → (LieH)∗ such that

µJ (J) = 0⇐⇒ SJ,ω = constant

Hamiltonian extended gauge group G̃:
G̃ := {automorphisms g of (E ,H) covering elements ǧ of H}.

(E ,H)
g−→ (E ,H)y y

(M, ω)
ǧ−→ (M, ω)

Action of group G̃ on P ⊂ J ×A
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Proposition

G̃-action on (P, ωα) has moment map µα : P → (Lie G̃)∗ s.t.

µ−1
α (0) = {solutions of the KYM equations}.

For α > 0, (P, ωα) has a G̃-invariant Kähler structure.

Moduli space Mα := {solutions of KYM equations}/G̃
is Kähler (away from singularities) for α > 0.

Remarks:

We recover the HYM equation, while the equation
Sg = constant (Donaldson–Tian–Yau theory) is deformed.

Equations ‘decouple’ for dimCM = 1 (as F 2
H = 0 in this case).

Programme: Study existence of solutions of KYM equations

Very difficult problem!

In the papers we give a conjecture involving geodesic stability.
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5. Gravitating vortex equations

Data:
X compact Riemann surface
L −→ X holomorphic line bundle
φ ∈ H0(X , L) holomorphic section

Let E be the SU(2)-equivariant rank 2 holomorphic vector bundle
over X × P1 determined by (L, φ):

0 −→ p∗L −→ E −→ q∗OP1(2) −→ 0

Proposition. SU(2)-invariant solutions of the KYM equations on
E −→ X × P1 are equivalent to solutions of:

Gravitating vortex equations

for a Kähler metric g on X and a Hermitian metric h on L:

iΛgFh + |φ|2h − τ = 0

Sg + α(∆g + τ)(|φ|2h − τ) = c

Gravitating vortex = solution of the gravitating vortex equations
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Einstein–Bogomol’nyi equations & cosmic strings

Einstein–Bogomol’nyi equations
def⇐⇒

gravitating vortex equations with c = 0c = 0c = 0

Solutions of the Einstein–Bogomol’nyi equations ⇐⇒
Nielsen–Olesen cosmic strings (1973) in the Bogomol’nyi phase
i.e. solutions of coupled Abelian Einstein–Higgs equations, in
the Bogomol’nyi phase, on R1,1 × X independent of variables
in R1,1.

Cosmic strings are a model (by spontaneous symmetry
breaking) for topological defects in the early universe.

α = 2πG , G > 0 is universal gravitation constant

Physics literature: Linet (1988), Comtet–Gibbons (1988),
Spruck–Yisong Yang (1995), Yisong Yang (1995). . .
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Gravitating vortex equations:

iΛgFh + |φ|2h − τ = 0

Sg + α(∆g + τ)(|φ|2h − τ) = c

τ > 0, α > 0 real parameters

c is determined by the topology

Combining integration of the two gravitating vortex equations:

c =
2π

volg (X )
χ(X )− ατ deg L

Therefore the Einstein–Bogomol’nyi equations (i.e. c = 0) can
only have solutions on the Riemann sphere (as α, τ, deg L ≥ 0):

c = 0 =⇒ χ(X ) > 0 =⇒ X = P1
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6. Existence of solutions

Theorem (Yisong Yang, 1995, 1997)

Let D =
∑

nipi be an effective divisor on P1 corresponding to a
pair (L, φ) s.t. c = 0 and N :=

∑
ni < τ .

Then the Einstein–Bogomol’nyi equations on (P1, L, φ) have
solutions if

ni <
N

2
for all i . (∗)

A solution also exists if D = N
2 p1 + N

2 p2, with p1 6= p2 and N even.

Yang (1995) mentions (∗) “is a technical restriction on the local
string number. It is not clear at this moment whether it may be
dropped”, but we will show (∗) comes from geometry.
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Yang’s proof: apply conformal transformations

Fix metrics g0 on X and h0 on L and solve for g = e2ug0 and
h = e2f h0 =⇒ the gravitating vortex equations are equivalent to
equations for f , u ∈ C∞(X ):

∆g0f + e2u(e2f |φ|2h0
− τ) = − 2π deg L

volg0(X )

∆g0(u + αe2f − 2ατ f ) + c(1− e2u) = 0

c = 0 =⇒ u = const.− αe2f + 2ατ f =⇒ plug u in the first
equation. Yang applies the continuity method to solve the
resulting equation, finding it suffices to assume

ni <
N

2
for all i , (∗)

or D = N
2 p1 + N

2 p2, with p1 6= p2 and N even.
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7. Obstruction to the existence of solutions
and Algebraic Geometry (GIT)

GIT=Geometric Invariant Theory (Mumford, ICM 1962)

Striking fact: Yang’s “technical restriction” has an
algebro-geometric meaning, for the natural action of SL(2,C)
on SymN P1 = PH0(OP1(N)) (binary quantics [Sylvester 1882]):

ni <
N
2 for all i ⇐⇒ D ∈ SymN P1 is GIT stable

D = N
2 p1 + N

2 p2 ⇐⇒ D ∈ SymN P1 is strictly GIT polystable

Theorem ( , M. Garćıa-Fernández, O. Garćıa-Prada, 2015)

The converse of Yang’s theorem also holds:

existence of cosmic strings ⇐⇒ GIT-polystability.

In fact, the converse (=⇒) holds more generally for gravitating
vortices on X = P1 (i.e. c may be non-zero).
The proof relies on the following symplectic and algebro-geometric
constructions.
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The symplectic origin of the gravitating vortex equations

Fix: C∞ compact surface X and C∞ line bundle L over X

h Hermitian metric on L

ω symplectic form on X

Define ∞-dimensional manifolds:

J := {Kähler complex structures J : TX → TX on (X , ω)}
A := {unitary connections A on (L, h)}
Γ := Γ(L) = {C∞ global sections φ of L→ X}

dimR X = 2 =⇒ A ∈ A are in bijection with the
holomorphic structures ∂̄A on L over (X , J)

T :=

{
triples T = (J,A, φ) ∈ J ×A× Γ

s.t. φ is holomorphic w.r.t. J and ∂̄A

}
J ,A and Γ have canonical symplectic structures ωJ , ωA and ωΓ.

Symplectic form on T : ωα := (ωJ + αωA + αωΓ)|T
(for fixed α 6= 0)
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The symplectic origin of the gravitating vortex equations

The Hamiltonian extended gauge group is
G̃ := {automorphisms g of (L, h) covering elements ǧ of H}

(L, h)
g−→ (L, h)y y

(X , ω)
ǧ−→ (X , ω)

where H := {Hamiltonian symplectomorphisms (X , ω)→ (X , ω)}.
The group G̃ acts on T ⊂ J ×A× Γ.

Proposition

G̃-action on (T , ωα) has moment map µα : T → (Lie G̃)∗ s.t.

µ−1
α (0) = {gravitating vortices}.

For α > 0, (T , ωα) has a G̃-invariant Kähler structure.

Moduli space Mα,τ := {gravitating vortices}/G̃
is Kähler for α > 0.
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Geodesics on space of metrics
Fix: volume 0 < volX ∈ R of oriented C∞ surface X

I := (J, ∂̄A)=holomorphic structures on X and L
Vary b = (ω, h) in space

BI :=

 pairs (ω, h) with h=Hermitian metric on E ,
ω=volume form, with total volume volX ,

s.t. (X , J, ω) is Kähler


Theorem ( , M. Garćıa-Fernández, O. Garćıa-Prada, G&T, 2013)

BI is a symmetric space, i.e. it has an affine connection ∇ s.t.
torsion T∇ = 0

∇R∇ = 0, where R∇ is the curvature

Geodesic equations for a curve bt = (ωt , ht) on (BI ,∇), with
ωt = ω0+ddcϕt , dϕ̇t =ηϕ̇tyωt (i.e. ηϕ̇t :=Hamiltonian vector field
of ϕ̇t):

ddc(ϕ̈t − (dϕ̇t , dϕ̇t)ωt ) = 0,

ḧt − 2Jηϕ̇tydht ḣt + iFht (ηϕ̇t , Jηϕ̇t ) = 0.
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Geodesic stability

For each b = (ω, h), we have a group G̃b and a Kähler G̃b-manifold

Tb = {triples T = (J, ∂̄A, φ) compatible with b = (ω, h)},
with moment map µb : Tb → (Lie G̃b)∗.

Define 1-form σT on BI , for I = (J, ∂̄A) and T = (J, ∂̄A, φ),
by σT (v) := 〈µb(T ), v〉 for v ∈ TbBI

∼= Lie G̃b.

Along a geodesic ray bt on BI ,
d

dt
σT (ḃt) ≥ 0.

Obstruction: if ∃ smooth geodesic ray bt on (BI ,∇) such that

lim
t→∞

σT (ḃt) < 0,

then µ−1
b (0) is empty, i.e. @ gravitating vortices T = (J, ∂̄A, φ) on

b = (ω, h).

Definition

A triple T = (J, ∂̄A, φ) is geodesically (semi)stable if

lim
t→∞

σT (ḃt) > 0 (≥ 0)

for every non-constant geodesic ray bt (0 ≤ t <∞) on (BI ,∇).
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Converse of Yang’s theorem. ∃ gravitating vortex on (L, φ)
over P1 corresponding to effective divisor D =

∑
nipi =⇒

D ∈ SymN P1 GIT polystable for SL(2,C)-action (with N =
∑

ni ).

Proof. Fix triple T = (J, ∂̄A, φ) and pair of metrics b0 = (ω0, h0) ∈ BI .

Line bundle L = OP1(N) is SL(2,C)-linearized =⇒ each
ζ ∈ sl(2,C) determines a geodesic ray bt on BI , given by
pull-back along 1-PS gt = exp(tζ) ∈ SL(2,C):

bt = (ωt , ht) := (g∗t ω0, g
∗
t h0).

Since gt fixes I := (J, ∂̄A), i.e. gt ∈ Aut(XJ , L∂̄A),

σT (ḃt) = 〈µbt (J,A, φ), ḃt〉 = 〈µb0(gt · (J,A, φ)), ḃ0〉
= 〈µb0(J,A, gt · φ), ζ2〉,

where ζ = ζ1 + iζ2, with ζ1, ζ2 ∈ su(2).

The theorem follows now essentially because by a (long)
direct calculation, if ∃ lim

t→∞
gt · φ, then

lim
t→∞

σT (ḃt) = lim
t→∞
〈µb0(J,A, gt · φ), ζ2〉

∼ α(N − τ) Hilbert–Mumford weight in GIT.
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8. Some open problems

Conjectures ( , M. Garćıa-Fernández, O. Garćıa-Prada, 2015)

(1) Moduli of gravitating
vortices on P1

=

SymN P1//SL(2,C)
(GIT quotient)

(2) Gravitating vortices on (X , L, φ) exist, for all triples (X , L, φ),
if genus(X ) > 0 (provided τ > deg L).

Further open problems:

Gravitating non-abelian vortices (in progress)

Higher-dimensional compact Kähler manifolds
(new coupling terms appear in the equations).


