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Phylogenetic reconstruction

Given an alignment of DNA sequences for some species,

Gorilla AACTTCGAGGCTTACCGCTG

Human AACGTCTATGCTCACCGATG

Chimpanzee AAGGTCGATGCTCACCGATG

Orangutan ATTGTCGCAACTCGTCGACG

our goal is to reconstruct the topology of the phylogenetic tree that relates them.

T12|34 T13|24 T14|23
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Modeling Evolution
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Modeling Evolution

Random variables at the nodes
Xi ∈ K = {A,C,G,T}

Distribution at the root
π = (πA, πC, πG, πT);

∑
i∈K πi = 1

Transition matrices at the edges

Me =


P(A→ A|e) . . . P(A→ T|e)
P(C→ A|e) . . . P(C→ T|e)
P(G→ A|e) . . . P(T→ G|e)
P(T→ A|e) . . . P(T→ T|e)



A transition matrix is a square matrix
with nonnegative entries and rows
summing up to one.
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Evolutionary models

Jukes Cantor Model

Me =


ae be be be
be ae be be
be be ae be
be be be ae

 ,

where 3ae + be = 1.

Kimura Model

Me =


ae be ce de
be ae de ce
ce de ae be
de ce be ae

 ,

where ae + be + ce + de = 1.

Strand Symmetric Model

Me =


ae be ce de
ee fe ge he
he ge fe ee
de ce be ae

 ,

where rows sum up to 1.

General Markov Model

Me =


ae be ce de
ee fe ge he
je ke le me

ne oe pe qe

 ,

where rows sum up to 1.
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December 11, 2020 Marina Garrote-López Algebraic and semi-algebraic conditions in Phylo Reconstruction



Evolutionary models

Jukes Cantor Model

Me =


ae be be be
be ae be be
be be ae be
be be be ae

 ,

where 3ae + be = 1.

Kimura Model

Me =


ae be ce de
be ae de ce
ce de ae be
de ce be ae

 ,

where ae + be + ce + de = 1.

Strand Symmetric Model

Me =


ae be ce de
ee fe ge he
he ge fe ee
de ce be ae

 ,

where rows sum up to 1.

General Markov Model

Me =


ae be ce de
ee fe ge he
je ke le me

ne oe pe qe

 ,

where rows sum up to 1.
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Joint distribution

Definition

The joint distribution ps1,...,sn at the leaves of a
rooted phylogenetic tree T , which is the
probability that the random variables X1, . . . ,Xn of
the leaves take the states s1, . . . , sn

ps1...sn = Prob(X1 = s1,X2 = s2, . . . ,Xn = sn).

px1...xn =
∑

xv ,v∈Int(T )

πxr
∏

e∈E(T )

Me(xpa(e), xch(e)),pA,T,C,C =
∑

xr ,x5,x6∈{A,C,G,T}

πxr ·M1(xr , A) ·M6(xr , x6) ·M5(x6, x5)·

·M2(x5, T) ·M3(x5, C) ·M4(x6, C)
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Joint distribution

Definition

We denote by ps1,...,sn the joint distribution at the
leaves of a rooted phylogenetic tree T , which is
the probability that the random variables
X1, . . . ,Xn of the leaves take the states s1, . . . , sn

ps1...sn = Prob(X1 = s1,X2 = s2, . . . ,Xn = sn).

The entries of the joint distribution at the leaves pT =
(
pTs1...sn

)
s1,...,sn

can be expressed as a polynomial in terms of the parameters of the
model.

We can estimate pT easily (by the relative frequencies in an alignment)
but NOT the parameters.
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Phylogenetic variety

Definition

For fixed tree T and model M, fixed the position of the root r we use ϕT to
denote the parametrization map,

ϕT : Rd −→ R4n

(π, {Me}e∈E(T )) 7→ P = (px1,x1,...,x1 , px1,x1,...,x2 , . . . , pxn,xn,...,xn)

The phylogenetic algebraic variety associated to a tree T and a model M
is

VT = ImϕT .

IT = I (VT ) is the phylogenetic ideal of T and M.

Polynomials f ∈ IT are called phylogenetic invariants of T .

Polynomials f ∈ IT and f 6∈ IT ′ , with T 6= T ′ are the topology invariants
of T .
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Using algebraic varieties in phylogenetics

An alignment produces a point p̂ = (pAA...A, pAA...C, . . . , pTT...T) in R4n

.

p̂ should be close to VT0 (if the tree T0 and model M fit the data).

Tree topology reconstruction using algebraic geometry. For each
possible topology T , evaluate elements of I (VT ) at p̂ : the polynomials of
I (VT0 ) should be ≈ 0 when evaluated at p̂.
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Problem: computation of invariants

Computational algebra softwares fail to compute the ideal for ≥ 4 species!

For example, Kimura 3-parameter with 4 species is a toric variety with 8002
generators like,
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Flattening

1 2

AA AC AG . . . TT

Flatt12|34(P) =

AA

AC
AG

...
TT


pAAAA pAAAC pAAAG . . . pAATT
pACAA pACAC pACAG . . . pACTT
pAGAA pAGAC pAGAG . . . pAGTT

...
...

...
. . .

...
pTTAA pTTAC pTTAG . . . pTTTT



Theorem [Allman – Rhodes]

Let P = ϕT (π, {Me}e∈E(T )) where T = T12|34. Then

rank(Flatt12|34(P)) ≤ 4.

Flatt13|24(P) and Flatt14|23(P) have rank 16 for generic P.

Therefore 5× 5 minors of Flatt12|34(P) are topology invariants.
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December 11, 2020 Marina Garrote-López Algebraic and semi-algebraic conditions in Phylo Reconstruction



Flattening

1 2

AA AC AG . . . TT

Flatt12|34(P) =

AA

AC
AG

...
TT


pAAAA pAAAC pAAAG . . . pAATT
pACAA pACAC pACAG . . . pACTT
pAGAA pAGAC pAGAG . . . pAGTT

...
...

...
. . .

...
pTTAA pTTAC pTTAG . . . pTTTT



Theorem [Allman – Rhodes]

Let P = ϕT (π, {Me}e∈E(T )) where T = T12|34. Then

rank(Flatt12|34(P)) ≤ 4.

Flatt13|24(P) and Flatt14|23(P) have rank 16 for generic P.

Therefore 5× 5 minors of Flatt12|34(P) are topology invariants.
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Algebraic phylogenetic reconstruction methods

The distance of an m × n matrix M to the set

Rk = {m × n matrices of rank ≤ k}

can be computed easily by,

Eckart-Young Theorem

dk(M) = dF (M,Rk) =

√∑
i≥k+1

σ2
i ,

where σi are the singular values of M.

Phylogenetic reconstruction methods

Compute d4(FlattA|B(P)) for the tree possible bipartitions. The lower the
score is, the more it is likely that the bipartition comes from an edge of T.
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Stochastic phylogenetic regions

Definition

The stochastic phylogenetic regions is defined as

V+
T = {P ∈ VT | P = ϕT (s) and s ∈ S ⊂ [0, 1]d},

is the subset of VT that contains distributions arising from stochastic
parameters.

Stochastic Parameters

A vector π is stochastic iff its entries are non-negative and
∑
πi = 1.

A matrix is stochastic iff its entries are non-negative and∑
j

Me(i , j) = 1,∀i , e
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Could the stochastic varieties be useful for phylogenetic

reconstruction?
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Computing the distance to a Phylogenetic variety

Let P = (p1, . . . , p4n) ∈ 44n−1 be a distribution. We want to compute the

distance of P to V+
T ,

d(P ,V+
T ) = min

Q∈V+
T

d(P ,Q)

Since Q ∈ V+
T , we can write Q = ϕT (x) with stochastic parameters x ∈ Rd .

Denote by Ω ⊂ Rd the domain of stochastic parameters. Let

fP(x) := d(P , ϕT (x)) =

4n∑
i

(pi − ϕi (x))2.

If P+ = ϕT (x∗) ∈ V+
T is such that d(P ,P+) = d(P ,V+

T ) then

(P − P+) ⊥ TPVT , i.e. x∗ is a critical point of fP(x)

x∗ is not a critical point of fP(x) but P+ ∈ ∂Ω
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Long branch attraction for JC model

Let P = ϕ12|34 (M, Id ,M, Id ,Me).

Proposition [Casanellas – Fernández-Sánchez – G-L]

If Me has negative off-diagonal entries and M is
stochastic then P+ = ϕ12|34(M̃, Id , M̃, Id , Id) is a
local minimum of the distance function d(P,V+

T ).

Conjecture: Global minumum

d(P,V+
T ) = d

(
P,P+).

Theorem [Casanellas – Fernández-Sánchez – G-L]

Let P0 = ϕ12|34 (M, Id ,M, Id ,Me) such that d(P0,V+
T ) = d

(
P0,P

+) then,
for any P close enough to P0 we have

d(P,V+
T ) ≥ d(P,V+

T2
).
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December 11, 2020 Marina Garrote-López Algebraic and semi-algebraic conditions in Phylo Reconstruction



Long branch attraction for JC model

Let P = ϕ12|34 (M, Id ,M, Id ,Me).

Proposition [Casanellas – Fernández-Sánchez – G-L]

If Me has negative off-diagonal entries and M is
stochastic then P+ = ϕ12|34(M̃, Id , M̃, Id , Id) is a
local minimum of the distance function d(P,V+

T ).

Conjecture: Global minumum

d(P,V+
T ) = d

(
P,P+).

Theorem [Casanellas – Fernández-Sánchez – G-L]

Let P0 = ϕ12|34 (M, Id ,M, Id ,Me) such that d(P0,V+
T ) = d

(
P0,P

+) then,
for any P close enough to P0 we have

d(P,V+
T ) ≥ d(P,V+

T2
).
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Computing the distance to a Phylogenetic variety

Lemma [Draisma – Horobet – Ottaviani – Sturmfels – Thomas]

For general P ∈ C4n

the number of critical points of fP on the manifold

V \ Vsing is finite and is called the Euclidean Distance degree of V.

Computations difficulties

ED degree for the Jukes Cantor model on 4-leaf trees is 290.

> 2.5 months with Macaluay2.

≈ 2.5 hours with Magma.

Numerical Algebraic Geometry Only PHCpack founds the 290 solutions.

The computations were performed on a machine with 10 Dual Core Intel(R)
Xeon(R) Silver 64 Processor 4114 (2.20 GHz, 13.75M Cache) equipped with
256 GB RAM running Ubuntu 18.04.2.

Algorithm

1. Compute the Euclidean distance degree d for the variety VT .

2. Compute the d critical points x such that ∇f (x) = 0 and x ∈ Ω.

3. Compute the critical points ∇f = 0 at the boundaries ∂Ω.

4. Choose point with the lowest value when evaluated at f .
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Simulations

We took trees with branch lengths a and b at the exterior edges. M is

a JC matrix with eigenvalue m ∈ [0.94, 1.06].

For each set of parameters we considered 100 data points, each

corresponding to 10000 independent samples from the corresponding

multinomial distribution.
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Simulations a = 0.5 & b = 0.5
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Simulations a = 0.75 & b = 0.1
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Stochastic conditions for the General Markov Model

Theorem [Allman – Rhodes – Taylor]

Let P = ϕT (π, {Me}e∈E(T )) be a 4-tensor that arises
from nonsingular real parameters for GM(κ) model on
T12|34. If the marginalizations P+... and P...+ arise
from stochastic parameters and, moreover, the
κ2 × κ2 matrix

Flatt13|24

(
P ∗2 (adj(PT

+..+)PT
.+.+) ∗3 (adj(P.+.+)P.++.)

)
is positive semidefinite, then P arises from stochastic
parameters.

Theorem [Allman – Rhodes – Taylor]

Let P = ϕT (π, {Me}e∈E(T )) be a 4-tensor that arises
from nonsingular real parameters for GM(κ) model on
T12|34. If the marginalizations P+... and P...+ arise
from stochastic parameters and, moreover, the
κ2 × κ2 matrix

Flatt13|24

(
P ∗2 (adj(PT

+..+)PT
.+.+) ∗3 (adj(P.+.+)P.++.)

)
is positive semidefinite, then P arises from stochastic
parameters.

Theorem [Allman – Rhodes – Taylor]

Let P = ϕT (π, {Me}e∈E(T )) be a 4-tensor that arises
from nonsingular real parameters for GM(κ) model on
T12|34. If the marginalizations P+... and P...+ arise
from stochastic parameters and, moreover, the
κ2 × κ2 matrix

Flatt13|24

(
P ∗2 (adj(PT

+..+)PT
.+.+) ∗3 (adj(P.+.+)P.++.)

)
is positive semidefinite, then P arises from stochastic
parameters.

Theorem [Allman – Rhodes – Taylor]

Let P = ϕT (π, {Me}e∈E(T )) be a 4-tensor that arises
from nonsingular real parameters for GM(κ) model on
T12|34. If the marginalizations P+... and P...+ arise
from stochastic parameters and, moreover, the
κ2 × κ2 matrix

Flatt13|24

(
P ∗2 (adj(PT

+..+)PT
.+.+) ∗3 (adj(P.+.+)P.++.)

)
is positive semidefinite, then P arises from stochastic
parameters.
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Stochastic conditions for the General Markov Model

Theorem (Casanellas, Fernández-Sánchez, G-L)

Let P = ϕT (π, {Me}e∈E(T )) be a 4-tensor for GM(κ) model on T12|34. Let P̃
be constructed as in the previous theorem. Then,

Flat13|24(P̃) = Flat14|23(P̃),

and
Flatt12|34(P̃) 6= Flatt13|24(P̃).

In particular

det(P+..+)det(P.+.+)Flatt13|24

(
P ∗2 (adj(PT

+..+)PT
.+.+)) ∗3 (adj(P.+.+)P.++.)

)
)

=det(P+..+)det(P.+.+)Flatt14|23

(
P ∗2 (adj(PT

+..+)PT
.+.+)) ∗3 (adj(P.+.+)P.++.)

)
gives rise to 256 topology invariants of degree 17.
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T Leaf-transformations

T12|34

T13|24

T14|23

→ α12
i (P12) →

→ α13
i (P13) →

→ α14
i (P14) →
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December 11, 2020 Marina Garrote-López Algebraic and semi-algebraic conditions in Phylo Reconstruction



T Leaf-transformations

T12|34

T13|24

T14|23

→ α12
i (P12) →

→ α13
i (P13) →

→ α14
i (P14) →
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12|34 Leaf-transformations

Resulting trees associated with the 12|34 leaf-transformations on the (theoretical) distribution from T

Original tree T
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13|24 Leaf-transformations

Resulting trees associated with some 13|24 leaf-transformations on the (theoretical) distribution from T

Original tree T
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Leaf-transformations on distributions of T = 12|34

α12
i (P)

α13
i (P)

α14
i (P)

⇒


Flatt12|34(α12

i (P)) → rank ≤ 4 3

Flatt13|24(α12
i (P)) → rank ≤ 4 8

Flatt14|23(α12
i (P)) → rank ≤ 4 8

⇒


Flatt13|24(α13

i (P)) → rank ≤ 4 8

Flatt12|34(α13
i (P)) → rank ≤ 4 3

Flatt14|32(α13
i (P)) → rank ≤ 4 8

⇒


Flatt14|23(α14

i (P)) → rank ≤ 4 8

Flatt12|43(α14
i (P)) → rank ≤ 4 3

Flatt13|42(α14
i (P)) → rank ≤ 4 8

⇒


Flatt12|34(α12

i (P)) → PSD 8

Flatt13|24(α12
i (P)) → PSD 3

Flatt14|23(α12
i (P)) → PSD 3

⇒


Flatt13|24(α13

i (P)) → PSD 8

Flatt12|34(α13
i (P)) → PSD 8

Flatt14|32(α13
i (P)) → PSD 8

⇒


Flatt14|23(α14

i (P)) → PSD 8

Flatt12|43(α14
i (P)) → PSD 8

Flatt13|42(α14
i (P)) → PSD 8
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SAQ: semi-algebraic quartet reconstruction method

Theorem [Casanellas – Fernández-Sánchez – G-L]

The rank of the psd approximation of a real matrix M is less than or equal to
rank(M).

Lemma [Casanellas – Fernández-Sánchez – G-L]

Let P be the theoretical distribution from a 3-parameter Kimura process on the
quartet tree T = 12|34. Then, the rank of the psd approximation of the

flattening matrix FlatT ′(αT ′
(P)) is grater than 4 for T ′ 6= T .
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SAQ: semi-algebraic quartet reconstruction method

SAQ method

Let P be a data point obtained from an alignment, then the score for
T = 12|34 is:

s i12|34 :=
min

{
δ4

(
psd

(
Flatt13|24

(
α12
i (P)

)))
, δ4

(
psd

(
Flatt14|23

(
α12
i (P)

)))}
δ4

(
psd

(
Flatt12|34 (α12

i (P))
))

and s12|34 := meani{s i12|34}

SAQ(P) :=
1

s12|34(P) + s13|24(P) + s14|23(P)

(
s12|34(P), s13|24(P), s14|23(P)

)
.

If Q ∈ R256 is a distribution that tends to P generated on the tree 12|34 with
generic stochastic parameters, then

lim
Q→P

SAQ(Q) = SAQ(P) = (1, 0, 0).
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Simulations: Tree Space
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December 11, 2020 Marina Garrote-López Algebraic and semi-algebraic conditions in Phylo Reconstruction



Simulations: Tree Space
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base pairs SAQ Erik+2 NJ ML

500 84.6 72.4 72.5 72.1
1 000 88.8 80.3 79.7 73.6
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Simulations: Random branch lengths

A total of 10 000 alignments are considered, obtained from 4-taxa trees with
random branch lengths uniformly distributed in the interval (0,1), and
generated according to the General Markov substitution model.
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Simulations: Mixture models
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Simulations: Mixture models

internal branch length 0.01 0.05 0.1 0.2 0.3

SAQ 37 83 96 100 100
Erik+2 (2) 12 35 60 86 96

MP 0 2 19 76 99
ML(GTR+2 Γ) 0 4 14 77 95
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Thanks for
your attention!
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