# Singular fibers of the classical Gelfand-Cetlin system on $\mathfrak{u}(n)^{*}$ 

joint work with<br>E. Miranda (UPC Barcelona) and N. T. Zung (UPS Toulouse)

Damien Bouloc<br>Université Toulouse III - Paul Sabatier



Seminari de Geometria Algebraica - Universitat de Barcelona 10 de març 2017

## Why singular fibers?

$(M, \omega)$ symplectic manifold of dimension $2 n$

## Definition

An integrable Hamiltonian system on $(M, \omega)$ is the data of $n$ functions $f_{1}, \ldots, f_{n}: M \rightarrow \mathbb{R}$ such that:

- $\mathrm{d} f_{1} \wedge \cdots \wedge \mathrm{~d} f_{n} \neq 0$ on an open dense subset of $M$,
- $\left\{f_{i}, f_{j}\right\}=0$ for any $1 \leqslant i, j \leqslant n$.

The momentum map of the system is the map:

$$
F=\left(f_{1}, \ldots, f_{n}\right): M \rightarrow \mathbb{R}^{n}
$$

A point $x \in M$ is singular if $\mathrm{d} F(x)=0$.

Why singular fibers?
$\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ coordinates on $\mathbb{T}^{n} \times D^{n}$

$$
\omega_{c a n}=\sum \mathrm{d} p_{i} \wedge \mathrm{~d} q_{i}
$$

Theorem (Arnold-Liouville-Mineur)
If $L=F^{-1}(c)$ is a compact connected regular fiber of the system, then

$$
L \approx \mathbb{T}^{n}
$$

Moreover, there exists a tubular neighborhood $\mathcal{U}$ of $L$ st

$$
(\mathcal{U}, \omega) \approx\left(\mathbb{T}^{n} \times D^{n}, \omega_{c a n}\right)
$$

and such that $F$ depends only on $p_{1}, \ldots, p_{n}$.

Why singular fibers?
$\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ coordinates on $\mathbb{T}^{n} \times D^{n}$

$$
\omega_{c a n}=\sum \mathrm{d} p_{i} \wedge \mathrm{~d} q_{i}
$$

Theorem (Arnold-Liouville-Mineur)
If $L=F^{-1}(c)$ is a compact connected regular fiber of the system, then

$$
L \approx \mathbb{T}^{n}
$$

Moreover, there exists a tubular neighborhood $\mathcal{U}$ of $L$ st

$$
(\mathcal{U}, \omega) \approx\left(\mathbb{T}^{n} \times D^{n}, \omega_{c a n}\right)
$$

and such that $F$ depends only on $p_{1}, \ldots, p_{n}$.
$\rightarrow$ What about the singular fibers?

Coadjoint orbits of $U(n)$

- Let $U(n)$ be the Lie group of unitary matrices of size $n$ :

$$
U(n)=\left\{M \in \mathcal{M}_{n}(\mathbb{C}) \mid M^{*} M=I_{n}=M M^{*}\right\}
$$

Coadjoint orbits of $U(n)$

- Let $U(n)$ be the Lie group of unitary matrices of size $n$ :

$$
U(n)=\left\{M \in \mathcal{M}_{n}(\mathbb{C}) \mid M^{*} M=I_{n}=M M^{*}\right\}
$$

- Denote by $\mathfrak{u}(n)$ its Lie algebra:

$$
\mathfrak{u}(n)=\left\{H \in \mathcal{M}_{n}(\mathbb{C}) \mid H^{*}=-H\right\}
$$

Coadjoint orbits of $U(n)$

- Let $U(n)$ be the Lie group of unitary matrices of size $n$ :

$$
U(n)=\left\{M \in \mathcal{M}_{n}(\mathbb{C}) \mid M^{*} M=I_{n}=M M^{*}\right\}
$$

- Denote by $\mathfrak{u}(n)$ its Lie algebra:

$$
\mathfrak{u}(n)=\left\{H \in \mathcal{M}_{n}(\mathbb{C}) \mid H^{*}=-H\right\}
$$

- We identify its dual $\mathfrak{u}(n)^{*}$ with the space of Hermitian matrices:

$$
\mathcal{H}(n)=\left\{A \in \mathcal{M}_{n}(\mathbb{C}) \mid A^{*}=A\right\}
$$

via the Killing form + the multiplication $H \mapsto i H$.

Coadjoint orbits of $U(n)$

Under the identification $\mathfrak{u}(n)^{*} \approx \mathcal{H}(n)$, the coadjoint representation becomes:

Coadjoint orbits of $U(n)$

Under the identification $\mathfrak{u}(n)^{*} \approx \mathcal{H}(n)$, the coadjoint representation becomes:

## Claim

The set of Hermitian matrices with eigenvalues $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ is exactly the coadjoint orbit $\mathcal{O}_{\lambda}$ of

$$
D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathcal{H}(n)
$$

Coadjoint orbits of $U(n)$

Fix $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ a set of real eigenvalues.
Denote by $U_{\lambda}$ the subgroup of unitary matrices commuting with

$$
D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Claim
The coadjoint orbit $\mathcal{O}_{\lambda}$ is diffeomorphic to $U(n) / U_{\lambda}$

Coadjoint orbits of $U(n)$

Fix $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ a set of real eigenvalues.
Denote by $U_{\lambda}$ the subgroup of unitary matrices commuting with

$$
D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

## Claim

The coadjoint orbit $\mathcal{O}_{\lambda}$ is diffeomorphic to $U(n) / U_{\lambda}$

In particular, generic orbits have dimension $n(n-1)$

The Gelfand-Cetlin system on a generic orbit $O_{\lambda}$

Denote by $A_{k}$ the upper-left submatrix of size $k$ of $A$
$A_{k}$ is also Hermitian $\rightarrow k$ real eigenvalues

$$
\begin{array}{lr}
A_{n-1}: & \gamma_{1}^{n-1}(A) \geqslant \gamma_{2}^{n-1}(A) \geqslant \gamma_{3}^{n-1}(A) \geqslant \cdots \geqslant \gamma_{n-1}^{n-1}(A) \\
A_{n-2}: & \gamma_{1}^{n-2}(A) \geqslant \gamma_{2}^{n-2}(A) \geqslant \quad \cdots \quad \gamma_{n-2}^{n-2}(A)
\end{array}
$$

$A_{2}$ :

$$
\gamma_{1}^{2}(A) \geqslant \gamma_{2}^{2}(A)
$$

$A_{1}:$
$\gamma_{1}^{1}(A)$

The Gelfand-Cetlin system on a generic orbit $O_{\lambda}$

## Definition (Guillemin, Sternberg)

The Gelfand-Cetlin system on a generic coadjoint orbit $\mathcal{O}_{\lambda}$ of $\mathfrak{u}(n)^{*} \approx \mathcal{H}(n)$ is the integrable Hamiltonian system defined by the family of functions

$$
\left\{\gamma_{j}^{k} \mid 1 \leqslant j \leqslant k<n\right\}
$$

Goal: Describe the fibers of the momentum map :

$$
F=\left(\gamma_{i}^{j}\right)_{1 \leqslant i \leqslant j<n}: \mathcal{O}_{\lambda} \longrightarrow \mathbb{R}^{\frac{n(n-1)}{2}}
$$

The Gelfand-Cetlin system on a generic orbit $O_{\lambda}$

The image of the momentum map of the Gelfand-Cetlin system is given by the Gelfand-Cetlin diagram:

$$
\begin{aligned}
& \because \geqslant \pi \\
& \gamma_{\gamma_{1}^{1}}{ }^{\gamma_{2}^{2}}
\end{aligned}
$$

The Gelfand-Cetlin system on a generic orbit $O_{\lambda}$

## Claim

$A \in \mathcal{O}_{\lambda}$ is a singular point of the Gelfand-Cetlin system if and only if there is at least one equality in the Gelfand-Cetlin diagram

## Geometric interpretation

In what follows we always assume $\lambda_{1}>\cdots>\lambda_{n}>0$.

To $A \in \mathcal{O}_{\lambda}$ associate the set $E_{A}=\left\{x \in \mathbb{C}^{n} \mid\langle A x \mid x\rangle=1\right\}$.

## Geometric interpretation

In what follows we always assume $\lambda_{1}>\cdots>\lambda_{n}>0$.

To $A \in \mathcal{O}_{\lambda}$ associate the set $E_{A}=\left\{x \in \mathbb{C}^{n} \mid\langle A x \mid x\rangle=1\right\}$.

If $A=C D_{\lambda} C^{*}$, then $\varphi_{C^{*}}=\varphi_{C}^{-1}$ maps $E_{A}$ to

$$
E_{D_{\lambda}}=\left\{\left.y \in \mathbb{C}^{n}\left|\lambda_{1}\right| y_{1}\right|^{2}+\cdots+\lambda_{n}\left|y_{n}\right|^{2}=1\right\}
$$

## Geometric interpretation

In what follows we always assume $\lambda_{1}>\cdots>\lambda_{n}>0$.

To $A \in \mathcal{O}_{\lambda}$ associate the set $E_{A}=\left\{x \in \mathbb{C}^{n} \mid\langle A x \mid x\rangle=1\right\}$.

If $A=C D_{\lambda} C^{*}$, then $\varphi C^{*}=\varphi_{C}^{-1}$ maps $E_{A}$ to

$$
E_{D_{\lambda}}=\left\{\left.y \in \mathbb{C}^{n}\left|\lambda_{1}\right| y_{1}\right|^{2}+\cdots+\lambda_{n}\left|y_{n}\right|^{2}=1\right\}
$$

## Definition

We say that $E_{A}$ is a $n$-dimensional complex ellipsoid with axes $v_{1}, \ldots, v_{n}$ (the eigenvectors of $A$ ) and radii $\frac{1}{\sqrt{\lambda_{1}}}, \ldots, \frac{1}{\sqrt{\lambda_{n}}}$.

## Geometric interpretation

For $1 \leqslant k \leqslant n$, consider the canonical inclusion

$$
i_{k}:\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{C}^{k} \mapsto\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \in \mathbb{C}^{n}
$$

and denote by $\langle\cdot \mid \cdot\rangle_{k}$ the canonical Hermitian product on $\mathbb{C}^{k}$.

Then

$$
\forall x \in \mathbb{C}^{k}, \quad\left\langle A_{k} x \mid x\right\rangle_{k}=\left\langle A i_{k}(x) \mid i_{k}(x)\right\rangle
$$

## Geometric interpretation

For $1 \leqslant k \leqslant n$, consider the canonical inclusion

$$
i_{k}:\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{C}^{k} \mapsto\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \in \mathbb{C}^{n}
$$

and denote by $\langle\cdot \mid \cdot\rangle_{k}$ the canonical Hermitian product on $\mathbb{C}^{k}$.

Then

$$
\forall x \in \mathbb{C}^{k}, \quad\left\langle A_{k} x \mid x\right\rangle_{k}=\left\langle A i_{k}(x) \mid i_{k}(x)\right\rangle
$$

## Claim

The intersection of $E_{A}$ with $V_{\text {std }}^{k}=\mathbb{C}^{k} \times\{0\}^{n-k}$ is the image by $i_{k}$ of the $k$-dimensional ellipsoid $E_{A_{k}}$

## Geometric interpretation

$E_{A}$ complex ellipsoid associated to $A$

+ standard complete flag $V_{\text {std }}^{0} \subset V_{\text {std }}^{1} \subset \cdots \subset V_{\text {std }}^{n}=\mathbb{C}^{n}$
$=$ sequence of ellipsoids $E_{A_{1}} \subset E_{A_{2}} \subset \cdots \subset E_{A_{n}}=E_{A}$

$$
\downarrow \varphi_{C}^{-1}
$$

$E_{D_{\lambda}}$ "standard" ellipsoid associated to $\lambda$

+ complete flag $V_{C}^{0} \subset V_{C}^{1} \subset \cdots \subset V_{C}^{n}=\mathbb{C}^{n}$
$=$ sequence of ellipsoids $E^{1} \subset E^{2} \subset \cdots \subset E^{n}=E_{D_{\lambda}}$

Geometric interpretation



## Geometric interpretation





Geometric interpretation





## Symmetry group of ellipsoid flags

Fix $C \in U(n)$ a basis for some flag $V^{\bullet}$ and set:

- $G_{k}$ the set of all symmetries of the ellipsoid $E^{k}=E_{D_{\lambda}} \cap V^{k}$
$\rightarrow$ one can define new basis $\phi_{*} C$ for any

$$
\phi=\left(\phi_{1}, \ldots, \phi_{n}\right) \in G_{1} \times \cdots \times G_{n} .
$$

Symmetry group of ellipsoid flags

Fix $C \in U(n)$ a basis for some flag $V^{\bullet}$ and set:

- $G_{k}$ the set of all symmetries of the ellipsoid $E^{k}=E_{D_{\lambda}} \cap V^{k}$
$\rightarrow$ one can define new basis $\phi_{*} C$ for any

$$
\phi=\left(\phi_{1}, \ldots, \phi_{n}\right) \in G_{1} \times \cdots \times G_{n} .
$$

## Claim

$C, C^{\prime}$ give ellipsoids with same eigenvalues if and only if

$$
C^{\prime}=\phi_{*} C, \quad \phi \in G_{1} \times \cdots \times G_{n} .
$$

## Symmetry group of ellipsoid flags

Fix $C \in U(n)$ a basis for some flag $V^{\bullet}$ and set:

- $G_{k}$ the set of all symmetries of the ellipsoid $E^{k}$
- $H_{k}$ the set of all symmetries of the ellipsoid $E^{k}$ that:
- fix also $E^{k-1}$,
- are the identity on $\left(E^{k-1}\right)^{\perp}$.

Fix $C \in U(n)$ a basis for some flag $V^{\bullet}$ and set:

- $G_{k}$ the set of all symmetries of the ellipsoid $E^{k}$
- $H_{k}$ the set of all symmetries of the ellipsoid $E^{k}$ that:
- fix also $E^{k-1}$,
- are the identity on $\left(E^{k-1}\right)^{\perp}$.

Claim
$\phi_{*} C=\psi_{*} C \quad \Longleftrightarrow \quad \psi=\phi \cdot h, \quad h \in H_{1} \times \cdots \times H_{n}$
Consequently,

$$
q \circ \Gamma_{\lambda}^{-1}(c) \approx\left(G_{1} \times \cdots \times G_{n}\right) /\left(H_{1} \times \cdots \times H_{n}\right)
$$

Symmetry group of ellipsoid flags

## Theorem (B, Miranda, Zung)

The fiber $F^{-1}(c)$ of the Gelfand-Cetlin system is a submanifold diffeomorphic to

$$
\left(\left(G_{1} \times \cdots \times G_{n}\right) /\left(H_{1} \times \cdots \times H_{n}\right)\right) / U_{\lambda}
$$

## Examples:

- if $c$ is regular we find $F^{-1}(c)=\mathbb{T}^{\frac{n(n-1)}{2}}$
- on a generic coadjoint orbit $\mathcal{O}_{(a, b, c)}$ of $U(3)$

$$
F^{-1}(b, b, b) \approx U(2) / \mathbb{T}^{1} \approx S^{3}
$$

$\rightarrow$ Lagrangian fiber!

## Some remarks

- The geometric model of the singular fiber is uniquely determined by the equalities in the Gelfand-Cetlin diagram


## Some remarks

- The geometric model of the singular fiber is uniquely determined by the equalities in the Gelfand-Cetlin diagram
- Our results hold when $\mathcal{O}_{\lambda}$ is not a generic orbit (but one needs to define more carefully the Hamiltonian system on $\mathcal{O}_{\lambda}$ )


## Some remarks

- The geometric model of the singular fiber is uniquely determined by the equalities in the Gelfand-Cetlin diagram
- Our results hold when $\mathcal{O}_{\lambda}$ is not a generic orbit (but one needs to define more carefully the Hamiltonian system on $\mathcal{O}_{\lambda}$ )
- This system has characteristics similar to other integrable Hamiltonian systems (Kapovich-Millson bending flows, Nohara-Ueda on $\operatorname{Gr}\left(2, \mathbb{C}^{n}\right)$ )

