A Pascal's Theorem for rational normal curves

Alessio Caminata ${ }^{1}$
Università degli Studi di Genova

January 15, 2021

[^0]
Outline of the Talk

© Classical Pascal's Theorem;
(2) Bracket algebra and Grassmann-Cayley algebra;
(The parameter space $V_{d, n}$;

- Pascal's Theorem for rational normal curves.

Part I

Classical Pascal's Theorem

Classical Pascal's Theorem

Work over \mathbb{k}, algebraically closed field (no assumption on char \mathbb{k}).
Often denote projective points $p_{1}, \ldots, p_{n} \in \mathbb{P}^{d}$ by numbers $1, \ldots, n$ only.
Pascal's Theorem or Mystic Hexagon Theorem
If $1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a smooth conic \Rightarrow points $\overline{12} \cap \overline{45}, \overline{23} \cap \overline{56}$, and $\overline{34} \cap \overline{61}$ are collinear

Historical Remarks

Pascal's Theorem

If $1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a smooth conic \Rightarrow points $\overline{12} \cap \overline{45}, \overline{23} \cap \overline{56}$, and $\overline{34} \cap \overline{61}$ are collinear.

- Blaise Pascal (1640) - Essay pour les coniques.

Historical Remarks

Pascal's Theorem

If $1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a smooth or degenerate conic \Rightarrow points $\overline{12} \cap \overline{45}$, $\overline{23} \cap \overline{56}$, and $\overline{34} \cap \overline{61}$ are collinear.

- Pappus of Alexandria (\simeq AD 300) - true for two lines as well, that is $1,3,5 \in \ell_{1}, 2,4,6 \in \ell_{2}$.
- Blaise Pascal (1640) - Essay pour les coniques.

Historical Remarks

Pascal's Theorem

If $1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a smooth or degenerate conic \Longleftrightarrow points $\overline{12} \cap \overline{45}$, $\overline{23} \cap \overline{56}$, and $\overline{34} \cap \overline{61}$ are collinear.

- Pappus of Alexandria (\simeq AD 300) - true for two lines as well, that is $1,3,5 \in \ell_{1}, 2,4,6 \in \ell_{2}$.
- Blaise Pascal (1640) - Essay pour les coniques.
- Braikenridge and MacLaurin (1733-35) - the converse holds.

Historical Remarks

Pascal's Theorem

If $1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a smooth or degenerate conic \Longleftrightarrow points $\overline{12} \cap \overline{45}$, $\overline{23} \cap \overline{56}$, and $\overline{34} \cap \overline{61}$ are collinear.

- Pappus of Alexandria (\simeq AD 300) - true for two lines as well, that is $1,3,5 \in \ell_{1}, 2,4,6 \in \ell_{2}$.
- Blaise Pascal (1640) - Essay pour les coniques.
- Braikenridge and MacLaurin (1733-35) - the converse holds.

Some generalizations:

- Möbius (1848) - polygon with $4 n+2$ sides inscribed in a conic.
- Chasles (1885) - "Given C_{1}, C_{2} planar cubics meeting at 9 distinct points, if a third (smooth) cubic passes through 8 of them, then passes also through the ninth." \longrightarrow Cayley and Bacharach...

Rational Normal Curves

A rational normal curve (r.n.c.) \mathcal{C}_{d} of degree d in \mathbb{P}^{d} is a smooth rational curve of degree d.
Up to projectivity, \mathcal{C}_{d} is the image of the degree d Veronese map

$$
\begin{aligned}
& v_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d} \\
& {[u: v] \mapsto\left[u^{d}: u^{d-1} v: \cdots: v^{d}\right]}
\end{aligned}
$$

Examples:

- \mathcal{C}_{1} is a line.
- \mathcal{C}_{2} is a smooth conic.
- \mathcal{C}_{3} is a twisted cubic.

Main Question

Castelnuovo's Lemma

Given $d+3$ points in \mathbb{P}^{d} in general linear position then there exists a (unique) rational normal curve passing through them.

Example $(d=2)$: There is always a conic through $d+3=5$ points in g.l.p. in \mathbb{P}^{2}. Pascal's Theorem gives a synthetic linear condition for $d+4=6$ points to lie on a conic.

Main Question

Castelnuovo's Lemma

Given $d+3$ points in \mathbb{P}^{d} in general linear position then there exists a (unique) rational normal curve passing through them.

Example $(d=2)$: There is always a conic through $d+3=5$ points in g.l.p. in \mathbb{P}^{2}. Pascal's Theorem gives a synthetic linear condition for $d+4=6$ points to lie on a conic.

Question

Is there a coordinate-free synthetic linear condition for $d+4$ points in \mathbb{P}^{d} to lie on a degree d rational normal curve?

Part II

Bracket Algebra and Grassmann-Cayley Algebra

Coble's Trick

$1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a (eventually degenerate) conic if and only if their images under the Veronese map $v_{2}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ lie on a hyperplane, i.e.,

$$
\phi=\operatorname{det}\left(\begin{array}{cccc}
x_{0,1}^{2} & x_{0,2}^{2} & \cdots & x_{0,6}^{2} \\
x_{1,1}^{2} & & \cdots & x_{1,6}^{2} \\
x_{2,1}^{2} & & \cdots & \vdots \\
\vdots & & & \\
x_{1,1} x_{2,1} & & & x_{1,6} x_{2,6}
\end{array}\right)=0
$$

where $\left[x_{0,1}: x_{1,1}: x_{2,1}\right] \ldots\left[x_{0,6}: x_{1,6}: x_{2,6}\right]$ are coordinates of the points.

Coble's Trick

$1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a (eventually degenerate) conic if and only if their images under the Veronese map $v_{2}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ lie on a hyperplane, i.e.,

$$
\phi=\operatorname{det}\left(\begin{array}{cccc}
x_{0,1}^{2} & x_{0,2}^{2} & \cdots & x_{0,6}^{2} \\
x_{1,1}^{2} & & \cdots & x_{1,6}^{2} \\
x_{2,1}^{2} & & \cdots & \vdots \\
\vdots & & & \\
x_{1,1} x_{2,1} & & & x_{1,6} x_{2,6}
\end{array}\right)=0
$$

where $\left[x_{0,1}: x_{1,1}: x_{2,1}\right] \ldots\left[x_{0,6}: x_{1,6}: x_{2,6}\right]$ are coordinates of the points. ϕ can be written as algebraic combination of maximal minors of

$$
\left(\begin{array}{lll}
x_{0,1} & \cdots & x_{0,6} \\
x_{1,1} & \cdots & x_{1,6} \\
x_{2,1} & \cdots & x_{2,6}
\end{array}\right)
$$

In fact, $\phi=[123][145][246][356]-[124][135][236][456]$.

Bracket Algebra

Theorem (Coble)

$1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a conic if and only if $\phi=0$, where

$$
\phi=[123][145][246][356]-[124][135][236][456]
$$

$\phi \in \mathbb{k}[\Lambda(6,3)]$ i.e. a polynomial in the brackets.
A bracket in $\Lambda(n, d)$ is a formal expression $\left[\lambda_{1} \ldots \lambda_{d}\right.$] where $\lambda_{1}<\ldots<\lambda_{d}, \lambda_{1}, \ldots, \lambda_{d} \in[n]=\{1, \ldots, n\}$.

Bracket Algebra

Theorem (Coble)

$1, \ldots, 6 \in \mathbb{P}^{2}$ lie on a conic if and only if $\phi=0$, where

$$
\phi=[123][145][246][356]-[124][135][236][456]
$$

A bracket in $\Lambda(n, d)$ is a formal expression $\left[\lambda_{1} \ldots \lambda_{d}\right.$] where $\lambda_{1}<\ldots<\lambda_{d}, \lambda_{1}, \ldots, \lambda_{d} \in[n]=\{1, \ldots, n\}$.

Remark: There is an algebra homomorphism

$$
\varepsilon: \mathbb{k}[\Lambda(n, d)] \rightarrow \mathbb{k}\left[x_{i, j}: 1 \leq i \leq d, 1 \leq j \leq n\right]
$$

defined by extending $\left[\lambda_{1} \cdots \lambda_{d}\right] \mapsto \operatorname{det}\left(x_{i, \lambda_{i}}\right)$. The kernel gives syzygies between the brackets.

Example ($d=2, n=4$): We have the Plücker relation
$[12][34]-[13][24]+[14][23]=0$

Bracket Algebra

A bracket in $\Lambda(n, d)$ is a formal expression $\left[\lambda_{1} \ldots \lambda_{d}\right.$] where $\lambda_{1}<\ldots<\lambda_{d}, \lambda_{1}, \ldots, \lambda_{d} \in[n]=\{1, \ldots, n\}$.

Remark: There is an algebra homomorphism

$$
\varepsilon: \mathbb{k}[\Lambda(n, d)] \rightarrow \mathbb{k}\left[x_{i, j}: \quad 1 \leq i \leq d, 1 \leq j \leq n\right]
$$

defined by extending $\left[\lambda_{1} \cdots \lambda_{d}\right] \mapsto \operatorname{det}\left(x_{i, \lambda_{i}}\right)$. The kernel gives syzygies between the brackets.

Example ($d=2, n=4$): We have the Plücker relation $[12][34]-[13][24]+[14][23]=0$

We define the bracket algebra as

$$
\mathcal{B}_{n, d}=\mathbb{k}[\Lambda(n, d)] / \operatorname{ker} \varepsilon .
$$

Grassmann-Cayley Algebra

$V d$-dimensional \mathbb{k}-vector space. The Grassmann-Cayley algebra of V is the exterior algebra $\Lambda(V)$ with two operations:

- V join is the standard exterior product. For $v_{1}, \ldots, v_{k} \in V$ we write also

$$
v_{1} \cdots v_{k}=v_{1} \vee \cdots \vee v_{k}
$$

and call it extensor of step k.

Grassmann-Cayley Algebra

$V d$-dimensional \mathbb{k}-vector space. The Grassmann-Cayley algebra of V is the exterior algebra $\Lambda(V)$ with two operations:

- V join is the standard exterior product. For $v_{1}, \ldots, v_{k} \in V$ we write also

$$
v_{1} \cdots v_{k}=v_{1} \vee \cdots \vee v_{k}
$$

and call it extensor of step k.

- \wedge meet given by the formula

$$
\begin{aligned}
& \left(a_{1} \ldots a_{j}\right) \wedge\left(b_{1} \ldots b_{k}\right)= \\
& \sum_{\sigma} \operatorname{sign}(\sigma)\left[a_{\sigma(1)} \ldots a_{\sigma(d-k)} b_{1} \ldots b_{k}\right] a_{\sigma(d-k+1)} \ldots a_{\sigma(j)}
\end{aligned}
$$

where $a_{1} \ldots a_{j}$ and $b_{1} \ldots b_{k}$ are extensors of steps j and k with $j+k \geq d$ and the sum is taken over all permutations σ of $\{1, \ldots, j\}$ such that $\sigma(1)<\ldots<\sigma(d-k)$ and $\sigma(d-k+1)<\ldots<\sigma(j)$.

Geometric Interpretation

The join (\vee) refers to the line passing through points:

The line joining 1 and 2 is $1 \vee 2$ or 12 .

When $d=\operatorname{dim} V=3$ (i.e. over \mathbb{P}^{2}) three points joined makes a bracket, and three collinear points make the bracket vanish.

Geometric Interpretation

The meet (\wedge) refers to the intersection of two spaces:

The meet of the lines $1 \vee 2$ and $3 \vee 4$ is

$$
(1 \vee 2) \wedge(3 \vee 4) \text { or } 12 \wedge 34
$$

Expanding the meet using its definition and the distributivity of join and meet we also obtain expressions in the brackets.

Geometric Interpretation

More formally, we have a correspondence

$$
\{\text { extensors of step } j\} \longleftrightarrow\{j-\text { dim. v. subspaces of } V\}
$$

$$
A \longmapsto \bar{A}=\{v \in V: A \vee v=0\}
$$

which extends to $\mathbb{P}(V)$.

Proposition

Let V be a \mathbb{k}-vector space of dimension d. Let $A=a_{1} \vee \cdots \vee a_{j}$ and $B=b_{1} \vee \cdots \vee b_{k}$ be two extensors of steps j and k respectively. Then

- $A \vee B \neq 0$ if and only if $a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{k}$ are linearly independent. In this case $\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}=\overline{\boldsymbol{A} \vee \boldsymbol{B}}=\operatorname{span}\left\{a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{k}\right\}$.
- Assume $j+k \geq d$. Then $A \wedge B \neq 0$ if and only if $\bar{A}+\bar{B}=V$. In this case, $\overline{\boldsymbol{A}} \cap \overline{\boldsymbol{B}}=\overline{\boldsymbol{A} \wedge \boldsymbol{B}}$. In particular, $A \wedge B$ can be represented by an appropriate extensor.

An Example

We have $((1 \vee 2) \wedge(3 \vee 4)) \vee 5 \vee 6=0$ because these three points are collinear.
Expanding using the definition of meet one obtains

$$
\begin{aligned}
0=(12 \wedge 34) \vee 56 & =([134] 2-[234] 1) \vee 56 \\
& =[134][256]-[234][156]
\end{aligned}
$$

A Proof of Pascal's Theorem

The collinearity of the three points can be written in GC algebra as
$(12 \wedge 45) \vee(23 \wedge 56) \vee(34 \wedge 61)=0$

A Proof of Pascal's Theorem

The collinearity of the three points can be written in GC algebra as
$(12 \wedge 45) \vee(23 \wedge 56) \vee(34 \wedge 61)=0$
which can be expanded in bracket algebra obtaining

$$
[123][145][246][356]-[124][135][236][456]=0
$$

The latter is the equation $\phi=0$, which we know being equivalent to ask for the points $1, \ldots, 6$ to lie on a conic.

The Path towards Rational Normal Curves

$$
\begin{array}{lc}
\text { Grassmann-Cayley algebra } & (12 \wedge 45) \vee(23 \wedge 56) \vee(34 \wedge 61)=0 \\
\downarrow & \downarrow \\
\text { bracket algebra } & {[123][145][246][356]-[124][135][236][456]=0}
\end{array}
$$

We attempt to generalize both parts of the previous proof of Pascal's Theorem to rational normal curves. Namely, our strategy is the following:
(1) Find bracket equations that express the condition for $d+4$ points in \mathbb{P}^{d} to lie on a r.n.c.
(2) Find the corresponding equations in GC algebra.

Part III

The Parameter Space $V_{d, n}$

The Parameter Space $V_{d, n}$

Let d, $n \in \mathbb{Z}_{+}$, we define the Veronese compactification

$$
V_{d, n}:=\overline{\left\{\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{d}\right)^{n}: p_{1}, \ldots, p_{n} \in \mathcal{C}_{d} \text { r.n.c. }\right\}} \subseteq\left(\mathbb{P}^{d}\right)^{n}
$$

The Parameter Space $V_{d, n}$

Let d, $n \in \mathbb{Z}_{+}$, we define the Veronese compactification

$$
V_{d, n}:=\overline{\left\{\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{d}\right)^{n}: p_{1}, \ldots, p_{n} \in \mathcal{C}_{d} \text { r.n.c. }\right\}} \subseteq\left(\mathbb{P}^{d}\right)^{n}
$$

- $d=1$ or $n \leq d+3$ then $V_{d, n}=\left(\mathbb{P}^{d}\right)^{n}$ (Castelnuovo's Lemma);
- $d \geq 2$ and $n \geq d+4$ then $V_{d, n}$ is irreducible and $\operatorname{dim} V_{d, n}=d^{2}+2 d+n-3$.

The Parameter Space $V_{d, n}$

Let d, $n \in \mathbb{Z}_{+}$, we define the Veronese compactification

$$
V_{d, n}:=\overline{\left\{\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{d}\right)^{n}: p_{1}, \ldots, p_{n} \in \mathcal{C}_{d} \text { r.n.c. }\right\}} \subseteq\left(\mathbb{P}^{d}\right)^{n}
$$

- $d=1$ or $n \leq d+3$ then $V_{d, n}=\left(\mathbb{P}^{d}\right)^{n}$ (Castelnuovo's Lemma);
- $d \geq 2$ and $n \geq d+4$ then $V_{d, n}$ is irreducible and $\operatorname{dim} V_{d, n}=d^{2}+2 d+n-3$.

Step 1

Find (bracket) equations that define $V_{d, n}$ set-theoretically.

Which Point Configurations are in $V_{d, n}$?

Theorem (CGMS ${ }^{2}$)

A non-degenerate point configuration $\mathbf{p} \in\left(\mathbb{P}^{d}\right)^{n}$ is in $V_{d, n}$ if and only if it lies on a quasi-Veronese curve.

A quasi-Veronese curve \mathcal{C} in \mathbb{P}^{d} is a curve of degree d that is complete, connected, and non-degenerate.

Figure: The degree three quasi-Veronese curves: twisted cubic, non-coplanar union of line and conic, chain of three lines, and non-coplanar union of three lines meeting at a point.

[^1]
Points on Plane Conics $(d=2)$

Case $d=2, n=6$. Thanks to Coble's trick, $V_{2,6}$ is a hypersurface in $\left(\mathbb{P}^{2}\right)^{6}$ defined by the bracket equation:

$$
\phi=[123][145][246][356]-[124][135][236][456]=0
$$

Points on Plane Conics $(d=2)$

Case $d=2, n=6$. Thanks to Coble's trick, $V_{2,6}$ is a hypersurface in $\left(\mathbb{P}^{2}\right)^{6}$ defined by the bracket equation:

$$
\phi=[123][145][246][356]-[124][135][236][456]=0
$$

Case $d=2, n \geq 7$.

$$
\begin{aligned}
\pi_{I}:\left(\mathbb{P}^{2}\right)^{n} & \rightarrow\left(\mathbb{P}^{2}\right)^{6} \quad \text { forgetful map } \\
\mathbf{p}=\left(p_{i}\right) & \mapsto\left(p_{i}\right)_{i \in I} \quad I \subseteq[n],|I|=6 .
\end{aligned}
$$

Define $\phi_{I}:=\pi_{l}^{*}(\phi)$.

Points on Plane Conics $(d=2)$

Case $d=2, n=6$. Thanks to Coble's trick, $V_{2,6}$ is a hypersurface in $\left(\mathbb{P}^{2}\right)^{6}$ defined by the bracket equation:

$$
\phi=[123][145][246][356]-[124][135][236][456]=0
$$

Case $d=2, n \geq 7$.

$$
\begin{aligned}
\pi_{I} & :\left(\mathbb{P}^{2}\right)^{n} \\
\mathbf{p}=\left(p_{i}\right) & \left.\mapsto\left(\mathbb{P}^{2}\right)^{6}\right)_{i \in I} \quad \text { forgetful map } \\
& I \subseteq[n],|I|=6 .
\end{aligned}
$$

Define $\phi_{I}:=\pi_{I}^{*}(\phi)$.
Theorem (CGMS)
(1) $V_{2, n}=\bigcap_{I} \mathcal{Z}\left(\phi_{l}\right)$
(2) $V_{2, n}$ is Cohen-Macaulay and normal
(0) $V_{2, n}$ is Gorenstein $\Longleftrightarrow n=6$.

The Gale Transform

Fix $d \geq 3, n=d+4$.
Consider $\mathbf{p} \in\left(\mathbb{P}^{2}\right)^{n}, \mathbf{q} \in\left(\mathbb{P}^{d}\right)^{n}$ not on a hyperplane.

$$
\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{2}\right)^{n} \stackrel{\text { Gale transform }}{\longleftrightarrow} \mathbf{q}=\left(q_{1}, \ldots, q_{n}\right) \in\left(\mathbb{P}^{d}\right)^{n}
$$

Construct two matrices with the coordinates of the points as columns: $A=\left(p_{1}, \ldots, p_{n}\right)$ of size $3 \times n$ and $B=\left(q_{1}, \ldots, q_{n}\right)$ of size $(d+1) \times n$.

Definition

\mathbf{p} and \mathbf{q} are Gale dual if there exists a $n \times n$ diagonal matrix $D \neq 0$ such that $A D B^{T}=0$.

The Gale Transform

Fix $d \geq 3, n=d+4$.
Consider $\mathbf{p} \in\left(\mathbb{P}^{2}\right)^{n}, \mathbf{q} \in\left(\mathbb{P}^{d}\right)^{n}$ not on a hyperplane.

$$
\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{2}\right)^{n} \stackrel{\text { Gale transform }}{\longleftrightarrow} \mathbf{q}=\left(q_{1}, \ldots, q_{n}\right) \in\left(\mathbb{P}^{d}\right)^{n}
$$

Construct two matrices with the coordinates of the points as columns: $A=\left(p_{1}, \ldots, p_{n}\right)$ of size $3 \times n$ and $B=\left(q_{1}, \ldots, q_{n}\right)$ of size $(d+1) \times n$.

Definition

\mathbf{p} and \mathbf{q} are Gale dual if there exists a $n \times n$ diagonal matrix $D \neq 0$ such that $A D B^{T}=0$.

Theorem (Goppa)
$\mathbf{p} \in \mathcal{C}_{2}$ r.n.c $\Longleftrightarrow \mathbf{q} \in \mathcal{C}_{d}$ r.n.c.

An Example $(d=3, n=7)$

Take 7 points \mathbf{q} on the standard twisted cubic $\mathcal{C}_{3}=\operatorname{Im} v_{3} \subseteq \mathbb{P}^{3}$, $v_{3}([u: v])=\left[u^{3}: u^{2} v: u v^{2}: v^{3}\right]$.
$q_{1}=[0: 0: 0: 1], q_{2}=[1: 0: 0: 0], q_{3}=[1: 1: 1: 1]$,
$q_{4}=[1: 2: 4: 8], q_{5}=[1: 3: 9: 27], q_{6}=[1: 4: 16: 64]$,
$q_{7}=[1: 5: 25: 125]$
Write the corresponding matrix $B=\left(q_{1}, \ldots, q_{7}\right)$

$$
B=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 4 & 9 & 16 & 25 \\
1 & 0 & 1 & 8 & 27 & 64 & 125
\end{array}\right)
$$

Find the nullspace of B^{T}, that is a matrix A such that $A B^{T}=0$.

$$
A=\left(\begin{array}{ccccccc}
6 & 1 & -3 & 3 & -1 & 0 & 0 \\
6 & 0 & 1 & -3 & 3 & -1 & 0 \\
-24 & 0 & -3 & 8 & -6 & 0 & 1
\end{array}\right)
$$

An Example $(d=3, n=7)$

$A B^{T}=$

$$
\left(\begin{array}{ccccccc}
6 & 1 & -3 & 3 & -1 & 0 & 0 \\
6 & 0 & 1 & -3 & 3 & -1 & 0 \\
-24 & 0 & -3 & 8 & -6 & 0 & 1
\end{array}\right)\left(\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 4 & 9 & 16 & 25 \\
1 & 0 & 1 & 8 & 27 & 64 & 125
\end{array}\right)^{\top}=0
$$

The columns of $A=\left(p_{1}, \ldots, p_{7}\right)$ give 7 points \mathbf{p} in \mathbb{P}^{2}.
$p_{1}=[6: 6:-24], p_{2}=[1: 0: 0], p_{3}=[-3: 1:-3], p_{4}=[3:-3: 8]$, $p_{5}=[-1: 3:-6], p_{6}=[0:-1: 0], p_{7}=[0: 0: 1]$.
By Goppa's Theorem \mathbf{p} lie on a smooth conic, in fact they lie on

$$
16 x_{0} x_{1}+5 x_{0} x_{2}-x_{1} x_{2}=0
$$

Equations for Rational Normal Curves $(d \geq 3, n=d+4)$

ϕ_{I} defining equations for $V_{2, n}$ in bracket form, $I \subseteq[d+4],|I|=6$.

$$
\phi_{l} \stackrel{\text { Gale transform }}{\longmapsto} \psi_{I}
$$

Example

$$
\mathbf{p} \in\left(\mathbb{P}^{2}\right)^{7}, \mathbf{q} \in\left(\mathbb{P}^{3}\right)^{7}, \text { choose } I=\{1, \ldots, 6\} \subseteq[7]:
$$

$$
\phi_{l}(\mathbf{p})=[123]_{\mathbf{p}}[145]_{\mathbf{p}}[246]_{\mathbf{p}}[356]_{\mathbf{p}}-[124]_{\mathbf{p}}[135]_{\mathbf{p}}[236]_{\mathbf{p}}[456]_{\mathbf{p}}
$$

$$
\psi_{I}(\mathbf{q})=[4567]_{\mathbf{q}}[2367]_{\mathbf{q}}[1357]_{\mathbf{q}}[1247]_{\mathbf{q}}-[3567]_{\mathbf{q}}[2467]_{\mathbf{q}}[1457]_{\mathbf{q}}[1237]_{\mathbf{q}}
$$

Equations for Rational Normal Curves $(d \geq 3, n=d+4)$

 ϕ_{I} defining equations for $V_{2, n}$ in bracket form, $I \subseteq[d+4],|I|=6$.$$
\phi_{l} \stackrel{\text { Gale transform }}{\longmapsto} \psi_{I}
$$

Example

$\mathbf{p} \in\left(\mathbb{P}^{2}\right)^{7}, \mathbf{q} \in\left(\mathbb{P}^{3}\right)^{7}$, choose $I=\{1, \ldots, 6\} \subseteq[7]$:

$$
\phi_{l}(\mathbf{p})=[123]_{\mathbf{p}}[145]_{\mathbf{p}}[246]_{\mathbf{p}}[356]_{\mathbf{p}}-[124]_{\mathbf{p}}[135]_{\mathbf{p}}[236]_{\mathbf{p}}[456]_{\mathbf{p}}
$$

$$
\psi_{I}(\mathbf{q})=[4567]_{\mathbf{q}}[2367]_{\mathbf{q}}[1357]_{\mathbf{q}}[1247]_{\mathbf{q}}-[3567]_{\mathbf{q}}[2467]_{\mathbf{q}}[1457]_{\mathbf{q}}[1237]_{\mathbf{q}}
$$

Theorem (CGMS)

$$
\bigcap_{l} \mathcal{Z}\left(\psi_{l}\right)=V_{d, d+4} \cup Y_{d, d+4}
$$

where $Y_{d, d+4}:=\left\{\mathbf{p} \in\left(\mathbb{P}^{d}\right)^{d+4}: p_{1}, \ldots, p_{d+4} \in\right.$ hyperplane $\}$.

Part IV

Pascal's Theorem for Rational Normal Curves

The Cayley Factorization Problem

```
Grassmann-Cayley algebra (12^45)\vee (23^56) \vee (34^ 61) = 0
    \imath
bracket algebra
\[
[123][145][246][356]-[124][135][236][456]=0
\]
```


Step 2

Find the GC algebra expression for the equations ψ_{I}.

The Cayley Factorization Problem

Grassmann-Cayley algebra??

\downarrow
 bracket algebra

Step 2

Find the GC algebra expression for the equations ψ_{I}.

The Cayley Factorization Problem

Grassmann-Cayley algebra??

```
    \(\downarrow\)
bracket algebra
```


Step 2

Find the GC algebra expression for the equations ψ_{I}.

Unfortunately this is not always possible!

The Cayley Factorization Problem

```
        \(\downarrow\)
bracket algebra
```

Grassmann-Cayley algebra??

$$
\begin{aligned}
& \downarrow \\
& \left\{\psi_{I}: I \subseteq[d+4],|I|=6\right\}
\end{aligned}
$$

Step 2

Find the GC algebra expression for the equations ψ_{I}.

Unfortunately this is not always possible!
Grassmann-Cayley algebra

algorithm

bracket algebra

The Cayley Factorization Problem

Grassmann-Cay
\downarrow
bracket algebra ??
\downarrow
$\left\{\psi_{I}: I \subseteq[d+4],|I|=6\right\}$

Step 2

Find the GC algebra expression for the equations ψ_{I}.

Unfortunately this is not always possible!
Grassmann-Cayley algebra

Cayley Factorization Problem

bracket algebra

Example: $[123][456]+[124][356]$ does not factor in the GC algebra!

Turnbull-Young Problem

Open Question ${ }^{3}$: Does there exist a synthetic condition à-la-Pascal for 10 points in \mathbb{P}^{3} to lie on a quadric surface?

Equivalent to find a GC algebra factorization of:

$$
\operatorname{det}\left(\begin{array}{cccc}
x_{0,1}^{2} & x_{0,2}^{2} & \cdots & x_{0,10}^{2} \\
x_{1,1}^{2} & & \cdots & x_{1,10}^{2} \\
x_{2,1}^{2} & \vdots & & \vdots \\
x_{3,1}^{2} & & & x_{3,10}^{2} \\
x_{0,1} x_{1,1} & & \cdots & x_{0,10} x_{1,10} \\
\vdots & & & \vdots \\
x_{2,1} x_{3,1} & & \cdots & x_{2,10} x_{3,10}
\end{array}\right)
$$

Bracket form is known (White, 1990): $\simeq 138$ bracket monomials.

[^2]
Lifting Syzygies

Step 2: Find the GC algebra expression for the equations ψ_{l}.
It is possible! Thanks to the following lemma (and some extra work):

Lemma (C.-Schaffler)

There is a well-defined homomorphism of \mathbb{k}-algebras

$$
\eta_{n+1}: \mathcal{B}_{n, d} \rightarrow \mathcal{B}_{n+1, d+1}
$$

obtained by extending $\left[\lambda_{i_{1}} \cdots \lambda_{i_{d}}\right] \mapsto\left[\lambda_{i_{1}} \cdots \lambda_{i_{d}} n+1\right]$.
This allows us to lift syzygies to higher dimensions!
Example ($d=2, n=4$): The Plücker relation
[12][34] $-[13][24]+[14][23]=0$ lifts to a syzygy

$$
[125][345]-[135][245]+[145][235]=0
$$

Main Theorem

Theorem (C.-Schaffler ${ }^{4}$)

Let $d \geq 3$, let $1, \ldots, d+4$ be points in \mathbb{P}^{d} not on a hyperplane. Then the following are equivalent:
(1) $(1, \ldots, d+4) \in V_{d, d+4}$ (equivalently, they lie on a quasi-Veronese curve of degree d);
(2) For every $I \in\binom{[d+4]}{6}, I=\left\{i_{1}<\cdots<i_{6}\right\}, I^{c}=\left\{j_{1}<\cdots<j_{d-2}\right\}$ the following equality in the Grassmann-Cayley algebra holds:

$$
\begin{gathered}
\left(i_{1} i_{2} \wedge i_{4} i_{5} j_{1} \cdots j_{d-2}\right) \vee\left(i_{2} i_{3} \wedge i_{5} i_{6} j_{1} \cdots j_{d-2}\right) \\
\vee\left(i_{3} i_{4} \wedge i_{6} i_{1} j_{1} \cdots j_{d-2}\right) \vee\left(j_{1} \cdots j_{d-2}\right)=0 .
\end{gathered}
$$

[^3]
Main Theorem

Theorem (C.-Schaffler ${ }^{4}$)

Let $d \geq 3$, let $1, \ldots, d+4$ be points in \mathbb{P}^{d} in general linear position.
Then the following are equivalent:
(1) $(1, \ldots, d+4) \in V_{d, d+4}$ (equivalently, they lie on a rational normal curve of degree d);
(2) For every $I \in\binom{[d+4]}{6}, I=\left\{i_{1}<\cdots<i_{6}\right\}, I^{c}=\left\{j_{1}<\cdots<j_{d-2}\right\}$ the following equality in the Grassmann-Cayley algebra holds:

$$
\begin{gathered}
\left(i_{1} i_{2} \wedge i_{4} i_{5} j_{1} \cdots j_{d-2}\right) \vee\left(i_{2} i_{3} \wedge i_{5} i_{6} j_{1} \cdots j_{d-2}\right) \\
\vee\left(i_{3} i_{4} \wedge i_{6} i_{1} j_{1} \cdots j_{d-2}\right) \vee\left(j_{1} \cdots j_{d-2}\right)=0 .
\end{gathered}
$$

[^4]
The Case of Twisted Cubics

Let $1, \ldots, 7 \in \mathbb{P}^{3}$ be in general linear position. Then they lie on a twisted cubic if and only if for every $I \subseteq[7], I=\left\{i_{1}<\cdots<i_{6}\right\}, I^{c}=\{j\}$ the following 4 points lie on a plane:

- $\overline{i_{1} i_{2}} \cap \overline{i_{4} i_{5} j}$
- $\overline{i_{2} i_{3}} \cap \overline{i_{5} i_{6} j}$
- $\overline{i_{3} i_{4}} \cap \overline{i_{6} i_{1} j}$
- j

Figure: Condition for the choice $I=\{1, \ldots, 6\}$ and $I^{c}=\{7\}$

Thank you!

[^0]: ${ }^{1}$ joint work with L. Schaffler.

[^1]: ${ }^{2}$ A. Caminata, N. Giansiracusa, H. Moon, L. Schaffler, Equations for point configurations to lie on a rational normal curve, Adv. Math. 340, pp. 653-683, 2018.

[^2]: ${ }^{3}$ H.W. Turnbull, A. Young, The linear invariants of ten quaternary quadrics, Trans. Cambridge Philos. Soc. 23, pp. 265-301, 1926.

[^3]: ${ }^{4}$ A. Caminata, L. Schaffler, A Pascal's Theorem for rational normal curves, arXiv:1903.00460.

[^4]: ${ }^{4}$ A. Caminata, L. Schaffler, A Pascal's Theorem for rational normal curves, arXiv:1903.00460.

