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Abstract. This talk will have two parts. In the first, the family of

alternant block-error correcting codes (and some important subfamilies,

like Reed-Solomon, Bose-Chaudhuri-Hocquenghem, and classical Goppa

codes) will be reviewed and two general decoding algorithms will be

described. The second part will be focused on three aspects of algebraic

geometry codes: mathematical structure, search for curves over finite

fields with many rational points, and decoding algorithms. All along, some

of the computations will be illustrated by means of a package (PyECC)

developed in collaboration with Narćıs Sayols (work in progress). Rafel

Farré is to be acknowledged for his collaboration on an improvement of

the PGZ decoder for alternant codes, and Santiago Molina for improved

procedures to count points on curves.

Remark. In this talk, applications of codes, most notably the use of
elliptic curves over finite fields in what is called post-quantum
cryptography , will not be considered.
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Introduction RS tour

q A prime power (say pr ).
Fq The field of q elements.
α = α1, . . . , αn Disctinct non-zero elements of Fq (n < q).
G = Vk(α) Vandermonde matrix of k rows on α1, . . . , αn.

Has rank k for k 6 n.
C = RS(α, k) Subspace of Fn

q generated by the rows of G .
Fq[X ]k Polynomials of degree < k over Fq.

Let ε : Fq[X ]k → Fn
q such that f 7→ x = (f (α1), . . . , f (αn)).

Proposition. If k 6 n, the map ε is injective and its image is C .

Proof. If x = 0, then f has n roots. Since n > k − 1 > deg(f ),
f = 0.

Now ε(X j) is the j-the row of G for j = 0, . . . , k − 1 and so the
image of ε is C .
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Introduction RS tour

The weight of a vector y ∈ Fn
q, denoted wt(y) = |y |, is the number

of non-zero entries of y .

Proposition The minimum weight of non-zero vectors of C is

d = n − k + 1 = r + 1.

Proof. Let x = ε(f ) be a non-zero vector of C . Since the number of
roots of f is 6 k − 1, the number of non-zero entries of x is
> n − (k − 1) = n − k + 1. On the other hand, the polynomial
f = (X − α1) · · · (X − αk−1) has degree < k and k − 1 roots exactly
among the αj and so |ε(f )| = n − k + 1.
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Introduction RS tour

f ∈ F[X ]k information vector
x = ε(f ) code vector (encoding of f ).
e ∈ Fn

q error vector (produced through ‘transmission’).
y = x + e received vector .
t b(n − k)/2c = br/2c (correcting capacity)

Theorem. If |e| 6 t, then x can be recovered from y (and C ).

Proof. We can find polynomials P = p0 + p1X + · · ·+ pn−t−1X
n−t−1

and Q = q0 + q1X + · · ·+ qn−t−kX
n−t−k , not both 0, such that

P(αj) + yjQ(αj) = 0 (this amounts to a homogeneous linear system
of n equations with n− t + n− t− k + 1 = n+ 1 + (n− k)− 2t > n).
For the j such that ej = 0, we have P(αj) + f (αj)Q(αj) = 0, and
hence the polynomial P + f Q has at least n− |e| > n− t roots. But
its degree is 6 n − t − 1, and hence f = −P/Q.
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Introduction RS tour

The equation P(αj) + yjQ(αj) = 0 is equivalent to

(p0, . . . , pn−t−1)Vn−t(α)

+(q0, . . . , qn−t−k−1)Vn−t−k(α) diag(y0, . . . , yn−1) = 0.

This justifies the following algorithm (PyECC script):
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Introduction Linear codes over Fq

A linear code of length n defined over Fq is a vector subspace
C ⊆ Fn

q.

If C has dimension k , we say that C is an [n, k] code.

The quotient k/n is called the rate of C .

The Hamming distance hd(y , y ′) of y , y ′ ∈ Fn
q is |y − y ′| (the

number of indices j ∈ {1, . . . , n} such that yj 6= y ′j ).

The minimum distance of C , denoted d , is the minimum of the
distances hd(x , x ′) for x , x ′ ∈ C , x 6= x ′. It agrees with the
minimum weight.

An [n, k] code of minimum distance d is said to be an [n, k , d ]
code, or an [n, k , d ]q if we need to recall q.

Singleton bound : d + k 6 n + 1 (see [6], p. 25). For the RS codes,
it is an equality (maximum distance separable, or just MDS codes).
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Alternant codes Alternant matrix

Let K = Fq and K̄ = Fqm . Let α1, . . . , αn and h1, . . . , hn be elements
of K̄ such that hi , αi 6= 0 for all i and αi 6= αj for all i 6= j . Consider
the matrix

H = Vr (α1, . . . , αn)diag(h1, . . . , hn) ∈ M r
n(K̄ ), (1)

that is,

H =


h1 . . . hn

h1α1 . . . hnαn
...

...
h1α

r−1
1 . . . hnα

r−1
n

 (2)

We say that H is the alternant control matrix of order r associated
with the vectors

h = (h1, . . . , hn) and α = (α1, . . . , αn).

To make explicit that the entries of h and α (and hence of H) lie in
K̄ , we will say that H is defined over K̄ .
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Alternant codes Definition and bounds

The K -code AK (h,α, r) defined by the control matrix H is the
subspace of K n whose elements are the vectors x such that xHT = 0.
Such codes will be called alternant codes.

The H-syndrome of a vector y ∈ K̄ n is s = yHT ∈ K̄ r . Note that
AK (h,α, r) is just the subspace of K n whose elements are the
vectors with zero H-syndrome.

Proposition (Alternant bounds). If C = AK (h,α, r), then

n − r > dimC > n − rm

and
d > r + 1

(minimum distance alternant bound).

Remark. Henceforth, see [6] for omitted proofs.
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Alternant codes RS codes revisited

Proposition. RS(α, k) = AK (h,α, n − k), where h = (h1, . . . , hn) is
given by

hi = 1/
∏
j 6=i

(αj − αi). (3)

Proof. On one hand, hi = (−1)i−1Di/D, where D = D(α1, . . . , αn)
and Di = D(α1, . . . , αi−1, αi+1, . . . , αn) are Vandermonde
determinants. Now the vanishing for s = 0, . . . , n − 2 of the
determinant ∣∣∣∣∣∣∣∣∣∣∣

αs
1 · · · αs

n

1 · · · 1
α1 · · · αn
...

...
αn−2

1 · · · αn−2
n

∣∣∣∣∣∣∣∣∣∣∣
tells us that

∑i=n
i=1(−1)i−1αs

iDi = 0, hence also
∑i=n

i=1 α
s
i hi = 0. This

implies that RS(α, k) ⊆ AK (h,α, n − k). Equality follows from the
equality of dimensions.
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Alternant codes RS codes revisited

Remark

In this case K̄ = K , hence m = 1, and the alternant bounds are
sharp. Indeed, we have r = n − k , hence k = n − r , while
n − k + 1 > d (by the Singleton bound) and d > r + 1 = n − k + 1
by the minimum distance alternant bound. In other words, C is MDS.
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Alternant codes RS codes revisited

An RS code is called primitive if the α1, . . . , αn are all the non-zero
elements of K :

RS([1, α, . . . , αn−1], k), n = q − 1, α a primitive root of K .

Generalized Reed-Solomon codes. The vector h in the definition of
the code RS([α1, . . . , αn], k) as an alternant code is obtained from α
by the formula (3). If we allow that h can be chosen possibly
unrelated to α, but still with components in K , the resulting codes
AK (h,α, n − k) are called Generalized Reed–Solomon (GRS) codes,
and we will write GRS(h,α, k) to denote them. An argument as
above shows that such codes have type [n, k , n− k + 1]. Notice that
the code AK (h,α, r) is the intersection of the GRS code AK̄ (h,α, r)
with K n.
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Alternant codes A shorcut to BCH codes

Bose-(Ray-)Chaudhuri-Hocquenghem codes. These codes are
denoted BCH(α, δ, l), where α ∈ K̄ ∗ and δ > 0, l > 0 are integers
(called the design minimum distance and the offset, respectively).
When l = 1, we simply write BCH(α, δ) and say that the it is a strict
BCH code. They are the most useful class of the so called linear
cyclic codes.

Proposition. BCH codes can be defined as alternant codes as follows:

BCH(α, δ, l) = AK (h,α, δ − 1), (4)

where h = (1, αl , α2l , . . . , α(n−1)l), α = (1, α, α2, . . . , α(n−1)),
n = period(α). In particular, d > δ.

If α is a primitive element of K , and hence n = q − 1, we have the
equality

BCH(α, n − k + 1) = RS([1, α, . . . , αn−1], k).
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Alternant codes A shortcut to classical Goppa codes

Let g ∈ K̄ [T ] be a polynomial of degree r > 0 and let
α = α1, . . . , αn ∈ K̄ be distinct non-zero elements such that
g(αi) 6= 0 for all i .

Proposition. The (classical) Goppa code over K associated with g
and α, Γ(g ,α), can be defined as AK (h,α, r), where h is the vector
(1/g(α1), . . . , 1/g(αn)). Thus the minimum distance of Γ(g ,α) is
> r + 1 and its dimension k satisfies n − rm 6 k 6 n − r . The
minimum distance bound can be improved to d > 2r + 1 in the case
that K = F2 and the roots of g are distinct.
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The simplest decoding algorithm The decoding problem

Let C = AK (h,α, r) be an alternant code. Let t = br/2c, that is,
the highest integer such that 2t 6 r . For reasons that will become
apparent below, t is called the error-correction capacity of C
(compare with what we have seen for the interpolation decoder of RS
codes).

Transmission channel terminology

x ∈ C sent vector
e ∈ K̄ n error vector
y = x + e received vector
Decoding problem to recover x from y (and C )

when l = |e| 6 t.
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The simplest decoding algorithm Error location

If em 6= 0, m is an error position. Let {m1, . . . ,ml} be the error
positions and {em1 , . . . , eml

} the corresponding error values. The
error locators η1, . . . , ηl are defined by ηk = αmk

. Since α1, . . . , αn

are distinct, the knowledge of the ηk is equivalent to the knowledge
of the error positions.

The monic polynonial L(z) whose roots are the error locators is called
the error-locator polynomial :

L(z) =
l∏

i=1

(z − ηi) = z l + a1z
l−1 + a2z

l−2 + · · ·+ al , (5)

where aj = (−1)jσj , σj = σj(η1, ..., ηl) the j-th elementary symmetric
polynomial in the ηi (0 ≤ j ≤ l , a0 = σ0 = 1 by convention).
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The simplest decoding algorithm Syndromes

The syndrome of y is the vector s = yHT , say s = (s0, . . . , sr−1).
Thus s = 0 if and only if y ∈ C .

Since xHT = 0, we have s = eHT . Inserting the definitions, we find:

sj =
n−1∑
i=0

eihiα
j
i =

l∑
k=1

hmk
emk

αj
mk

=
l∑

k=1

hmk
emk

ηjk (6)

We will use the following notations:

Al =


s0 s1 . . . sl−1

s1 s2 . . . sl
...

...
. . .

...
sl−1 sl . . . s2l−2

 (7)

and the vector
bl = (sl , . . . , s2l−1). (8)
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The simplest decoding algorithm Finding L(z)

Proposition. If al = (al , ..., a1) (see the fomula (5)), then

alAl + bl = 0. (9)

Proof. Substituting z by ηi in the identity
l∏

i=1

(z − ηi) = z l + a1z
l−1 + ... + al

we obtain the relations

ηli + a1η
l−1
i + · · ·+ al = 0,

where i = 1, ..., l . Multiplying by hmi
emi
ηji and adding with respect to

i , we obtain (using (6)) the relations

sj+l + a1sj+l−1 + · · ·+ alsj = 0,

where j = 0, ..., l − 1, and these relations are equivalent to the stated
matrix relation.
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The simplest decoding algorithm Remark

Remark. If we knew l , and that the matrix Al in equation (9) were
non-singular, then we could determine al and hence L(z).

In the usual approach, one proves that l is the first integer in the
sequence t, t − 1, ..., 1, 0 such that det(Al) 6= 0 ([6], §4.4). This
allows to determine l , then al and L(z), and finally the error locators
(and locations) by finding the roots of L(z).

But there is a more efficient and neat way that we explain next (here
I will follow [2]).
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The simplest decoding algorithm The matrix S

The main object is the matrix

S =



s0 s1 · · · sl−1 sl · · · st
s1 s2 · · · sl sl+1 · · · st+1
...

...
...

...
...

sl−1 sl · · · s2l−2 s2l−1 · · · st+l−1
...

...
...

...
...

st−1 st · · · st+l−2 st+l−1 · · · s2t−1


(10)

Note that 2t − 1 6 r − 1, so that all components are well defined.
Note also that the l × l submatrix at the upper left corner is the
matrix Al defined in (7) an that the column (sl , sl+1, . . . , s2l−1)T to
its right is the vector bl defined in (8).

In next theorem we use the following notation: Vs = Vs(η1, . . . , ηl).
Thus the i -th row of Vs , for 0 6 i 6 s − 1, is the vector (ηi1, . . . , η

i
l ).

We also write D = diag(hm1em1 , . . . , hml
eml

).
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The simplest decoding algorithm Main property of S

Theorem. S = VtDV
T
t+1.

Proof. Let 0 6 i 6 t − 1 and 0 6 j 6 t. Then the j-th column of
DV T

t+1 is the column vector (hm1em1η
j
1, . . . , hml

eml
ηjl )

T . It follows that
the element in row i column j of VtDV

T
t+1 is

hm1em1η
i+j
1 + · · ·+ hml

eml
ηi+j
l = si+j (by the equation (6)).

Corollary. The rank of S is l and the matrix Al is non-singular.

Proof. Since D has rank l , the rank of S is at most l . On the other
hand, the theorem shows that Al = VlDV

T
l and therefore

det(Al) = det(Vl)
2 det(D) 6= 0.

Note that det(Vl) is the Vandermonde determinant of η1, . . . , ηl ,
which is non-zero because the error locators are distinct.
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The simplest decoding algorithm An improved procedure

Corollary. The Gauss-Jordan algorithm applied to the matrix S
returns a matrix that has the form

1 0 · · · 0 −al ∗
0 1 · · · 0 −al−1 ∗
...

...
...

...
...

0 0 · · · 1 −a1 ∗
...

...
...

...
...

 (11)

where ∗ denotes unneeded values (if any) and the vertical dots below
the horizontal line denote that all its elements (if any) are zero. This
matrix gives at the same time l , the number of errors, and the
coefficients of the error-locator polynomial.

Remark . We write GJ(S) for the PyECC form of the Gauss-Jordan
procedure that delivers the column on the right of the matrix Idl .
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The simplest decoding algorithm Error-evaluation

According to (6),the error values em1 , ..., eml
satisfy the following

system of linear equations:

hm1em1η
j
1 + hm2em2η

j
2 + ... + hml

eml
ηjl = sj (0 6 j 6 l − 1).

In matrix form, this is becomes de relation
hm1 hm2 . . . hml

hm1η1 hm2η2 . . . hml
ηl

hm1η
2
1 hm2η

2
2 . . . hml

η2
l

...
...

. . .
...

hm1η1
l−1 hm2η2

l−1 . . . hml
ηl

l−1




em1

em2

em3

...
eml

 =


s0

s1

s2
...

sl−1

 . (12)

Since the matrix is the alternant matrix

H([hm1 , . . . , hml
], [η1, . . . , ηl ], l),

the error values are uniquely determined and the vector x can be
recovered.

At computation time, this system is solved with GJ.
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The simplest decoding algorithm Summary of the improved PGZ decoder

Algorithm PGZm

Get the syndrome s = (s0, ..., sr−1) = yHT . If s = 0, return y .

Form the matrix S as in the equation (10).

Set a = −GJ(S) (equation (11)). After this we have a1, ..., al ,
hence also the error-locator polynomial L.

Find the elements αj that are roots of the polynomial L. If the
number of these roots is < l , return Error. Otherwise let η1, ..., ηl
be the error-locators corresponding to the roots and set
M = {m1, . . . ,ml}, where ηi = αmi

.

Find the error values em, for all m ∈ M , by solving (12). If any of
the values of em is not in K , return Error.

Return y − e.

Theorem. PGZm corrects up to t errors.
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The simplest decoding algorithm A PyECC implementation
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Remarks on other decoders The Belekamp-Massey-Sygiyama approach

L(z) = (z − η1) · · · (z − ηl) error-locator polynomial

S(z) = s0z
r−1 + · · ·+ sr−1 syndromy polynomial

E (z) = −
∑i=l

i=1 hmi
emi
ηri
∏

j 6=i(z − ηi) error-evaluator

E (z) = L(z)S(z) mod z r key equation

emk
= −E (ηk)/hmk

ηrkL
′(ηk) Forney’s formula

Proof of the key equation:

E (z) = L(z)
i=l∑
i=1

hmi
emi
ηr−1
i /(1− z/ηi)

=
i=l∑
i=1

hmi
emi
ηr−1
i (1 + z/ηi + · · ·+ z r−1/ηr−1

i ) mod z r

=
i=l∑
i=1

hmi
emi

(ηr−1
i + ηr−2

i z + · · ·+ z r−1) = S(z).
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Remarks on other decoders Solving the key equation

Sugiyama’s procedure. Let r0 = z r , r1 = S(z), v0 = 0, v1 = 1. For
j > 2, define recursively vj = vj−2 − qjvj−1, with qj and rj the
quotient and remainder of the Euclidean division of rj−2 by rj−1:

rj−2 = qj rj−1 + rj , deg(rj) < deg(rj−1).

Stop as soon as deg(rj) < t and return the pair (vj , rj).

PyECC implementation:

def sugiyama(r0,r1,t):

v0 = 0; v1 = 1

while t <= degree(r1):

[q,r] = quo_rem(r0,r1)

v = v0 - q*v1

r0 = r1; r1 = r

v0 = v1; v1 = v

return (v1,r1)

S. Xambó (UPC) ECC & PyECC 5/5/2017 28 / 56



Remarks on other decoders Solving the key equation

Theorem. L(z) = ρvj and E (z) = ρrj for some ρ ∈ K̄ ∗.

Corollary. L(z) and vj have the same roots, so vj can be used as error
locator. Moreover, Forney’s formula tells us that the error evaluation
can be done using vj and rj instead of L(z) and E (z).
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Remarks on other decoders Algorithm BMS

1. Compute [s0, . . . , sr−1] = yHT (syndrome vector).

2. Define S(z) = s0z
r−1 + · · ·+ sr−2z + sr−1.

3. Compute [L,E ] = sugiyama(z r , S , t).

4. Make a list M = [m1, . . . ,ml ] of the indexes m such that
L(αm) = 0. If l < deg(L), return Error .

5. For each m ∈ M , compute e = (αm · E (αm)/(hmα
r
mL
′(αm)). If

e 6∈ K , return Error , otherwise replace ym by ym + e and continue
the loop.

6. If y is not a code vector, return Error . Otherwise return y .

Theorem. The BMS algorithm corrects up to t errors.
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Remarks on other decoders A variant of the PGZ algorithm

In the PGZm algorithm, the error evaluation (based on solving a
linear system of equations) can be replaced by a Forney evaluation.

Indeed, the key congruence

E (z) = L(z)S(z) mod z r

gives E (z), as the degree of this polynomial is at most t. Finally,
having E and L, we can find the error values with Forney’s formula.
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Notes on implementations How is a code implemented?

In PyECC a code C is represented by a record-like structure with
fields that allow to get data from the code or store new
information about it (dynamic table).

The labels of the table entries end with an underscore, but
otherwise tend to mimic the mathematical symbols.

For example, for an alternant code C, there is a field labeled H to
hold the alternating matrix and the expression H (C) delivers that
matrix. Similarly, h (C) and a (C) yield the vectors h and α.
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Notes on implementations Code constructors

AC(h,a,r,K): This constructs the alternating code AK (h,α, r). It
is our main constructor , as the others (described below) are in
fact defined as special calls to AC following the procedures
explained on slides 11, 14 and 15.

RS(a,k): This yields the RS code RS(α, k), an [n, k , n − k + 1]
code defined over the field to which the elements of α belong.

GRS(h,a,k): As RS, but we have to supply h as a first argument.

PRS(F,k): The primitive RS code of the finite field F . It is defined
as RS(a,k), but taking as α the list of non-zero elements of F .

BCH(a,δ,l): Supplies the code BCH(α, δ, l), where here a stands
for an element α in a finite field. If l = 1, it can be omitted.

Goppa(g,a): The Goppa code Γ(g ,α).
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Background on AG codes The general idea

A generalization of the alternant codes setup (K = Fq, K̄ = Fqm):
X a ‘space’
f = f1, . . . , fk K̄ -valued ‘functions’ defined on X
P = P1, . . . ,Pn distinct ‘points’ of X
G = G (f ,P) the k × n matrix (fi(Pj))
C = CK (f ,P) the code 〈G 〉K̄ ∩ K n

In the case of alternant codes, X is K̄ ∗ and fi(x) = hix
i−1.
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Background on AG codes The Goppa insights

Curve/Fq: a non-singular absolutely irreducible projective curve
defined over Fq.

The Goppa (primal) setup:

X a curve/Fq

P = P1, . . . ,Pn distinct Fq-rational points of X
Π divisor P1 + · · ·+ Pn

∆ an Fq-rational divisor of X disjoint from Π
f = f1, . . . , fk a basis of L(∆)
C = Γ(∆,P) the code C (f ,P)

Remark. The code C is the image of the linear map ε : L(∆)→ Fn
q,

f 7→ (f (P1), . . . , f (Pn)).

Example. If X = P1
q, ∆ = (k − 1)[∞], and Pi = [αi ], αi ∈ K , then

Γ(∆,P) = RS(α, k). The key fact is that L((k − 1)[∞]) ' Fq[X ]k ,
as ord∞(X i) = −i > −(k − 1) for i 6 k − 1.
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Background on AG codes The Goppa insights

Theorem (Goppa). Γ(∆,Π) ∼ [n, `(∆)− `(∆−Π), d > n− deg(∆)].

Proof. By definition, the length of Γ(∆,Π) is n. Since ε is surjective,
its dimension is k = `(∆)− dim ker ε. But ker ε = L(∆− Π)
(because ∆ and Π are disjoint) and hence k = `(∆)− `(∆− Π).

As for the minimum distance bound (Goppa bound), we can argue as
follows. Let f ∈ L(∆), f 6= 0 and assume that f has m zeros among
the P. Then

0 = deg(f ) =
∑
P∈P

vP(f )+
∑
P 6∈P

vP(f ) > m−
∑
P 6∈P

vP(∆) = m−deg(∆).

This shows that m 6 deg(∆). Thus the weight of ε(f ) is
> n − deg(∆) and therefore the minimum weight of the code (and
hence the minimum distance d) is not less than n − deg ∆.
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Background on AG codes The Goppa insights

Corollary. If deg ∆) < n, then

k > deg(∆) + 1− g .

In particular k + d > n + 1− g .

If in addition deg(∆) > 2g − 2, then k = deg(∆) + 1− g

Proof. If deg(∆) < n = deg(Π), `(∆− Π) = 0 and hence
k = `(∆) = deg(∆) + 1− g + `(Ω−∆) by RR (Ω a canonical
divisor). Therefore, k > deg(∆) + 1− g , with equality if
2g − 2 = deg(Ω) < deg(∆).

Remark. Γ(∆,Π) is MDS for g = 0 (this case essentially agrees with
classical Goppa codes). For g > 1, in general it is not MDS, but for
n large with respect to g it is nearly so (when deg(∆) < n). On the
other hand, we have ample freedom in choosing n. We turn to this
question (how large can n be) in next slides.
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Background on AG codes Counting points on curves/Fq : The Z function

We will follow [4] (and references therein). Here X denotes a
curve/Fq, and g = g(X ) its genus.

νr = νr (X ) #X (Fqr )

Z = Z (T ) = exp
(∑∞

r=1 νr
T r

r

)
Weil zeta function of X

νr = 1
(r−1)!

d r

dT r log Z (T )|T=0.

Z (T ) = P(T )
(1−T )(1−qT )

, P(T ) ∈ Z[T ] rationality

P(T ) = qgT 2gP(1/qT ) functional equation

deg(P) = 2g

P(T ) =
∏2g

j=1(1− αjT ), |αj | =
√
q ‘Riemann hypothesis’ for X

νr = qr + 1− Sr , Sr =
∑2g

j=1 α
r
j

Notations. c0 = 1 and cj = (−1)jσj(α1, . . . , α2g ) for j = 1, . . . , 2g .
Thus P(T ) = c0 + c1T + · · ·+ c2gT

2g and c2g = qg .
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Background on AG codes Counting points on curves/Fq : Basic algorithm

Input: ν1, . . . , ν2g and r > 2g .

Output: ν2g+1, . . . , νr .

For j = 1, . . . , 2g , set Sj = qj + 1− νj .

Use the Girard-Newton formulas to recursively compute c1, . . . , c2g :

cj = −(Sj + c1Sj−1 + · · ·+ cj−1S1)/j .

Use the Girard-Newton relation

Sj = −
(
c1Sj−1 + · · ·+ c2g−1Sj−(2g−1) + c2gSj−2g

)
to successively get Sj and νj = qj + 1− Sj for j = 2g + 1, . . . , r .
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Background on AG codes Counting points on curves/Fq : Improved algorithm

Proposition. cg+l = qlcg−l .

Proof. If αj is a root, ᾱj = q/αj is a root (P has real coefficients).
Possible real roots of P : ±√q (an even number). The multiplicity of
−√q is even (the coefficient of T 2g is qg , by the functional
equation). Index the roots of P so that α2g−j+1 = ᾱj = q/αj ,
j = 1, . . . , g . Now αj 7→ q/αj exchanges α1, . . . , αg and
α2g , . . . , αg+1. If we set

f (T ) =

2g∏
j=1

(T − αj) = c0T
2g + c1T

2g−1 + · · ·+ c2g−1T + c2g ,

then T 2g f (q/T ) has the same roots as f (T ) and therefore
T 2g f (q/T ) = c2g f (T ) = qg f (T ). Now the claim follows by
equating the coefficients of T g+l on both sides: on the right we get
qgcg−l and on the left qg−lcg+l .
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Background on AG codes Counting points on curves/Fq : Improved algorithm

Input: ν1, . . . , νg and r > g .

Output: νg+1, . . . , νr .

For j = 1, . . . , g , set Sj = qj + 1− νj .

For j = 1, . . . , g ,

cj = −(Sj + c1Sj−1 + · · ·+ cj−1S1)/j .

For j = g + 1, . . . ,min(r , 2g), set cj = qj−gc2g−j , get

Sj = −(c1Sj−1 + · · ·+ cj−1S1 + jcj),

and set νj = qj + 1− Sj .

If r > 2g , proceed as in the basic algorithm: for j = 2g + 1, . . . , r ,

Sj = −(c1Sj−1 + · · ·+ c2gSj−2g )

and set νj = qj + 1− Sj .
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Background on AG codes Counting points on curves/Fq : The function XN

The parameter X of the function XN denotes the list [ν1, . . . , νg ].

def XN(q,X,r):

g = len(X)

if r<=g: return X[:r]

X = [0]+X # trick so that X[j] refers to GF(q^j)

X = [x>>Q_ for x in X] # Q_: rational field

S = [q**(j)+1-X[j] for j in range(1,g+1)]

S = [0]+S # similar trick

# Computation of c1,...,cg; set c0=1

c = [1>>Q_] # Computations in Q_

for j in range(1,g+1):

cj = S[j]

for i in range(1,j):

cj += c[i]*S[j-i]

c += [-cj/j]
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Background on AG codes Counting points on curves/Fq : The function XN

# Add c_{g+i}, for i=1,...,g

for i in range(1,g+1):

c += [q**i*c[g-i]]

# Find Sj for j = g+1,...,r

for j in range(g+1,r+1):

if j>2*g:

Sj=0

else:

Sj = j*c[j]

for i in range(1,j):

if i>2*g: break

Sj += c[i]*S[j-i]

S += [-Sj]

# Find X[i] for i = g+1,...,r

for i in range(g+1,r+1): X += [q**i+1-S[i]]

return X[1:]
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Background on AG codes Counting points on curves/Fq : Elliptic curves over Z2

Nq(g): maximum of #X (Fq) taken over all curves X of genus g .

Hasse-Weil-Serre bound (HWS): Nq(g) 6 q + 1 + gb2√qc.

X of genus g is maximal if #X (Fq) = Nq(g).

Deuring algorithm: Yields the list of all possible #E (Fq) for elliptic
curves E/Fq.

q m

2 2 [1, 2, 3, 4, 5]

3 3 [1, 2, 3, 4, 5, 6, 7]

4 4 [1, 2, 3, 4, 5, 6, 7, 8, 9]

5 4 [2, 3, 4, 5, 6, 7, 8, 9, 10]

7 5 [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

8 5 [4, 5, 6, 8, 9, 10, 12, 13, 14]*

9 6 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

11 6 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
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Background on AG codes Counting points on curves/Fq : Elliptic curves over Z2

Missing values in the HWS range for elliptic curves. Here q is a prime
power up to 53, m = b2√qc and d is the length of the Deuring list
when less than 2m + 1.

q 2m+1 d

8 11 9 [7, 11]

16 17 13 [11, 15, 19, 23]

25 21 20 [26]

27 21 17 [22, 25, 31, 34]

32 23 15 [23, 27, 29, 31, 35, 37, 39, 43]

49 29 27 [43, 57]

64 33 21 [51, 53, 55, 59, 61, 63, 67, 69, 71, 75, 77, 79]

81 37 29 [67, 70, 76, 79, 85, 88, 94, 97]

125 45 37 [106, 111, 116, 121, 131, 136, 141, 146]
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Background on AG codes Counting points on curves/Fq : Elliptic curves over Z2

Over F2 = Z2 there are 32 cubic polynomials in normal form

E = y 2 + a1xy + a3 + x3 + a2x
2 + a4x + a6

of which precisely 16 are non-singular. For these cases, g = 1, the
HWS bound is q + 1 + m = 5 (as m = b2

√
2c = 2) and we have seen

that all the integers in the HWS interval [1, 5] occur as ν1(E ) for
some E . Now a straighforward computation yields the following
distribution:
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Background on AG codes Counting points on curves/Fq : Elliptic curves over Z2

ν1 E

1 y2 + y + x3 + x + 1, y2 + y + x3 + x2 + 1

2 y2 + xy + x3 + x2 + 1, y2 + xy + x3 + x2 + x ,

y2 + (x + 1)y + x3 + 1, y2 + (x + 1)y + x3 + x + 1

3 y2 + y + x3, y2 + y + x3 + 1

y2 + y + x3 + x2 + x , y2 + y + x3 + x2 + x + 1

4 y2 + xy + x3 + 1, y2 + xy + x3 + x

y2 + (x + 1)y + x3 + x2, y2 + (x + 1)y + x3 + x2 + x

5 y2 + y + x3 + x , y2 + y + x3 + x2

The sequences of values returned by XN with inputs q = 2 and [ν1], for
ν1 = 1, . . . , 5, and r = 20 are the following (the top row S is the
maximum value Nq(1) of #E (Fq) supplied by “Serre’s procedure”:
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Background on AG codes Counting points on curves/Fq : Elliptic curves over Z2

r 1 2 3 4 5 6 7 8 9 10
S(2r ) 5 9 14 25 44 81 150 289 558 1089

νr 1 5 13 25 41 65 113 225 481 1025
2 8 14 16 22 56 142 288 518 968
3 9 9 9 33 81 129 225 513 1089
4 8 4 16 44 56 116 288 508 968
5 5 5 25 25 65 145 225 545 1025

r 11 12 13 14 15 16 17 18 19 20

S 2139 4225 8374 16641 33131 66049 131797 263169 525737 1050625

νr 2113 4225 8321 16385 32513 65025 130561 262145 525313 1050625
1982 4144 8374 16472 32494 65088 131174 263144 525086 1047376
2049 3969 8193 16641 32769 65025 131073 263169 524289 1046529
2116 4144 8012 16472 33044 65088 130972 263144 523492 1047376
1985 4225 8065 16385 33025 65025 131585 262145 523265 1050625
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Background on AG codes Counting points on curves/Fq : Elliptic curves over Z2

Remark. XN(q, [ν1, . . . , νg ],∞) = {νj(X/Fq)}j>1. Given a positive
integer s, the subsequence {νsj(X/Fq)}j>1 is {νj(X/Fqs )}j>1 and
therefore it must agree with XN(qs , [νs , . . . , νsg ],∞).

Summary. The tables above show that the elliptic curves Ei

(i = 1, ..., 5) are maximal in 11 occasions over F2r in the range
r = 1, ..., 20, and that they are close to the maximal value in the
remaining cases:

E1 is maximal for r = 4, 12, 20, and is submaximal for r = 19.

E2 is maximal for r = 3, 13, and is submaximal for r = 16.

E3 is maximal for r = 2, 6, 10, 14, 18.

E4 is maximal for r = 5, and is submaximal for r = 8, 11, 15, 16
(the first and last tie with E2).

E5 is maximal for r = 1, and is submaximal for r = 7, 9, 16.

S. Xambó (UPC) ECC & PyECC 5/5/2017 49 / 56



Background on AG codes Counting points on curves/Fq : The Klein quartic

The Klein quartic C/F2 (g = 3) is given by the equation

F (x , y , z) = x3y + y 3z + z3x . (13)

In this case ν1 = 3, ν2 = 5, ν3 = 24.

Indeed, [1, 0, 0], [0, 1, 0] and [0, 0, 1] are the only points of C that
satisfy xyz = 0 (the first two are at infinity). If xyz 6= 0, then we can
look at the affine curve Cz = x3y + y 3 + x . Over F2 it is clear that
there are no more points, hence ν1 = 3. Over F4, there are two more
points: (α, α2, 1) and (α2, α, 1), where α2 = α + 1, and so ν2 = 5.
To get ν3, let F8 be generated by β with β3 = β + 1. Since y 3 = y 10,
on dividing Cz by y 3 we get (x/y 3)3 + 1 + x/y 3 = 0. Since
ξ3 + ξ + 1 = 0 has three solutions in F8 (β, β2, β4), we conclude that
Cz has 7× 3 = 21 poins other than (0, 0) that are F8-rational and
therefore ν3 = 24. With this, the values for νr supplied by XN (for
r 6 12) are the following:
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Background on AG codes Counting points on curves/Fq : The Klein quartic

r 1 2 3 4 5 6 7 8 9 10 11 12
νr 3 5 24 17 33 38 129 257 528 1025 2049 4238

Over F5, one finds that ν1 = 6, ν2 = 26 and ν3 = 126. With this, we
get a similar table (for r = 1, . . . , 9):

r 1 2 3 4 5 6 7 8 9
νr 6 26 126 626 3126 16376 78126 390626 1953126
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Background on AG codes Elliptic Goppa codes

Let E/Fq be an (plane) elliptic curve (g = 1), O its improper point,
∆ = mO, with 0 < m < n, and P = P1, . . . ,Pn the list of
Fq-rational points of E . Then the Goppa code Γ(∆,Π) has type
[n,m, d > n −m]. So k + d = n or k + d = n + 1(because of the
Singleton bound).

Remark (Driencourt and Michon). If E/F2m is elliptic, and
ν = m//2, ν ′ = (m − 3)//2, then 1, x , . . . , xν , y , yx , . . . , yxν

′
is a

basis of L(mO).
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Further work AG codes

AG block ECC: implementing best known decoders, say [3].

Standard convolutional ECC: implementing constructors and
decoders (mainly Viterbi).

Similarly for convolutional Goppa codes, after [5] and references
therein.

Concatenated codes (for example turbo codes), ...
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Further work PyECC

Complete and optimize the package.

Fast multivar polynomials over Zn would be a welcome addition (J.
Tuitman, private communication, April 2017).

Complete the set of jupyter notebooks.

Upload the system to github.
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Further work PyECC
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