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QUESTIONS:

When is a moduli space non-empty?
< existence and obstructions to the existence
of solutions of (Euler—Lagrange) equations

Geometry of a moduli space?

USEFUL TOOLS (SOMETIMES):
Geometry of quotients of manifolds by Lie
group actions in (co- and finite-dimensional)
symplectic and algebraic geometry

SPECIFIC PROBLEM OF THIS TALK:
Moduli of vortices coupled to a metric (or
gravity) on a compact Riemann surface
Very specific 20-year-old problem — the same

methods have been applied to other problems
[Atiyah, Bott, Donaldson, Hitchin. . ]



1. Abelian vortices on a compact Riemann surface

Ginzburg—Landau theory of superconductivity on a surface
Physics:

e F, = field strength tensor of U(1)-connection A

@ ¢ = electron wave-function density amplitude (Cooper pairs)

@ action functional depends on an order parameter \:
A
S(A0) = [ (1FP +1daoP + (62 = 7)) x

Complex geometry:

o X compact Riemann surface
o wyx fixed Kahler 2-form on X
oL — X holomorphic line bundle

e ¢ € H9(X, L) holomorphic section of L

In the so-called Bogomol'nyi phase A =1,

Euler-Lagrange equations <= vortex equation



Vortex equation

for a Hermitian metric h on L:
iNF + |0l =7

o Fn € Q%(X) curvature 2-form of Chern connection of h on L
o NFp = gijj,; € iC>°(X) contraction of Fp with wx
@ |-|p€ C>®(X) pointwise norm on L associated to h
@ 7 € R constant parameter
Vortex = solution of the vortex equation

Integrating, i.e. applying VOI fx Jwx to the vortex equation,

deg L+ ||o[% = 7

where deg L := VOI(X fx a(L), loll7, == VOI fx |p|2wx, so

¢#0<— 7 >degl
¢p=0<=7=degl J




Existence of vortices <= 7 >degl

o If » =0, by Hodge Theorem, existence <= degl =17
@ For ¢ # 0, there are several proofs:
— Noguchi (1987, 7 = 1): direct proof using tools of analysis
— Bradlow (1990): reduces to Kazdan—Warner equation in
Riemannian geometry
— Garcia-Prada (1991): dimensional reduction of Hermitian
Yang—Mills equation from 2 to 1 complex dimension
@ Previous work by Taubes (1980) on R2, after work by Witten
(1977) on RL:L,

We will now review the proof by Garcia-Prada via dimensional
reduction of Hermitian Yang—Mills equations



2. Hermitian Yang—Mills equation

Generalization of instanton equation to Kdhler manifolds
Data: M compact Kahler manifold with n = dim¢ M

wy  fixed Kahler 2-form on M

E — M  holomorphic vector bundle

Hermitian Yang—Mills equation (HYM)

for a Hermitian metric H on E:
iNFy = p(E) Idg

@ Fp = curvature 2-form of Chern connection of H on E
o NFy = gkoj,;' E — E = contraction of Fy with wpy
Taking traces in the equation and fM ) dvoly:
deg E
rank E

wu(E) = slope of E :=

where degE—VOI chl E)Awit.



Recall the Donaldson—Uhlenbeck—Yau Theorem:

It is a correspondence between:
@ gauge theory: Hermitian Yang—Mills equation on E
@ algebraic geometry: polystability of E

Definition (Mumford—Takemoto)
E is stable if u(E") < pu(E) for all coherent subsheaves E' C E.
E is polystable if E = ®©FE; with E; stable of the same slope.

Theorem (Donaldson, Uhlenbeck—Yau, 1986-87)

3 Hermitian Yang—Mills metric on E <= E is polystable.

e For n = 1: Narasimhan—Seshadri (1965), Donaldson (1983)
@ The HYM equation and the proof have symplectic meaning.



3. Dimensional reduction of HYM to vortices

Work by Garcia-Prada 1991 (previous work by Witten 1977; Taubes 1980)

Come back to pair (L, ¢) over compact Riemann surface X:

@ Associate a rank 2 holomorphic vector bundle E over X x P

0—p'L—E—qg"Om(2) —0 J

P! :=CP!, p: X x P! = X and q: X x P! — P! projections

@ By Kiinneth formula, these extensions are parametrized by ¢:

Ext!(q*Opi(2), p*L) = H'(X x P*, p*L @ " Op1(—2))
> H(X, L) @ H'(P*, Om(—2)) = HO(X, L) 3 ¢,

using Serre duality H*(P*, Op1(—2)) = HO(P!, Op1 )* = C.



SU(2)-action:
@ SU(2) acts on X x P:

— on X: trivially
— on PL: via P! 2 SU(2)/ U(1)
o SU(2) acts trivally on HO(X, L) = Ext'(q*Op1(2), p*L) =
holomorphic extension E is SU(2)-invariant.
@ SU(2)-invariant Kahler metric on X x PL:

4
Wr = p*WX D ;q*wﬁn

where 7 > 0 and wpr = Fubini-Study metric.

Theorem (existence of vortices on L — X)

Garcia-Pradaﬂ HGarm’aPrada

3SU(2)-inv. w-HYM metric <—=2adenienedctn__ £, _polystable




Some generalizations: non-abelian vortices

e Higher rank [Bradlow 1991]:
Replace L — X by higher-rank holomorphic vector bundle E — X,
and X by a compact Kahler manifold =
study gauge equations for pairs (E, ¢) with ¢ € HO(X, E).
Define 7-stability for (V/, ¢) and show equivalence with existence of
solutions of a ‘non-abelian 7-vortex equation’.

e Holomorphic chains [__& O. a Garcia-Prada, 2001]:
SU(2)-equivariant holomorphic vector bundles on X x P! are
equivalent to ‘holomorphic chains’

Em 20 Epy 22 2

— useful to understand topology of moduli of Higgs bundles.

e Holomorphic quiver bundles [ & O. Garcia-Prada, 2003]:
G-equivariant holomorphic vector bundles on X x G/P, for a flag
manifold G/P, are equivalent to holomorphic (Q, R)-bundles, for a
quiver with relations (Q, R) depending on P C G.
= correspondence between stability and quiver vortex equations.



Example: when G/P = P?,

@ the quiver Q is PRI G S S

@ the relations R are 'commutative diagrams’.



4. The Kahler—Yang—Mills equations

Goal: apply dimensional reduction to HYM coupled to gravity

Data:
M compact (Kahlerian) complex manifold with dim¢ M = n
E — M holomorphic vector bundle over M

The Kahler—Yang—Mills equations (KYM)

for a Kahler metric g on M and a Hermitian metric H on E:
iNgFri = n(E) ldg
Sg —alN; TrFj=C

Se scalar curvature of g
Tr F7 € Q*(M), so contraction A3 Tr Ff € C>(M)

a >0 coupling constant

C € R determined by the topology



The Kahler—Yang—Mills equations were introduced in:

@ M. Garcia-Fernandez, Coupled equations for Kahler metrics
and Yang—Mills connections. PhD Thesis. ICMAT, Madrid,
2009, arXiv:1102.0985 [math.DG]

° , M. Garcia-Fernidndez and O. Garcia-Prada, Coupled

equations for Kahler metrics and Yang—Mills connections,
Geometry and Topology 17 (2013) 2731-2812

As far as we know, these equations have no physical meaning (as
a coupling of Yang—Mills fields to gravity), but they do have a
symplectic meaning.



The symplectic origin of the KYM equations

Let £ be C*° complex vector bundle over M and fix:
H  Hermitian metric on E
w  symplectic form on M

Define two oo-dimensional manifolds:
J = {complex structures J: TM — TM on (M,w)}
A := {unitary connections A on (E,H)}

Define P := set of pairs (J,A) € J x A such that:

o (M, J,w) is Kahler (i.e. J € J)

o A induces a holomorphic structure da on E over (M, J)

J and A have canonical symplectic structures ws and w.4.

Symplectic form on P:  w, := (w7 + aw4)|p for fixed a # 0



Group action:

Fujiki-Donaldson:
e # := {Hamiltonian symplectomorphisms (M,w) — (M,w)}

@ Symplectic action of group H on (J,wy) has moment map
wug » J — (LieH)* such that

pg(J) =0+=S,, = constant

Hamiltonian extended gauge group G:
G := {automorphisms g of (E, H) covering elements g of H}.

(E,H) -5 (E,H)

! |

(M,w) 55 (M,w)

Action of group Gon P C J x A



Proposition

o G-action on (P, w,) has moment map /1o : P — (LieG)* s.t.
11,1 (0) = {solutions of the KYM equations}.

@ For a >0, (P,w,) has a g—invariant Kahler structure.

o Moduli space M, := {solutions of KYM equations}/G
is Kahler (away from singularities) for a > 0.

Remarks:

@ We recover the HYM equation, while the equation
Sg = constant (Donaldson-Tian—Yau theory) is deformed.

o Equations ‘decouple’ for dim¢ M =1 (as FZ = 0 in this case).
Programme: Study existence of solutions of KYM equations
@ Very difficult problem!

@ In the papers we give a conjecture involving geodesic stability.



5. Gravitating vortex equations

Data:
X compact Riemann surface
L— X holomorphic line bundle

# € H°(X, L) holomorphic section

Let E be the SU(2)-equivariant rank 2 holomorphic vector bundle
over X x P! determined by (L, ¢):

0—p'L—E—q"Om(2) —0

Proposition. SU(2)-invariant solutions of the KYM equations on
E — X x P! are equivalent to solutions of:

Gravitating vortex equations

for a Kahler metric g on X and a Hermitian metric h on L:
iNgFp+ 0|2 —T=0
Sg+a(Bg +7)(l6l5 —7) = ¢

Gravitating vortex = solution of the gravitating vortex equations



Einstein—Bogomol’nyi equations & cosmic strings

. . . . def
o Einstein-Bogomol’nyi equations <=
gravitating vortex equations with ¢ =0

@ Solutions of the Einstein—-Bogomol'nyi equations <=

Nielsen—Olesen cosmic strings (1973) in the Bogomol'nyi phase
i.e. solutions of coupled Abelian Einstein—Higgs equations, in
the Bogomol'nyi phase, on R%! x X independent of variables
in Rb,

e Cosmic strings are a model (by spontaneous symmetry
breaking) for topological defects in the early universe.

@ o =27 G, G > 0 is universal gravitation constant

Physics literature: Linet (1988), Comtet—Gibbons (1988),
Spruck-Yisong Yang (1995), Yisong Yang (1995). ..



Gravitating vortex equations:

iNgFh+ |02 —7 =0
Se+o(Dg+ 7)o —7)=c

o 7 >0, a > 0 real parameters
@ c is determined by the topology
Combining integration of the two gravitating vortex equations:
27

= ——y(X)—ardeg L
c volg(X)X( ) — aT deg

Therefore the Einstein—-Bogomol'nyi equations (i.e. ¢ = 0) can
only have solutions on the Riemann sphere (as «, 7, deg L > 0):

c=0=x(X)>0= X =P




6. Existence of solutions

Theorem (Yisong Yang, 1995, 1997)

Let D =Y n;p; be an effective divisor on P! corresponding to a
pair (L,¢) st. c=0and N:=> n; <.

Then the Einstein-Bogomol'nyi equations on (P!, L, ¢) have
solutions if

n; < g for all i. (*)

A solution also exists if D = %pl + %pz, with p; # p2 and N even.

v

Yang (1995) mentions (%) “is a technical restriction on the local
string number. It is not clear at this moment whether it may be
dropped’, but we will show () comes from geometry.



Yang’'s proof: apply conformal transformations

Fix metrics go on X and hg on L and solve for g = e?“gy and
h = e*f hy = the gravitating vortex equations are equivalent to
equations for f,u € C*®(X):
2w deg L
A.f 2u( 2f| 112 _ _
80 +e (e |¢)|h0 T) VOIgO(X)

Dg(u+ ae®’ —2a7f) +c(1—e®")=0

c =0 = u = const. — ae®’ +2arf = plug u in the first
equation. Yang applies the continuity method to solve the
resulting equation, finding it suffices to assume

nj < g for all J, (*)

or D = %pl + %pz, with p; # p2 and N even.



7. Obstruction to the existence of solutions

and Algebraic Geometry (GIT)

GIT=Geometric Invariant Theory (Mumford, ICM 1962)

Striking fact: Yang's “technical restriction” has an
algebro-geometric meaning, for the natural action of SL(2,C)
on Sym"N P! = PHO(Op1(N)) (binary quantics [Sylvester 1882]):
ni <4 forall i <= DeSym"P! is GIT stable
D= %pl + %pz <= D e Sym" P! is strictly GIT polystable

Theorem (__, M. Garcia-Fernandez, O. Garcia-Prada, 2015)

The converse of Yang's theorem also holds:
existence of cosmic strings <= GIT-polystability.

In fact, the converse (—>) holds more generally for gravitating
vortices on X = P! (i.e. ¢ may be non-zero).

The proof relies on the following symplectic and algebro-geometric
constructions.



The symplectic origin of the gravitating vortex equations

Fix: C°° compact surface X and C* line bundle L over X
h  Hermitian metric on L
w  symplectic form on X
Define oo-dimensional manifolds:
J := {Kahler complex structures J: TX — TX on (X,w)}
A := {unitary connections A on (L, h)}
I :=T(L) = {C> global sections ¢ of L — X}

A € A are in bijection with the

dimg X' =2 = holomorphic structures da on L over (X, J)

T triples T:(J,A,gb)eijxl’_
"] s.t. ¢ is holomorphic w.r.t. J and 04

J, A and I have canonical symplectic structures w7, w4 and wr.

Symplectic form on T w, == (wy + awa + awr)|r
(for fixed o # 0)



The symplectic origin of the gravitating vortex equations

The Hamiltonian extended gauge group is
G := {automorphisms g of (L, h) covering elements g of H}

(L,h) &5 (L h)

! l

X,w) = (X,w)

where H := {Hamiltonian symplectomorphisms (X,w) — (X,w)}.
The group G actson T C J x A xT.

Proposition

e G-action on (7 ,wa) has moment map pq: 7 — (LieG)* s.t.
17 1(0) = {gravitating vortices}.

o For a >0, (T,wa) has a G-invariant Kahler structure.

e Moduli space M, ; := {gravitating vortices}/G
is Kahler for a > 0.




Geodesics on space of metrics
Fix: volume 0 < volx € R of oriented C* surface X
I := (J,94)=holomorphic structures on X and L
Vary b = (w, h) in space
pairs (w, h) with h=Hermitian metric on E,
B := w=volume form, with total volume volx,
s.t. (X, J,w) is Kahler

Theorem (__, M. Garcia-Fernandez, O. Garcia-Prada, G&T, 2013)

By is a symmetric space, i.e. it has an affine connection V s.t.
@ torsion Ty =0

o VRy =0, where Ry is the curvature

Geodesic equations for a curve by = (we, ht) on (By, V), with
wt = wo+dd pt, dpr=ng,w; (i.e. ng,:=Hamiltonian vector field
of ¢r):

dd(¢r — (dpr, dpr)w,) = 0,

Lt - 2J77¢7t—‘dhti7t + ith(n¢ta J%r) =0.



Geodesic stability
@ For each b = (w, h), we have a group Gy and a Kihler G,-manifold
Ty = {triples T = (J, 04, ) compatible with b = (w, h)},
with moment map up, : Tp — (Lie QNb)*.
o Define 1-form o1 on By, for | = (J,04) and T = (J,9a,9),
by o7 (v) := (up(T),v) for v € TpB; = Lie Gp.
@ Along a geodesic ray b; on By, %ar(bt) > 0.
Obstruction: if 3 smooth geodesic ray by on (B, V) such that
ti”;@ or(bt) <0,

then /1;1(0) is empty, i.e. J gravitating vortices T = (J,da, ¢) on
b= (w,h).

Definition

A triple T = (J,0a, ¢) is geodesically (semi)stable if
tl;rgo or(b:) >0(>0)

for every non-constant geodesic ray b; (0 < t < c0) on (B, V).




Converse of Yang’s theorem. 3 gravitating vortex on (L, ¢)
over P! corresponding to effective divisor D =" nip; =
D € Sym"' P! GIT polystable for SL(2, C)-action (with N =3 n;).
Proof. Fix triple T = (J,0a, ¢) and pair of metrics by = (wo, hg) € By.
@ Line bundle L = Op1(N) is SL(2, C)-linearized = each
¢ € 5l(2,C) determines a geodesic ray b; on By, given by
pull-back along 1-PS g; = exp(t({) € SL(2, C):
by = (ffh he) := (g{wo, &¢ ho)-
o Since gt fixes | := (J,0a), i.e. g € Aut(Xy, Lg,),
o7 (be) = (b (J, A, 8), be) = (ppy (gt - (J, A, 8)), bo)
</J,bo(./ A )y 8t ° ) <2>7
where ¢ = (1 + iC2, with (1, ( € su(2).
@ The theorem follows now essentially because by a (long)
direct calculation, if 3 lim g; - ¢, then
_ t—00
tll)no-‘o UT(bt) - t[[g()(/*[/bo(-]u A7gf : ¢)7 C2>
~ a(N — 7) Hilbert—Mumford weight in GIT.



8. Some open problems

Conjectures (__, M. Garcia-Ferndndez, O. Garcia-Prada, 2015)

(1) Moduli of gravitating SymV P! /SL(2,C)
vortices on P! = (GIT quotient)

(2) Gravitating vortices on (X, L, ¢) exist, for all triples (X, L, ¢),
if genus(X) > 0 (provided 7 > deg L).

Further open problems:
e Gravitating non-abelian vortices (in progress)

@ Higher-dimensional compact Kahler manifolds
(new coupling terms appear in the equations).



