Gravitating vortices, cosmic strings, and algebraic geometry

Luis Álvarez-Cónsul

ICMAT & CSIC, Madrid

Seminari de Geometria Algebraica UB, Barcelona, 3 Feb 2017

Joint with Mario García-Fernández and Oscar García-Prada:

- arXiv:1510.03810 (to appear in Comm. Math. Phys.)
- arXiv:1606.07699

QUESTIONS:

When is a moduli space non-empty? ⇔ existence and obstructions to the existence of solutions of (Euler–Lagrange) equations

Geometry of a moduli space?

USEFUL TOOLS (SOMETIMES):

Geometry of quotients of manifolds by Lie group actions in (∞ - and finite-dimensional) symplectic and algebraic geometry

SPECIFIC PROBLEM OF THIS TALK:

Moduli of vortices coupled to a metric (or gravity) on a compact Riemann surface

Very specific 20-year-old problem — the same methods have been applied to other problems [Atiyah, Bott, Donaldson, Hitchin...]

1. Abelian vortices on a compact Riemann surface

Ginzburg–Landau theory of superconductivity on a surface Physics:

- F_A = field strength tensor of U(1)-connection A
- ϕ = electron wave-function density amplitude (Cooper pairs)
- action functional depends on an order parameter λ :

$$\mathsf{S}(A,\phi) = \int_X \left(|\mathcal{F}_A|^2 + |d_A\phi|^2 + \frac{\lambda}{4} (|\phi|^2 - \tau)^2 \right) \omega_X$$

Complex geometry:

- X compact Riemann surface
- ω_X fixed Kähler 2-form on X
- $L \longrightarrow X$ holomorphic line bundle
- $\phi \in H^0(X, L)$ holomorphic section of L

In the so-called Bogomol'nyi phase $\lambda = 1$, Euler–Lagrange equations \iff vortex equation

Vortex equation

for a Hermitian metric h on L:

$$i\Lambda F_h + |\phi|_h^2 = \tau$$

F_h ∈ Ω²(*X*) curvature 2-form of Chern connection of *h* on *L*Λ*F_h* = g^{jk}*F_{jk}* ∈ *i*C[∞](*X*) contraction of *F_h* with ω_X
| · |_h ∈ C[∞](*X*) pointwise norm on *L* associated to *h*τ ∈ ℝ constant parameter

Vortex = solution of the vortex equation

Integrating, i.e. applying $\frac{1}{\operatorname{vol}(X)}\int_X(-)\omega_X$ to the vortex equation,

$$\deg L + \|\phi\|_{L^2}^2 = \tau$$

where deg $L := \frac{2\pi}{\operatorname{vol}(X)} \int_X c_1(L)$, $\|\phi\|_{L^2}^2 := \frac{1}{\operatorname{vol}(X)} \int_X |\phi|_h^2 \omega_X$, so

$$\begin{array}{l} \phi \neq \mathsf{0} \Longleftrightarrow \tau > \deg L \\ \phi = \mathsf{0} \Longleftrightarrow \tau = \deg L \end{array}$$

Theorem

Existence of vortices $\iff \tau \ge \deg L$

- If $\phi = 0$, by Hodge Theorem, existence $\iff \deg L = \tau$
- For $\phi \neq 0$, there are several proofs:
 - Noguchi (1987, $\tau = 1$): direct proof using tools of analysis
 - Bradlow (1990): reduces to Kazdan–Warner equation in Riemannian geometry
 - García-Prada (1991): dimensional reduction of Hermitian Yang-Mills equation from 2 to 1 complex dimension
- Previous work by Taubes (1980) on ℝ², after work by Witten (1977) on ℝ^{1,1}.

We will now review the proof by García-Prada via dimensional reduction of Hermitian Yang-Mills equations

2. Hermitian Yang–Mills equation

Generalization of instanton equation to Kähler manifolds

- Data: M compact Kähler manifold with $n = \dim_{\mathbb{C}} M$
 - ω_M fixed Kähler 2-form on M
 - $E \longrightarrow M$ holomorphic vector bundle

Hermitian Yang–Mills equation (HYM)

for a Hermitian metric H on E:

 $i\Lambda F_H = \mu(E) \operatorname{Id}_E$

• F_H = curvature 2-form of Chern connection of H on E• $\Lambda F_H = g^{j\bar{k}} F_{j\bar{k}} : E \longrightarrow E$ = contraction of F_H with ω_M

Taking traces in the equation and $\int_{M}(-) \operatorname{dvol}_{M}$:

$$\mu(E) = \text{slope of } E := \frac{\deg E}{\operatorname{rank} E}$$

where deg $E = \frac{2\pi}{\operatorname{vol}(X)} \int_M c_1(E) \wedge \omega_M^{n-1}$.

Recall the **Donaldson–Uhlenbeck–Yau Theorem**:

It is a correspondence between:

- gauge theory: Hermitian Yang-Mills equation on E
- algebraic geometry: polystability of E

Definition (Mumford–Takemoto)

E is **stable** if $\mu(E') < \mu(E)$ for all coherent subsheaves $E' \subsetneq E$.

E is **polystable** if $E \cong \oplus E_i$ with E_i stable of the same slope.

Theorem (Donaldson, Uhlenbeck–Yau, 1986–87)

 \exists Hermitian Yang–Mills metric on $E \iff E$ is polystable.

- For n = 1: Narasimhan–Seshadri (1965), Donaldson (1983)
- The HYM equation and the proof have symplectic meaning.

3. Dimensional reduction of HYM to vortices

Work by García-Prada 1991 (previous work by Witten 1977; Taubes 1980)

Come back to pair (L, ϕ) over compact Riemann surface X:

• Associate a rank 2 holomorphic vector bundle *E* over $X \times \mathbb{P}^1$:

$$0 \longrightarrow p^*L \longrightarrow E \longrightarrow q^*\mathcal{O}_{\mathbb{P}^1}(2) \longrightarrow 0$$

 $\mathbb{P}^1 := \mathbb{CP}^1$, $p \colon X \times \mathbb{P}^1 \to X$ and $q \colon X \times \mathbb{P}^1 \to \mathbb{P}^1$ projections

• By Künneth formula, these extensions are parametrized by ϕ :

$$\mathsf{Ext}^{1}(q^{*}\mathcal{O}_{\mathbb{P}^{1}}(2), p^{*}L) \cong H^{1}(X \times \mathbb{P}^{1}, p^{*}L \otimes q^{*}\mathcal{O}_{\mathbb{P}^{1}}(-2))$$
$$\cong H^{0}(X, L) \otimes H^{1}(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-2)) \cong H^{0}(X, L) \ni \phi,$$

using Serre duality $H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(-2)) \cong H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1})^* \cong \mathbb{C}$.

SU(2)-action:

- SU(2) acts on $X \times \mathbb{P}^1$:
 - on X: trivially
 - on \mathbb{P}^1 : via $\mathbb{P}^1 \cong SU(2)/U(1)$
- SU(2) acts trivally on $H^0(X, L) \cong \operatorname{Ext}^1(q^*\mathcal{O}_{\mathbb{P}^1}(2), p^*L) \Longrightarrow$ holomorphic extension E is SU(2)-invariant.
- SU(2)-invariant Kähler metric on $X \times \mathbb{P}^1$:

$$\omega_ au= {oldsymbol{p}}^*\omega_X\oplus rac{4}{ au}q^*\omega_{\mathbb{P}^1}$$

where $\tau > 0$ and $\omega_{\mathbb{P}^1} =$ Fubini–Study metric.

Some generalizations: non-abelian vortices

• Higher rank [Bradlow 1991]:

Replace $L \to X$ by higher-rank holomorphic vector bundle $E \to X$, and X by a compact Kähler manifold \Longrightarrow study gauge equations for pairs (E, ϕ) with $\phi \in H^0(X, E)$. Define τ -stability for (V, ϕ) and show equivalence with existence of solutions of a 'non-abelian τ -vortex equation'.

• Holomorphic chains [___& O. a García-Prada, 2001]: SU(2)-equivariant holomorphic vector bundles on $X \times \mathbb{P}^1$ are equivalent to 'holomorphic chains'

$$E_m \xrightarrow{\phi_m} E_{m-1} \xrightarrow{\phi_{m-1}} \cdots \xrightarrow{\phi_1} E_0$$

 \implies useful to understand topology of moduli of Higgs bundles.

• Holomorphic quiver bundles [___& O. García-Prada, 2003]: G-equivariant holomorphic vector bundles on $X \times G/P$, for a flag manifold G/P, are equivalent to holomorphic (Q, \mathcal{R}) -bundles, for a quiver with relations (Q, \mathcal{R}) depending on $P \subset G$.

 \Longrightarrow correspondence between stability and quiver vortex equations.

 \bullet the relations ${\cal R}$ are 'commutative diagrams'.

4. The Kähler–Yang–Mills equations

Goal: apply dimensional reduction to HYM coupled to gravity Data:

- M compact (Kählerian) complex manifold with dim_C M = n
- $E \longrightarrow M$ holomorphic vector bundle over M

The Kähler–Yang–Mills equations (KYM)

for a Kähler metric g on M and a Hermitian metric H on E:

$$i\Lambda_g F_H = \mu(E) \operatorname{Id}_E$$

 $S_g - lpha \Lambda_g^2 \operatorname{Tr} F_H^2 = C$

- S_g scalar curvature of g
- Tr $F_H^2 \in \Omega^4(M)$, so contraction Λ_g^2 Tr $F_H^2 \in C^\infty(M)$
- $\alpha > 0$ coupling constant
- $C \in \mathbb{R}$ determined by the topology

The Kähler-Yang-Mills equations were introduced in:

- M. García-Fernández, Coupled equations for Kähler metrics and Yang-Mills connections. PhD Thesis. ICMAT, Madrid, 2009, arXiv:1102.0985 [math.DG]
- ____, M. García-Fernández and O. García-Prada, *Coupled equations for Kähler metrics and Yang–Mills connections*, Geometry and Topology **17** (2013) 2731–2812

As far as we know, these equations have **no physical meaning** (as a coupling of Yang–Mills fields to gravity), but they do have a **symplectic meaning**.

The symplectic origin of the KYM equations

Let *E* be C^{∞} complex vector bundle over *M* and fix:

- H Hermitian metric on E
- ω symplectic form on M

Define two ∞ -dimensional manifolds:

 $\mathcal{J} := \{ \text{complex structures } J : TM \to TM \text{ on } (M, \omega) \}$ $\mathcal{A} := \{ \text{unitary connections } A \text{ on } (E, H) \}$ Define $\mathcal{P} := \text{set of pairs } (J, A) \in \mathcal{J} \times \mathcal{A} \text{ such that:}$

- (M, J, ω) is Kähler (i.e. $J \in \mathcal{J}$)
- A induces a holomorphic structure $\bar{\partial}_A$ on E over (M, J)

 \mathcal{J} and \mathcal{A} have canonical symplectic structures $\omega_{\mathcal{J}}$ and $\omega_{\mathcal{A}}$. **Symplectic form** on \mathcal{P} : $\omega_{\alpha} := (\omega_{\mathcal{J}} + \alpha \omega_{\mathcal{A}})|_{\mathcal{P}}$ for fixed $\alpha \neq 0$

Group action:

Fujiki–Donaldson:

- $\mathcal{H} := \{\text{Hamiltonian symplectomorphisms } (M, \omega) \rightarrow (M, \omega) \}$
- Symplectic action of group \mathcal{H} on $(\mathcal{J}, \omega_{\mathcal{J}})$ has moment map $\mu_{\mathcal{J}} : \mathcal{J} \to (\operatorname{Lie} \mathcal{H})^*$ such that

$$\mu_{\mathcal{J}}(J) = \mathsf{0} \Longleftrightarrow \mathcal{S}_{J,\omega} = \mathsf{constant}$$

Hamiltonian extended gauge group \mathcal{G} :

 $\widetilde{\mathcal{G}} := \{ \text{automorphisms } g \text{ of } (E, H) \text{ covering elements } \check{g} \text{ of } \mathcal{H} \}.$

$$\begin{array}{cccc} (E,H) & \stackrel{g}{\longrightarrow} & (E,H) \\ \downarrow & & \downarrow \\ (M,\omega) & \stackrel{\check{g}}{\longrightarrow} & (M,\omega) \end{array}$$

Action of group $\widetilde{\mathcal{G}}$ on $\mathcal{P} \subset \mathcal{J} \times \mathcal{A}$

Proposition

• $\widetilde{\mathcal{G}}$ -action on $(\mathcal{P}, \omega_{\alpha})$ has moment map $\mu_{\alpha} : \mathcal{P} \to (\mathsf{Lie}\,\widetilde{\mathcal{G}})^*$ s.t.

 $\mu_{\alpha}^{-1}(0) = \{$ solutions of the KYM equations $\}.$

- For $\alpha > 0$, $(\mathcal{P}, \omega_{\alpha})$ has a $\widetilde{\mathcal{G}}$ -invariant Kähler structure.
- Moduli space M_α := {solutions of KYM equations}/G̃ is Kähler (away from singularities) for α > 0.

Remarks:

- We recover the HYM equation, while the equation
 - $S_g = \text{constant}$ (Donaldson–Tian–Yau theory) is deformed.
- Equations 'decouple' for dim_{\mathbb{C}} M = 1 (as $F_H^2 = 0$ in this case).

Programme: Study existence of solutions of KYM equations

- Very difficult problem!
- In the papers we give a conjecture involving geodesic stability.

5. Gravitating vortex equations

Data:

X compact Riemann surface

 $L \longrightarrow X$ holomorphic line bundle

 $\phi \in H^0(X, L)$ holomorphic section

Let *E* be the SU(2)-equivariant rank 2 holomorphic vector bundle over $X \times \mathbb{P}^1$ determined by (L, ϕ) :

$$0 \longrightarrow p^*L \longrightarrow E \longrightarrow q^*\mathcal{O}_{\mathbb{P}^1}(2) \longrightarrow 0$$

Proposition. SU(2)-invariant solutions of the KYM equations on $E \longrightarrow X \times \mathbb{P}^1$ are equivalent to solutions of:

Gravitating vortex equations

for a Kähler metric g on X and a Hermitian metric h on L:

$$i\Lambda_g F_h + |\phi|_h^2 - \tau = 0$$
$$S_g + \alpha (\Delta_g + \tau)(|\phi|_h^2 - \tau) = c$$

Gravitating vortex = solution of the gravitating vortex equations

Einstein-Bogomol'nyi equations & cosmic strings

- Einstein–Bogomol'nyi equations def gravitating vortex equations with *c* = 0
- Solutions of the Einstein-Bogomol'nyi equations ⇐⇒
 Nielsen-Olesen cosmic strings (1973) in the Bogomol'nyi phase
 i.e. solutions of coupled Abelian Einstein-Higgs equations, in
 the Bogomol'nyi phase, on ℝ^{1,1} × X independent of variables
 in ℝ^{1,1}.
- Cosmic strings are a model (by spontaneous symmetry breaking) for topological defects in the early universe.
- $\alpha = 2\pi G$, G > 0 is universal gravitation constant

Physics literature: Linet (1988), Comtet–Gibbons (1988), Spruck–Yisong Yang (1995), Yisong Yang (1995)... Gravitating vortex equations:

$$i\Lambda_g F_h + |\phi|_h^2 - \tau = 0$$
$$S_g + \alpha (\Delta_g + \tau)(|\phi|_h^2 - \tau) = c$$

• $\tau > 0$, $\alpha > 0$ real parameters

• *c* is determined by the topology

Combining integration of the two gravitating vortex equations:

$$c = \frac{2\pi}{\operatorname{vol}_g(X)}\chi(X) - lpha au \deg L$$

Therefore the Einstein–Bogomol'nyi equations (i.e. c = 0) can only have solutions on the Riemann sphere (as $\alpha, \tau, \deg L \ge 0$):

$$c = 0 \Longrightarrow \chi(X) > 0 \Longrightarrow X = \mathbb{P}^1$$

Theorem (Yisong Yang, 1995, 1997)

Let $D = \sum n_i p_i$ be an effective divisor on \mathbb{P}^1 corresponding to a pair (L, ϕ) s.t. c = 0 and $N := \sum n_i < \tau$. Then the Einstein–Bogomol'nyi equations on (\mathbb{P}^1, L, ϕ) have solutions if

$$n_i < \frac{N}{2}$$
 for all *i*. (*)

A solution also exists if $D = \frac{N}{2}p_1 + \frac{N}{2}p_2$, with $p_1 \neq p_2$ and N even.

Yang (1995) mentions (*) "*is a technical restriction on the local string number. It is not clear at this moment whether it may be dropped*", but we will show (*) comes from **geometry**.

Yang's proof: apply conformal transformations

Fix metrics g_0 on X and h_0 on L and solve for $g = e^{2u}g_0$ and $h = e^{2f}h_0 \implies$ the gravitating vortex equations are equivalent to equations for $f, u \in C^{\infty}(X)$:

$$\Delta_{g_0} f + e^{2u} (e^{2f} |\phi|_{h_0}^2 - \tau) = -\frac{2\pi \deg L}{\operatorname{vol}_{g_0}(X)}$$
$$\Delta_{g_0} (u + \alpha e^{2f} - 2\alpha \tau f) + c(1 - e^{2u}) = 0$$

 $c = 0 \Longrightarrow u = \text{const.} - \alpha e^{2f} + 2\alpha \tau f \Longrightarrow \text{plug } u \text{ in the first}$ equation. Yang applies the continuity method to solve the resulting equation, finding it suffices to assume

$$n_i < \frac{N}{2}$$
 for all i , (*)

or $D = \frac{N}{2}p_1 + \frac{N}{2}p_2$, with $p_1 \neq p_2$ and N even.

7. Obstruction to the existence of solutions and Algebraic Geometry (GIT)

GIT=Geometric Invariant Theory (Mumford, ICM 1962)

Striking fact: Yang's "technical restriction" has an **algebro-geometric meaning**, for the natural action of SL(2, \mathbb{C}) on Sym^N $\mathbb{P}^1 = \mathbb{P}H^0(\mathcal{O}_{\mathbb{P}^1}(N))$ (binary quantics [Sylvester 1882]):

 $n_i < \frac{N}{2}$ for all $i \iff D \in \operatorname{Sym}^N \mathbb{P}^1$ is GIT stable

 $D = \frac{N}{2}p_1 + \frac{N}{2}p_2 \iff D \in \operatorname{Sym}^N \mathbb{P}^1$ is strictly GIT polystable

Theorem (____, M. García-Fernández, O. García-Prada, 2015)

The converse of Yang's theorem also holds:

existence of cosmic strings \iff GIT-polystability.

In fact, the converse (\Longrightarrow) holds more generally for gravitating vortices on $X = \mathbb{P}^1$ (i.e. *c* may be non-zero). The proof relies on the following symplectic and algebro-geometric constructions.

The symplectic origin of the gravitating vortex equations

Fix: C^{∞} compact surface X and C^{∞} line bundle L over X

- h Hermitian metric on L
- ω symplectic form on X

Define ∞ -dimensional manifolds:

(for fixed $\alpha \neq 0$)

 $\mathcal{J} := \{ \mathsf{K} \text{ abler complex structures } J \colon TX \to TX \text{ on } (X, \omega) \}$ $\mathcal{A} := \{ \text{unitary connections } \mathcal{A} \text{ on } (L, h) \}$ $\Gamma := \Gamma(L) = \{C^{\infty} \text{ global sections } \phi \text{ of } L \to X\}$ $\dim_{\mathbb{R}} X = 2 \implies \stackrel{A \in \mathcal{A} \text{ are in bijection with the}}{\text{holomorphic structures } \bar{\partial}_A \text{ on } L \text{ over } (X, J)}$ $\mathcal{T} := \left\{ \begin{array}{c} \text{triples } \mathcal{T} = (J, A, \phi) \in \mathcal{J} \times \mathcal{A} \times \Gamma \\ \text{s.t. } \phi \text{ is holomorphic w.r.t. } J \text{ and } \bar{\partial}_A \end{array} \right\}$ \mathcal{J}, \mathcal{A} and Γ have canonical symplectic structures $\omega_{\mathcal{J}}, \omega_{\mathcal{A}}$ and ω_{Γ} . **Symplectic form** on \mathcal{T} : $\omega_{\alpha} := (\omega_{\mathcal{T}} + \alpha \omega_{A} + \alpha \omega_{\Gamma})|_{\mathcal{T}}$

The symplectic origin of the gravitating vortex equations

The **Hamiltonian extended gauge group** is $\widetilde{\mathcal{G}} := \{ \text{automorphisms } g \text{ of } (L, h) \text{ covering elements } \check{g} \text{ of } \mathcal{H} \}$

$$\begin{array}{cccc} (L,h) & \stackrel{g}{\longrightarrow} & (L,h) \\ \downarrow & & \downarrow \\ (X,\omega) & \stackrel{\check{g}}{\longrightarrow} & (X,\omega) \end{array}$$

where $\mathcal{H} := \{$ Hamiltonian symplectomorphisms $(X, \omega) \to (X, \omega) \}$. The group $\widetilde{\mathcal{G}}$ acts on $\mathcal{T} \subset \mathcal{J} \times \mathcal{A} \times \Gamma$.

Proposition

- $\widetilde{\mathcal{G}}$ -action on $(\mathcal{T}, \omega_{\alpha})$ has moment map $\mu_{\alpha} \colon \mathcal{T} \to (\operatorname{Lie} \widetilde{\mathcal{G}})^*$ s.t. $\mu_{\alpha}^{-1}(0) = \{ \text{gravitating vortices} \}.$
- For $\alpha > 0$, $(\mathcal{T}, \omega_{\alpha})$ has a $\widetilde{\mathcal{G}}$ -invariant Kähler structure.
- Moduli space M_{α,τ} := {gravitating vortices}/G̃ is Kähler for α > 0.

Geodesics on space of metrics

Fix: volume $0 < \operatorname{vol}_X \in \mathbb{R}$ of oriented C^{∞} surface X $I := (J, \overline{\partial}_A) =$ holomorphic structures on X and LVary $b = (\omega, h)$ in space

 $B_{I} := \left\{ \begin{array}{l} \text{pairs } (\omega, h) \text{ with } h = \text{Hermitian metric on } E, \\ \omega = \text{volume form, with total volume vol}_{X}, \\ \text{s.t. } (X, J, \omega) \text{ is Kähler} \end{array} \right\}$

Theorem (____, M. García-Fernández, O. García-Prada, *G&T*, 2013)

 B_I is a symmetric space, i.e. it has an affine connection ∇ s.t. • torsion $T_{\nabla} = 0$

• $abla R_{
abla} = 0$, where $R_{
abla}$ is the curvature

Geodesic equations for a curve $b_t = (\omega_t, h_t)$ on (B_I, ∇) , with $\omega_t = \omega_0 + dd^c \varphi_t$, $d\dot{\varphi}_t = \eta_{\dot{\varphi}_t} \sqcup \omega_t$ (i.e. $\eta_{\dot{\varphi}_t}$:=Hamiltonian vector field of $\dot{\varphi}_t$):

$$dd^{c}(\ddot{\varphi}_{t} - (d\dot{\varphi}_{t}, d\dot{\varphi}_{t})_{\omega_{t}}) = 0,$$
$$\ddot{h}_{t} - 2J\eta_{\dot{\varphi}_{t}} \lrcorner d_{h_{t}}\dot{h}_{t} + iF_{h_{t}}(\eta_{\dot{\varphi}_{t}}, J\eta_{\dot{\varphi}_{t}}) = 0.$$

Geodesic stability

- For each $b = (\omega, h)$, we have a group $\widetilde{\mathcal{G}}_b$ and a Kähler $\widetilde{\mathcal{G}}_b$ -manifold $\mathcal{T}_b = \{ \text{triples } T = (J, \overline{\partial}_A, \phi) \text{ compatible with } b = (\omega, h) \},$ with moment map $\mu_b : \mathcal{T}_b \to (\text{Lie } \widetilde{\mathcal{G}}_b)^*.$
- Define 1-form σ_T on B_I , for $I = (J, \bar{\partial}_A)$ and $T = (J, \bar{\partial}_A, \phi)$, by $\sigma_T(v) := \langle \mu_b(T), v \rangle$ for $v \in T_b B_I \cong \text{Lie } \widetilde{\mathcal{G}}_b$.
- Along a geodesic ray b_t on B_l , $\frac{d}{dt}\sigma_T(\dot{b}_t) \ge 0$.

Obstruction: if \exists smooth geodesic ray b_t on (B_I, ∇) such that $\lim_{t \to \infty} \sigma_T(\dot{b}_t) < 0,$

then $\mu_b^{-1}(0)$ is empty, i.e. \nexists gravitating vortices $T = (J, \bar{\partial}_A, \phi)$ on $b = (\omega, h)$.

Definition

A triple $T = (J, \bar{\partial}_A, \phi)$ is geodesically (semi)stable if

$$\lim_{t\to\infty}\sigma_{\mathcal{T}}(\dot{b}_t)>0\,(\geq 0)$$

for every non-constant geodesic ray b_t $(0 \le t < \infty)$ on (B_I, ∇) .

Converse of Yang's theorem. \exists gravitating vortex on (L, ϕ) over \mathbb{P}^1 corresponding to effective divisor $D = \sum n_i p_i \implies$ $D \in \text{Sym}^N \mathbb{P}^1$ GIT polystable for SL $(2, \mathbb{C})$ -action (with $N = \sum n_i$).

Proof. Fix triple $T = (J, \bar{\partial}_A, \phi)$ and pair of metrics $b_0 = (\omega_0, h_0) \in B_I$.

• Line bundle $L = \mathcal{O}_{\mathbb{P}^1}(N)$ is SL(2, \mathbb{C})-linearized \implies each $\zeta \in \mathfrak{sl}(2, \mathbb{C})$ determines a geodesic ray b_t on B_I , given by pull-back along 1-PS $g_t = \exp(t\zeta) \in SL(2, \mathbb{C})$:

$$b_t = (\omega_t, h_t) := (g_t^* \omega_0, g_t^* h_0).$$

• Since g_t fixes $I := (J, \bar{\partial}_A)$, i.e. $g_t \in \operatorname{Aut}(X_J, L_{\bar{\partial}_A})$,

$$\sigma_{\mathcal{T}}(\dot{b}_t) = \langle \mu_{b_t}(J, A, \phi), \dot{b}_t \rangle = \langle \mu_{b_0}(g_t \cdot (J, A, \phi)), \dot{b}_0 \rangle$$
$$= \langle \mu_{b_0}(J, A, g_t \cdot \phi), \zeta_2 \rangle,$$

where $\zeta = \zeta_1 + i\zeta_2$, with $\zeta_1, \zeta_2 \in \mathfrak{su}(2)$.

• The theorem follows now essentially because by a (long) direct calculation, if $\exists \lim_{t \to \infty} g_t \cdot \phi$, then

$$\lim_{t \to \infty} \sigma_{\mathcal{T}}(\dot{b}_t) = \lim_{t \to \infty} \langle \mu_{b_0}(J, A, g_t \cdot \phi), \zeta_2 \rangle$$

~ $\alpha(N - \tau)$ Hilbert–Mumford weight in GIT.

Further open problems:

- Gravitating non-abelian vortices (in progress)
- Higher-dimensional compact Kähler manifolds (new coupling terms appear in the equations).