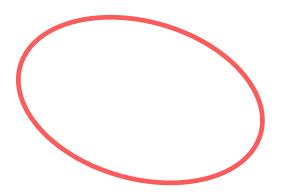


A **conic** in the plane \mathbb{R}^2 is the set of solutions



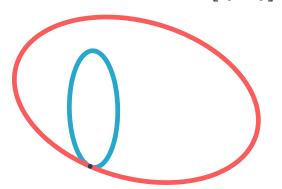
to a quadratic equation A(x,y)=0, where

$$A(x,y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + 1.$$

A second conic

$$U(x,y) \ = \ u_1x^2 + u_2xy + u_3y^2 + u_4x + u_5y + 1,$$
 is tangent to A if there exists (x,y) such that

$$A(x,y)=0, \quad U(x,y)=0 \quad \text{and} \quad \det \begin{bmatrix} \frac{\partial A}{\partial x} & \frac{\partial U}{\partial x} \\ \frac{\partial A}{\partial y} & \frac{\partial U}{\partial y} \end{bmatrix}=0.$$



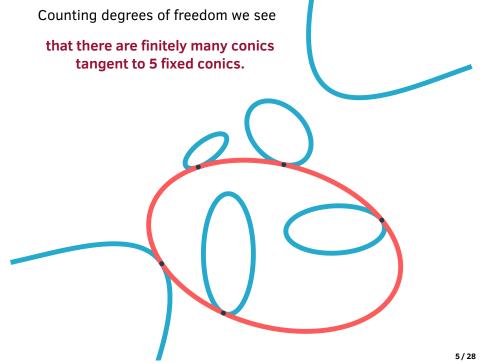
Eliminating (x, y) from

$$A(x,y)=0, \quad U(x,y)=0 \quad \text{and} \quad \det \begin{bmatrix} \frac{\partial A}{\partial x} & \frac{\partial U}{\partial x} \\ \frac{\partial A}{\partial y} & \frac{\partial U}{\partial y} \end{bmatrix}=0$$

we get the tact invariant:

$$\mathcal{T}(A,U) = 256a_1^4 a_3^2 u_3^2 - 128a_1^4 a_3^2 u_3 u_5^2 + 16a_1^4 a_3^2 u_5^4$$
$$-256a_1^4 a_3 a_5 u_3^2 u_5 + 128a_1^4 a_3 a_5 u_3 u_5^3 - 16a_1^4 a_3 a_5 u_5^5$$
$$-512a_1^4 a_3 1 u_3^3 + \dots + a_5^4 u_1^2 u_2^4.$$

For fixed $u_1\dots,u_5$ the tact invariant $\mathcal{T}(A,U)$ is a polynomial of **degree 6** in the **5 variables** a_1,\dots,a_5 .



How many conics?

The question **How many?** started the modern development of enumerative geometry.

Recall: $\mathcal{T}(A, U)$ is a polynomial of **degree 6** in **5 variables**.

Based on this, **Jakob Steiner** claimed in 1848 that there are $6^5 = 7776$ (complex) conics tangent to five conics.

In 1864 **Michel Chasles** gave the correct answer of **3264**.

He missed that there is a **Veronese surface** of **extraneous** solutions, namely the conics that are **squares of linear forms**.

He missed that there is a **Veronese surface** of **extraneous** solutions, namely the conics that are **squares of linear forms**.

How do we fix this?

He missed that there is a **Veronese surface** of **extraneous** solutions, namely the conics that are **squares of linear forms**.

How do we fix this?

We replace $\mathbb{P}^5_{\mathbb{C}}$ with another five-dimensional manifold, namely the compact **space of complete conics**. This is the blow-up of $\mathbb{P}^5_{\mathbb{C}}$ at the locus of double conics.

He missed that there is a **Veronese surface** of **extraneous** solutions, namely the conics that are **squares of linear forms**.

How do we fix this?

We replace $\mathbb{P}^5_{\mathbb{C}}$ with another five-dimensional manifold, namely the compact **space of complete conics**. This is the blow-up of $\mathbb{P}^5_{\mathbb{C}}$ at the locus of double conics.

To answer **enumerative geometry questions** we work in the **Chow ring** of the space of complete conics.

Applying intersection theory

This Chow ring contains three special classes **P** and **L**:

- 1 P encodes the conics passing through a fixed point
- ② L encodes the conics tangent to a fixed line
- 3 C encodes the conics tangent to a given conic

Applying intersection theory

This Chow ring contains three special classes \mathbf{P} and \mathbf{L} :

- 1 P encodes the conics passing through a fixed point
- 2 L encodes the conics tangent to a fixed line
- 3 C encodes the conics tangent to a given conic

The following relations hold:

$$P^5=L^5=1\,,\;\;P^4L=PL^4=2\;\;{\rm and}\;\;P^3L^2=P^2L^3=4.$$
 $C=2P+2L\;\;$ (this requires a proof)

Applying intersection theory

This Chow ring contains three special classes **P** and **L**:

- 1 P encodes the conics passing through a fixed point
- ② L encodes the conics tangent to a fixed line
- 3 C encodes the conics tangent to a given conic

The following relations hold:

$$P^5=L^5=1\,,\;\;P^4L=PL^4=2\;\;{\rm and}\;\;P^3L^2=P^2L^3=4.$$
 $C=2P+2L\;\;$ (this requires a proof)

The desired intersection number is now obtained from the Binomial Theorem:

$$\begin{split} C^5 &= 2^5 \cdot (L+P)^5 \\ &= 2^5 \cdot (L^5 + 5L^4P + 10L^3P^2 + 10L^2P^3 + 5LP^4 + P^5) \\ &= 2^5 \cdot (1+5 \cdot 2 + 10 \cdot 4 + 10 \cdot 4 + 5 \cdot 2 + 1) = 32 \cdot 102 = \textbf{3264}. \end{split}$$

What about real solutions?

This yields the question:

Is there an instance of Steiner's problem whose 3264 solutions are **all real**?

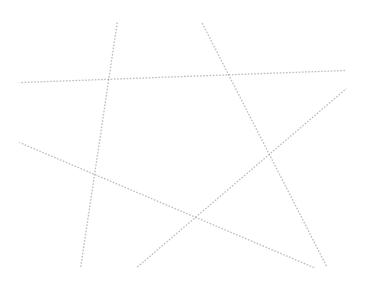
What about real solutions?

This yields the question:

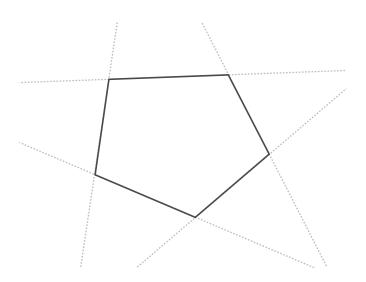
Is there an instance of Steiner's problem whose 3264 solutions are **all real**?

The answer is YES!

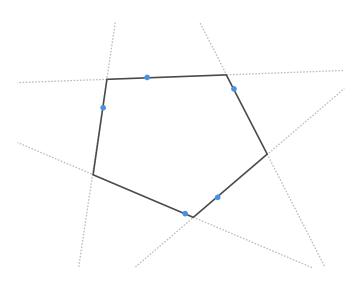
This was first observed by Fulton, and worked out in detail by Ronga, Tognoli and Vust, and Sottile.



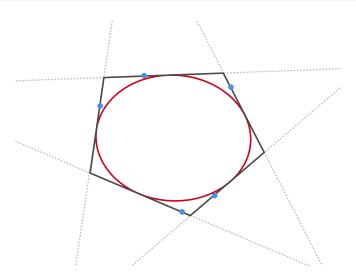
We start with 5 double lines, forming a pentagon.



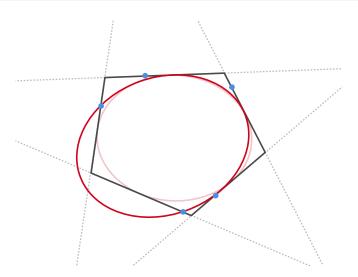
We start with 5 double lines, forming a pentagon.



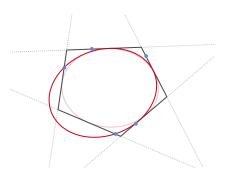
Mark a **special point** on each edge.



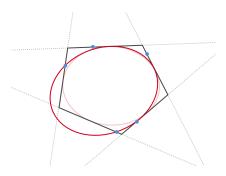
There are $102 = (\mathbf{L} + \mathbf{P})^5$ conics which are tangent to a subset of the lines and going through the other special points.



There are $102 = (\mathbf{L} + \mathbf{P})^5$ conics which are tangent to a subset of the lines and going through the other special points.

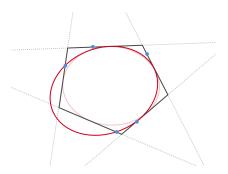


By a **small perturbation** each of the **102** conic splits into **32** solutions.



By a **small perturbation** each of the **102** conic splits into **32** solutions.

But what is small?



By a **small perturbation** each of the **102** conic splits into **32** solutions.

But what is small?

Can we find a **concrete instance** and give a **proof** that it has 3264 real solutions?

Numerical Algebraic Geometry

Homotopy Continuation

Homotopy continuation is a technique for **5 numerically** solving systems of polynomial equations.

Essentially, for solving a system

$$F = (f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n))$$

it does the following: take another system

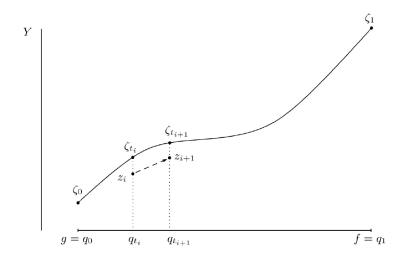
$$G = (g_1(x_1,\ldots,x_n),\ldots,g_n(x_1,\ldots,x_n)),$$

of which we know all zeros. Then track the zeros along a path

$$H(x,t)$$
 with $H(x,1) = G(x), H(x,0) = F(x)$

towards F.

Homotopy Continuation Cartoon



X-axis = space of polynomial systems. Y-axis = space of zeros.

Path Tracking

We have to track the zeros x(t) from t = 1 towards t = 0.

From

$$H(x(t),t) = 0 \text{ for } t \in [0,1]$$

follows that $\boldsymbol{x}(t)$ can be described by the **Davidenko** differential equation

$$H_x(x(t),t)\dot{x}(t) + H_t(x(t),t) = 0$$

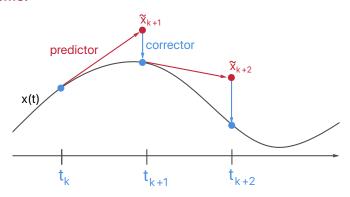
Given a solution $x_1 = x(1)$ this is an **initial value problem**.

Predictor Corrector Scheme

Given some discretization $1=t_0>t_1>\ldots>t_K=0$ we can follow a path numerically using a **predictor-corrector** scheme.

Predictor Corrector Scheme

Given some discretization $1=t_0>t_1>\ldots>t_K=0$ we can follow a path numerically using a **predictor-corrector** scheme.



The corrector is usually Newton's method.

Computing all zeros

We can compute all zeros of a polynomial system F by embedding it in a larger family of polynomial systems where we can compute all solutions.

Examples:

- Bezout's theorem (total degree homotopy)
- Bernstein-Kushnirenko theorem (polyhedral homotopy)

Computing all zeros

We can compute all zeros of a polynomial system F by embedding it in a larger family of polynomial systems where we can compute all solutions.

Examples:

- Bezout's theorem (total degree homotopy)
- Bernstein-Kushnirenko theorem (polyhedral homotopy)

Another method for polynomial systems with **parametric coefficients** is based on the **monodromy** action induced by the fundamental group of the regular locus of the parameter space.

Monodromy - Theory

Assume F_p is a polynomial system in n variables with parametric coefficients depending on $p=(p_1,\ldots,p_m)$.

Monodromy - Theory

Assume F_p is a polynomial system in n variables with parametric coefficients depending on $p=(p_1,\ldots,p_m)$.

Consider the variety

$$Y := \{ (x, p) \in \mathbb{C}^n \times \mathbb{C}^m \mid F_p(x) = 0 \}$$

and assume there exists an open set $Q \subset \mathbb{C}^m$ such that

$$\pi: Y \to Q, \quad (x,p) \to p$$

has generically finite fibers of degree D.

Monodromy - Theory

Assume F_p is a polynomial system in n variables with parametric coefficients depending on $p = (p_1, \dots, p_m)$.

Consider the variety

$$Y := \{ (x, p) \in \mathbb{C}^n \times \mathbb{C}^m \mid F_p(x) = 0 \}$$

and assume there exists an open set $Q\subset \mathbb{C}^m$ such that

$$\pi: Y \to Q, \quad (x,p) \to p$$

has generically finite fibers of degree D.

A **loop** in Q based at q has D lifts to $\pi^{-1}(Q)$, one for each point in the fiber $\pi^{-1}(q)$.

Associating a point in the fiber $\pi^{-1}(q)$ to the endpoint of the corresponding lift gives a **permutation** in S_D .

Monodromy - Application

If F is a polynomial system with **parametric coefficients** and we know **one** solution for a **generic** parameter q we can use the **monodromy** action to populate the fiber $\pi^{-1}(q)$.

Example:

The conics tangent to five given conics

Reformulating Steiner's problem

For the five conics A, B, C, D, E we solve the following system of 15 equations:

$$f_{A,B,C,D,E}(x)$$

$$=\begin{bmatrix} A(x_1,y_1) & U(x_1,y_1) & (\frac{\partial A}{\partial x} \cdot \frac{\partial U}{\partial y} - \frac{\partial A}{\partial y} \cdot \frac{\partial U}{\partial x})(x_1,y_1) \\ B(x_2,y_2) & U(x_2,y_2) & (\frac{\partial B}{\partial x} \cdot \frac{\partial U}{\partial y} - \frac{\partial B}{\partial y} \cdot \frac{\partial U}{\partial x})(x_2,y_2) \\ C(x_3,y_3) & U(x_3,y_3) & (\frac{\partial C}{\partial x} \cdot \frac{\partial U}{\partial y} - \frac{\partial C}{\partial y} \cdot \frac{\partial U}{\partial x})(x_3,y_3) \\ D(x_4,y_4) & U(x_4,y_4) & (\frac{\partial D}{\partial x} \cdot \frac{\partial U}{\partial y} - \frac{\partial D}{\partial y} \cdot \frac{\partial U}{\partial x})(x_4,y_4) \\ E(x_5,y_5) & U(x_5,y_5) & (\frac{\partial E}{\partial x} \cdot \frac{\partial U}{\partial y} - \frac{\partial E}{\partial y} \cdot \frac{\partial U}{\partial x})(x_5,y_5) \end{bmatrix}.$$

in the 15 variables

$$x = (u_1, u_2, u_3, u_4, u_5, x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4, x_5, y_5).$$

For homotopy continuation, this formulation is better than using the tact invariant.

Solving instances

Assume we have computed **3264** solutions for a generic instance

$$A_0, B_0, C_0, D_0, E_0$$

To find the solutions to a particular instance we can use the parameter homotopy

$$H(x,t) = f_{tA+(1-t)A_0,\dots,tE+(1-t)E_0}(x).$$

The power of numerical computations

Numerically solving for the **3264** conics outperforms symbolic computations in terms of speed.

We get solutions in **floating point representation**. They are not exact!

Good news: we can rigorously certify the outcome of the numerical computation, if the approximations the true solutions are good enough.

Approximate zeros

Definition

Let $f(x) = (f_1(x), \dots, f_n(x))$ be a system of n polynomials in n variables and J(x) its $n \times n$ Jacobian matrix.

A point $z\in\mathbb{C}^n$ is an approximate zero of f if there exists a zero $\zeta\in\mathbb{C}^n$ of f such that the sequence of Newton iterates

$$z_{k+1} = x - J(x)^{-1} f(x)$$

starting at $z_0 = z$ satisfies

$$||z_{k+1} - \zeta||_2 \le \frac{1}{2} ||z_k - \zeta||_2^2$$
 for all $k = 1, 2, 3, \dots$

If this holds, then we call ζ the **associated zero** of z. Here, the zero ζ is assumed to be nonsingular, i.e. $\det(J(\zeta)) \neq 0$.

Smale's α -theorem

Consider

$$\alpha(f,z) = \beta(f,z) \cdot \gamma(f,z).$$

where

$$\beta(f,z) = \|J(z)^{-1}f(z)\|$$
$$\gamma(f,z) = \max_{k \ge 2} \|\frac{1}{k!}J(z)^{-1}J^{(k)}(z)\|^{\frac{1}{k-1}},$$

Theorem (Smale's α -theorem)

- **1** If $\alpha(f, z) < 0.03$, then the point z is an approximate zero of the system f.
- 2 If $y \in \mathbb{C}^n$ is any point with $\|y-z\| < (20\,\gamma(f,z))^{-1}$, then y is also an approximate zero of f with the same associated zero ζ as z.

The theorem can also be used to verify if z is a **real** solution.

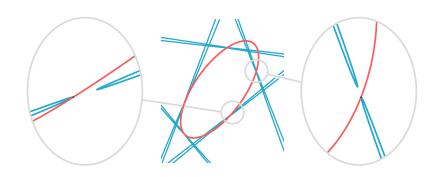
Five conics that have 3264 real conics

Using numerical homotopy continuation we found the following instance of conics:

With Smale's α -theorem and using exact arithmetic we prove that the **3264** conics of this instance are all real.

(Thanks to an implementation by Hauenstein and Sottile!)

Five conics that have 3264 real conics



All of the 3264 real conics are animated here:

juliahomotopycontinuation.org/3264/

In 2019 we ask which conics are tangent to your five conics.

For answering this question, we have designed a web interface:

juliahomotopycontinuation.org/do-it-yourself/

Homotopy Continuation.jl

Take away story

Numerical computer algebra

- is fast and reliable,
- can be used for mathematical proofs.

Thank you for your attention!

$$\begin{aligned} 0.03x^2 + 0xy + 0.03y^2 + 0x + 0.4y + 1 \\ 2.56x^2 - 2.16xy + 3.19y^2 - 20x - 15y + 75 \\ 2.56x^2 + 2.16xy + 3.19y^2 + 20x - 15y + 75 \\ 22.96x^2 - 19.44xy + 17.29y^2 - 186x - 248y + 2100 \\ 22.96x^2 + 19.44xy + 17.29y^2 + 186x - 248y + 2100 \end{aligned}$$

Compute tangent conics

3264 complex solutions found in 1.29 seconds.
44 solutions are real: 6 ellipses and 38 hyperbolas.

