

Semi-algebraic conditions for phylogenetic reconstruction

Marina Garrote-López

Seminari de Geometria Algebraica de Barcelona

Charles Darwin, 1859

- 1 Modelling evolution
- 2 Phylogenetic varieties
- 3 Phylogenetic reconstruction methods
- 4 Stochastic phylogenetic regions
- 5 SAQ: Semi-algebraic quartet reconstruction method

Phylogenetic reconstruction

Given an alignment of DNA sequences for some species,

Gorilla	AACTTCGAGGCTTACCGCTG
Human	AACGTCTATGCTCACCGATG
Chimpanzee	AAGGTCGATGCTCACCGATG
Orangutan	ATTGTCGCAACTCGTCGACG

our goal is to reconstruct the topology of the phylogenetic tree that relates them.

Phylogenetic reconstruction

Given an alignment of DNA sequences for some species,

Gorilla	AACTTCGAGGCTTACCGCTG
Human	AACGTCTATGCTCACCGATG
Chimpanzee	AAGGTCGATGCTCACCGATG
Orangutan	ATTGTCGCAACTCGTCGACG

our goal is to reconstruct the topology of the phylogenetic tree that relates them.

Marina Garrote-López

Algebraic and semi-algebraic conditions in Phylo Reconstruction

Random variables at the nodes $X_i \in \mathcal{K} = \{\texttt{A,C,G,T}\}$

Random variables at the nodes $X_i \in \mathcal{K} = \{\texttt{A,C,G,T}\}$

Distribution at the root $\pi = (\pi_A, \pi_C, \pi_G, \pi_T); \sum_{i \in \mathcal{K}} \pi_i = 1$

Modeling Evolution

Random variables at the nodes $X_i \in \mathcal{K} = \{\texttt{A,C,G,T}\}$

Distribution at the root $\pi = (\pi_A, \pi_C, \pi_G, \pi_T); \sum_{i \in \mathcal{K}} \pi_i = 1$

Transition matrices at the edges

$$Me = \begin{pmatrix} P(A \to A|e) & \dots & P(A \to T|e) \\ P(C \to A|e) & \dots & P(C \to T|e) \\ P(G \to A|e) & \dots & P(T \to G|e) \\ P(T \to A|e) & \dots & P(T \to T|e) \end{pmatrix}$$

Modeling Evolution

Random variables at the nodes $X_i \in \mathcal{K} = \{\texttt{A,C,G,T}\}$

Distribution at the root $\pi = (\pi_A, \pi_C, \pi_G, \pi_T); \sum_{i \in \mathcal{K}} \pi_i = 1$

Transition matrices at the edges

$$Me = \begin{pmatrix} P(A \to A|e) & \dots & P(A \to T|e) \\ P(C \to A|e) & \dots & P(C \to T|e) \\ P(G \to A|e) & \dots & P(T \to G|e) \\ P(T \to A|e) & \dots & P(T \to T|e) \end{pmatrix}$$

A transition matrix is a square matrix with nonnegative entries and rows summing up to one.

Evolutionary models
Jukes Cantor Model

$$M_e = \begin{pmatrix} a_e & b_e & b_e & b_e \\ b_e & a_e & b_e & b_e \\ b_e & b_e & a_e & b_e \\ b_e & b_e & b_e & a_e \end{pmatrix},$$
where $3a_e + b_e = 1$.

Marina Garrote-López

Marina Garrote-López

Algebraic and semi-algebraic conditions in Phylo Reconstruction

Strand Symmetric Model
$$M_e = \begin{pmatrix} a_e & b_e & c_e & d_e \\ e_e & f_e & g_e & h_e \\ h_e & g_e & f_e & e_e \\ d_e & c_e & b_e & a_e \end{pmatrix},$$
where rows sum up to 1.

Marina Garrote-López

Strand Symmetric Model
$$M_e = \begin{pmatrix} a_e & b_e & c_e & d_e \\ e_e & f_e & g_e & h_e \\ h_e & g_e & f_e & e_e \\ d_e & c_e & b_e & a_e \end{pmatrix},$$
where rows sum up to 1.

Kimura Model
$$M_e = \begin{pmatrix} a_e & b_e & c_e & d_e \\ b_e & a_e & d_e & c_e \\ c_e & d_e & a_e & b_e \\ d_e & c_e & b_e & a_e \end{pmatrix},$$
where $a_e + b_e + c_e + d_e = 1.$

Strand Symmetric Model
$$M_e = \begin{pmatrix} a_e & b_e & c_e & d_e \\ e_e & f_e & g_e & h_e \\ h_e & g_e & f_e & e_e \\ d_e & c_e & b_e & a_e \end{pmatrix},$$
where rows sum up to 1.

Strand Symmetric Model
$$M_e = \begin{pmatrix} a_e & b_e & c_e & d_e \\ e_e & f_e & g_e & h_e \\ h_e & g_e & f_e & e_e \\ d_e & c_e & b_e & a_e \end{pmatrix},$$
where rows sum up to 1.

General Markov Model
$$M_e = \begin{pmatrix} a_e & b_e & c_e & d_e \\ e_e & f_e & g_e & h_e \\ j_e & k_e & l_e & m_e \\ n_e & o_e & p_e & q_e \end{pmatrix},$$
where rows sum up to 1.

Definition

The joint distribution $p_{s_1,...,s_n}$ at the leaves of a rooted phylogenetic tree T, which is the probability that the random variables $X_1,...,X_n$ of the leaves take the states $s_1,...,s_n$

$$p_{s_1...s_n} = Prob(X_1 = s_1, X_2 = s_2, ..., X_n = s_n).$$

Definition

The joint distribution $p_{s_1,...,s_n}$ at the leaves of a rooted phylogenetic tree T, which is the probability that the random variables $X_1,...,X_n$ of the leaves take the states $s_1,...,s_n$

$$p_{s_1...s_n} = Prob(X_1 = s_1, X_2 = s_2, ..., X_n = s_n).$$

$$p_{x_1...x_n} = \sum_{x_v, v \in Int(T)} \pi_{x_r} \prod_{e \in E(T)} M_e(x_{pa(e)}, x_{ch(e)}),$$

Definition

The joint distribution $p_{s_1,...,s_n}$ at the leaves of a rooted phylogenetic tree T, which is the probability that the random variables $X_1,...,X_n$ of the leaves take the states $s_1,...,s_n$

$$p_{s_1...s_n} = Prob(X_1 = s_1, X_2 = s_2, ..., X_n = s_n).$$

$$p_{A,T,C,C} = \sum_{x_r, x_5, x_6 \in \{A,C,G,T\}} \pi_{x_r} \cdot M_1(x_r, A) \cdot M_6(x_r, x_6) \cdot M_5(x_6, x_5) \cdot M_2(x_5, T) \cdot M_3(x_5, C) \cdot M_4(x_6, C)$$

Definition

We denote by $p_{s_1,...,s_n}$ the **joint distribution** at the leaves of a rooted phylogenetic tree *T*, which is the probability that the random variables $X_1, ..., X_n$ of the leaves take the states $s_1, ..., s_n$

$$p_{s_1...s_n} = Prob(X_1 = s_1, X_2 = s_2, ..., X_n = s_n).$$

The entries of the joint distribution at the leaves p^T = (p^T_{s1...,sn})_{s1,...,sn} can be expressed as a polynomial in terms of the parameters of the model.

Definition

We denote by $p_{s_1,...,s_n}$ the joint distribution at the leaves of a rooted phylogenetic tree *T*, which is the probability that the random variables X_1, \ldots, X_n of the leaves take the states s_1, \ldots, s_n

$$p_{s_1...s_n} = Prob(X_1 = s_1, X_2 = s_2, ..., X_n = s_n).$$

- The entries of the joint distribution at the leaves p^T = (p^T_{s1...sn})_{s1,...,sn} can be expressed as a polynomial in terms of the parameters of the model.
- We can estimate p^T easily (by the relative frequencies in an alignment) but **NOT** the parameters.

Definition

For fixed tree T and model M, fixed the position of the root r we use φ_T to denote the parametrization map,

$$\begin{array}{rcl} \varphi_{\mathcal{T}}: \mathbb{R}^d & \longrightarrow & \mathbb{R}^{4^n} \\ (\pi, \{M_e\}_{e \in E(\mathcal{T})}) & \mapsto & P = (p_{x_1, x_1, \dots, x_1}, p_{x_1, x_1, \dots, x_2}, \dots, p_{x_n, x_n, \dots, x_n}) \end{array}$$

Definition

For fixed tree T and model M, fixed the position of the root r we use φ_T to denote the parametrization map,

$$\begin{array}{rcl} \varphi_{\mathcal{T}}: \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{4^{n}} \\ (\pi, \{M_{e}\}_{e \in E(\mathcal{T})}) & \mapsto & P = (p_{x_{1}, x_{1}, \dots, x_{1}}, p_{x_{1}, x_{1}, \dots, x_{2}}, \dots, p_{x_{n}, x_{n}, \dots, x_{n}}) \end{array}$$

The phylogenetic algebraic variety associated to a tree T and a model \mathcal{M} is

$$\mathcal{V}_{\mathcal{T}} = \overline{\mathrm{Im}\,\varphi_{\mathcal{T}}}.$$

 $I_T = I(\mathcal{V}_T)$ is the phylogenetic ideal of T and \mathcal{M} .

Definition

For fixed tree T and model M, fixed the position of the root r we use φ_T to denote the parametrization map,

$$\begin{array}{rcl} \varphi_{\mathcal{T}}: \mathbb{R}^d & \longrightarrow & \mathbb{R}^{4^n} \\ (\pi, \{M_e\}_{e \in E(\mathcal{T})}) & \mapsto & P = (p_{x_1, x_1, \dots, x_1}, p_{x_1, x_1, \dots, x_2}, \dots, p_{x_n, x_n, \dots, x_n}) \end{array}$$

The phylogenetic algebraic variety associated to a tree ${\mathcal T}$ and a model ${\mathcal M}$ is

$$\mathcal{V}_{\mathcal{T}} = \overline{\mathrm{Im}\,\varphi_{\mathcal{T}}}.$$

 $I_T = I(\mathcal{V}_T)$ is the phylogenetic ideal of T and \mathcal{M} .

Polynomials $f \in I_T$ are called **phylogenetic invariants** of T.

Definition

For fixed tree T and model M, fixed the position of the root r we use φ_T to denote the parametrization map,

$$\begin{array}{rcl} \varphi_{\mathcal{T}}: \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{4^{n}} \\ (\pi, \{M_{e}\}_{e \in E(\mathcal{T})}) & \mapsto & P = (p_{x_{1}, x_{1}, \dots, x_{1}}, p_{x_{1}, x_{1}, \dots, x_{2}}, \dots, p_{x_{n}, x_{n}, \dots, x_{n}}) \end{array}$$

The phylogenetic algebraic variety associated to a tree ${\mathcal T}$ and a model ${\mathcal M}$ is

$$\mathcal{V}_{\mathcal{T}} = \overline{\mathrm{Im}\,\varphi_{\mathcal{T}}}.$$

 $I_T = I(\mathcal{V}_T)$ is the phylogenetic ideal of T and \mathcal{M} .

Polynomials $f \in I_T$ are called **phylogenetic invariants** of T.

Polynomials $f \in I_T$ and $f \notin I_{T'}$, with $T \neq T'$ are the topology invariants of T.

December 11, 2020

Using algebraic varieties in phylogenetics

• An alignment produces a point $\hat{p} = (p_{AA...A}, p_{AA...C}, \dots, p_{TT...T})$ in \mathbb{R}^{4^n} .

Using algebraic varieties in phylogenetics

- An alignment produces a point $\hat{p} = (p_{AA...A}, p_{AA...C}, \dots, p_{TT...T})$ in \mathbb{R}^{4^n} .
- \hat{p} should be *close* to \mathcal{V}_{T_0} (if the tree T_0 and model \mathcal{M} fit the data).

Using algebraic varieties in phylogenetics

- An alignment produces a point $\hat{p} = (p_{AA...A}, p_{AA...C}, \dots, p_{TT...T})$ in \mathbb{R}^{4^n} .
- \hat{p} should be *close* to \mathcal{V}_{T_0} (if the tree T_0 and model \mathcal{M} fit the data).
- Tree topology reconstruction using algebraic geometry. For each possible topology T, evaluate elements of $I(\mathcal{V}_T)$ at \hat{p} : the polynomials of $I(\mathcal{V}_{T_0})$ should be ≈ 0 when evaluated at \hat{p} .

Computational algebra softwares fail to compute the ideal for \geq 4 species!

Computational algebra softwares fail to compute the ideal for \geq 4 species!

For example, Kimura 3-parameter with 4 species is a toric variety with 8002 generators like,

Problem: computation of invariants

Computational algebra softwares fail to compute the ideal for \geq 4 species!

For example, Kimura 3-parameter with 4 species is a toric variety with 8002 generators like,

8*p1^2*p2*p9-8*p2^3*p9+8*p2*p3^2*p9-16*p1*p3*p4*p9+8*p2*p4^2*p9-16*p1*p2*p5*p9+16*p3*p4*p5*p9+8*p2*p5^2*p9-8*p1^2*p6*p9+24*p2^2*p6*p9-8*p3^2*p6*p9-8*p4^2*p6*p9+16*p1*p5*p6*p9-8*p5^2*p6*p9-24*p2*p6^2*p6^2*p6*p9+8*p6^3*p9-16^{*}p2 *p³ *p⁷ *p9+1⁶*p1 *[°]p4 *[°]p7 *p⁹-16 *[°]p4 *p³ *p7 *[°]p9+1⁶ *p³ *p6 *p⁷ *p⁹+8 *[°]p2 *p7 ^2 *p9-8 *[°]p6 *[°]p7 ^2 *[°]p9+1⁶ *p1 *[°]p3 *p⁸ *p9-16*p2*p4*p8*p9-16*p3*p5*p8*p9+16*p4*p6*p8*p9-16*p1*p7*p8*p9+16*p5*p7*p8*p9+8*p2*p8^2*p9-8*p6*p8^2*p9-8*p6*p8^2*p9-8*p2*p9^3+8*p6*p9^3-8*p1^3*p10+8*p1*p2^2*p10+8*p1*p3^2*p10-16*p2*p3*p4*p10+8*p1*p4^2*p10+24*p10+24*p1^2*p5*p10-8*p2^2*p5*p10-8*p3^2*p5*p10-8*p4^2*p5*p10-24*p1*p5^2*p10+8*p5^3*p10-16*p1*p2*p6*p10+16*p3*p4*p6*p10 +16*p2*p5*p6*p10+8*p1 *p6^2*p10-8*p5*p6^2*p10-16*p4*p6*p7*p10+16*p2*p4*p7*p10+16*p3*p5*p7*p10-16*p4*p6*p7*p10+ 8*p1*p7^2*p10-8*p5*p7^2*p10+16*p2*p3*p8*p10-16*p1*p4*p8*p10+16*p4*p5*p8*p10-16*p3*p6*p8*p10-16*p3*p6*p8*p10-16*p3*p6*p8*p10+16*p3*p6*p8* 16 *p6 *p7 *p5 *p10 + 5 *p1 *p5 ^2 *p10 - 5 *p5 *p5 *2 *p10 + 5 *p1 *p5 ^2 *p10 - 5 *p5 *p5 ^2 *p10 + 5 *p2 *p5 *p10 ^2 - 5 *p10 ^2 8*p1 *p10^3+8*p5*p10^3-16*p1 *p2*p3*p11+8*p1^2*p4*p11+8*p2^2*p4*p11+8*p3^2*p4*p11-8*p3^2*p4*p11-8*p4^3*p11+16*p2*p3*p5*p11-16*p1*p4*p5*p11+8*p4*p5^2*p11+16*p1*p3*p6*p11-16*p2*p4*p6*p11-16*p3*p5*p6*p11+8*p4*p6*p11+8*p4*p6*p11+8*p4*p6*p11+8*p4*p6*p11+16*p1*p2*p7*p11-8*p3^2*p8*p11+24*p4^2*p8*p11+16*p1*p5*p8*p11-8*p5^2*p8*p11+16*p2*p6*p58*p11-8*p6^2*p8*p11+16*p2*p6*2*p8*p11+16*p3*p7*p8*p11-8*p7^2*p8*p11-24*p4*p8^2*p11+8*p8^3*p11+8*p8^3*p11+8*p4*p9^2*p11-8*p8*p9^2*p11-16*p3*p0*p10*p11+16*p7*p0*p10*p11+ 8*p4*p10^2*p11-8*p8*p10^2*p11+8*p2*p9*p11^2-8*p6*p9*p11^2+8*p1*p10*p11^2-8*p5*p10*p11^2-8*p5*p10*p11^2-8*p4*p11^3+ 8*p8*p11^3+8*p1^2*p3*p12+8*p2^2*p3*p12-8*p3^3*p12-16*p1*p2*p4*p12+8*p3*p4^2*p12-16*p1*p3*p5*p12+ 24*p3*p7^2*p12+8*p7^3*p12+16*p1*p2*p8*p12-16*p3*p4*p8*p12-16*p2*p5*p8*p12-16*p1*p6*p8*p12+16*p5*p6*p8*p12+1 8*p3 *p1 0^2 *p1 2-8*p7 *p1 0^2 *p1 2-16 *p1 *p9 *p1 1 *p1 2+16 *p5 *p9 *p1 1 *p1 2-16 *p2 *p1 0 *p1 1 *p1 2+16 *p6 *p10 *p1 1 *p1 2+16 8*p3*p11^2+8p12-8*p7*p11^2+8*p1+8*p2*p9*p12^2-8*p6*p9*p12^2+8*p1*p10*p12^2-8*p5*p10*p12^2+8*p1*p10*p12^2+8*p4*p11*p12^2-8*p8*p11*p12^2-8*p3*p12^3+&*p7*p12^3-&*p1^2*p13+8*p2^3*p13+8*p2^3*p13-8*p2*p3^2*p13+16*p1*p3*p4*p13-8*p2*p4^2*p13+ 16*p1*p2*p5*p13-16*p3*p4*p5*p13-8*p2*p5*2*p13+8*p1*2*p6*p13-2*p6*p13-24*p2*2*p6*p13+8*p3*2*p6*p13+8*p4*2*p6*p13-16*p1*p5*p6*p13+8*p5^2*p6*p13+24*p2*p6^2*p13-8*p6^3*p13+16*p2*p3*p7*p13-16*p1*p4*p7*p13+16*p4*p7*p13+16*p4*p5*p7*p13 -16*p3*p6*p7*p13-8*p2*p7^2*p13+8*p6*p7^2*p13-16*p1*p3*p8*p13+16*p2*p4*p8*p13+16*p3*p8*p13+ 16 *p4 *p6 *p8 *p13+16 *p1 *p7 *p8 *p13-16 *p5 *p7 *p8 *p13-8 *p2 *p8 ^2 *p13+8 *p6 *p8 ^2 *p13+24 *p2 *p9 ^2 *p13-24 *p6 *p9 ^2 *p13-24 *p6 *p8 ^2 *p13 + 24 *p6 *p8 + 24 *p6 *p8 + 24 *p6 *p8 + 24 *p6 *p13 + 24 *p13 16*p1*p9*p10*p13+16*p5*p9*p10*p13-8*p2*p10*2*p13+8*p6*p10^2*p13-16*p4*p9*p11*p13+16*p8*p9*p11*p13 +16*p3*p10*p11*p13-16*p7*p10*p11*p13-8*p2*p11*2*p13+8*p6*p11^2*p13-16*p3*p9*p12*p13+16*p7*p9*p12*p13

December 11, 2020

Marina Garrote-Lópe

Algebraic and semi-algebraic conditions in Phylo Reconstruction

2*pl UPC

p4/2*p

Marina Garrote-López

Algebraic and semi-algebraic conditions in Phylo Reconstruction

Theorem [Allman - Rhodes]

Let
$$P = \varphi_T(\pi, \{M_e\}_{e \in E(T)})$$
 where $T = T_{12|34}$. Then

 $\operatorname{rank}(\operatorname{\textit{Flatt}}_{12|34}(P)) \leq 4.$

 $Flatt_{13|24}(P)$ and $Flatt_{14|23}(P)$ have rank 16 for generic P.

Theorem [Allman - Rhodes]

Let
$$P = \varphi_T(\pi, \{M_e\}_{e \in E(T)})$$
 where $T = T_{12|34}$. Then

$$\operatorname{rank}(\operatorname{Flatt}_{12|34}(P)) \leq 4.$$

 $Flatt_{13|24}(P)$ and $Flatt_{14|23}(P)$ have rank 16 for generic P.

Therefore 5×5 minors of $Flatt_{12|34}(P)$ are topology invariants.

Algebraic phylogenetic reconstruction methods

The distance of an $m \times n$ matrix M to the set

$$\mathcal{R}_k = \{m \times n \text{ matrices of rank } \leq k\}$$

can be computed easily by,

Eckart-Young Theorem

$$d_k(M) = d_F(M, \mathcal{R}_k) = \sqrt{\sum_{i \ge k+1} \sigma_i^2},$$

where σ_i are the singular values of M.

Algebraic phylogenetic reconstruction methods

The distance of an $m \times n$ matrix M to the set

$$\mathcal{R}_k = \{m \times n \text{ matrices of rank } \leq k\}$$

can be computed easily by,

Eckart-Young Theorem

$$d_k(M) = d_F(M, \mathcal{R}_k) = \sqrt{\sum_{i \ge k+1} \sigma_i^2},$$

where σ_i are the singular values of M.

Phylogenetic reconstruction methods

Compute $d_4(Flatt_{A|B}(P))$ for the tree possible bipartitions. The lower the score is, the more it is likely that the bipartition comes from an edge of T.

Stochastic phylogenetic regions

Definition

The stochastic phylogenetic regions is defined as

$${\mathcal V}_{\mathcal T}^+ = \{ {\mathcal P} \in {\mathcal V}_{\mathcal T} \mid {\mathcal P} = arphi_{\mathcal T}(s) ext{ and } s \in {\mathcal S} \subset [0,1]^d \},$$

is the subset of $\mathcal{V}_{\mathcal{T}}$ that contains distributions arising from stochastic parameters.

Stochastic Parameters

A vector π is stochastic iff its entries are non-negative and $\sum \pi_i = 1$. A matrix is stochastic iff its entries are non-negative and

$$\sum_{i} M_{e}(i,j) = 1, orall i, e$$

Let $P = (p_1, \ldots, p_{4^n}) \in \triangle^{4^n-1}$ be a distribution. We want to compute the distance of P to \mathcal{V}_T^+ ,

$$d(P, \mathcal{V}_T^+) = \min_{Q \in \mathcal{V}_T^+} d(P, Q)$$

Let $P = (p_1, \ldots, p_{4^n}) \in \triangle^{4^n-1}$ be a distribution. We want to compute the distance of P to \mathcal{V}_T^+ ,

$$d(P,\mathcal{V}_{\mathcal{T}}^+) = \min_{Q \in \mathcal{V}_{\mathcal{T}}^+} d(P,Q)$$

Since $Q \in \mathcal{V}_{\mathcal{T}}^+$, we can write $Q = \varphi_{\mathcal{T}}(x)$ with stochastic parameters $x \in \mathbb{R}^d$. Denote by $\Omega \subset \mathbb{R}^d$ the domain of stochastic parameters. Let

$$f_P(x) := d(P, \varphi_T(x)) = \sum_i^{4^n} (p_i - \varphi_i(x))^2.$$

Let $P = (p_1, \ldots, p_{4^n}) \in \triangle^{4^n-1}$ be a distribution. We want to compute the distance of P to \mathcal{V}_T^+ ,

$$d(P,\mathcal{V}_{T}^{+}) = \min_{Q \in \mathcal{V}_{T}^{+}} d(P,Q)$$

Since $Q \in \mathcal{V}_{\mathcal{T}}^+$, we can write $Q = \varphi_{\mathcal{T}}(x)$ with stochastic parameters $x \in \mathbb{R}^d$. Denote by $\Omega \subset \mathbb{R}^d$ the domain of stochastic parameters. Let

$$f_P(x) := d(P, \varphi_T(x)) = \sum_i^{4^n} (p_i - \varphi_i(x))^2.$$

If $P^+ = \varphi_T(x^*) \in \mathcal{V}_T^+$ is such that $d(P, P^+) = d(P, \mathcal{V}_T^+)$ then $(P - P^+) \perp T_P \mathcal{V}_T$, i.e. x^* is a critical point of $f_P(x)$ x^* is not a critical point of $f_P(x)$ but $P^+ \in \partial \Omega$

Long branch attraction for JC model

Let $P = \varphi_{12|34}$ (M, Id, M, Id, M_e).

Proposition [Casanellas – Fernández-Sánchez – G-L]

If M_e has negative off-diagonal entries and M is stochastic then $P^+ = \varphi_{12|34}(\tilde{M}, Id, \tilde{M}, Id, Id)$ is a local minimum of the distance function $d(P, \mathcal{V}_T^+)$.

Long branch attraction for JC model

Let $P = \varphi_{12|34} (M, Id, M, Id, M_e)$.

Proposition [Casanellas – Fernández-Sánchez – G-L]

If M_e has negative off-diagonal entries and M is stochastic then $P^+ = \varphi_{12|34}(\tilde{M}, Id, \tilde{M}, Id, Id)$ is a local minimum of the distance function $d(P, \mathcal{V}_T^+)$.

Conjecture: Global minumum

$$d(P,\mathcal{V}_T^+)=d(P,P^+).$$

Long branch attraction for JC model

Let $P = \varphi_{12|34} (M, Id, M, Id, M_e)$.

Proposition [Casanellas – Fernández-Sánchez – G-L]

If M_e has negative off-diagonal entries and M is stochastic then $P^+ = \varphi_{12|34}(\tilde{M}, Id, \tilde{M}, Id, Id)$ is a local minimum of the distance function $d(P, \mathcal{V}_T^+)$.

Conjecture: Global minumum

$$d(P,\mathcal{V}_T^+)=d(P,P^+).$$

Theorem [Casanellas – Fernández-Sánchez – G-L]

Let $P_0 = \varphi_{12|34}(M, Id, M, Id, M_e)$ such that $d(P_0, \mathcal{V}_T^+) = d(P_0, P^+)$ then, for any P close enough to P_0 we have

$$d(P, \mathcal{V}_T^+) \geq d(P, \mathcal{V}_{T_2}^+).$$

Lemma [Draisma – Horobet – Ottaviani – Sturmfels – Thomas]

For general $P \in \mathbb{C}^{4^n}$ the number of critical points of f_P on the manifold $\mathcal{V} \setminus \mathcal{V}_{sing}$ is finite and is called the **Euclidean Distance degree** of \mathcal{V} .

Lemma [Draisma – Horobet – Ottaviani – Sturmfels – Thomas]

For general $P \in \mathbb{C}^{4^n}$ the number of critical points of f_P on the manifold $\mathcal{V} \setminus \mathcal{V}_{sing}$ is finite and is called the **Euclidean Distance degree** of \mathcal{V} .

Computations difficulties

ED degree for the Jukes Cantor model on 4-leaf trees is 290.

- > 2.5 months with Macaluay2.
- ≈ 2.5 hours with *Magma*.

Numerical Algebraic Geometry Only PHCpack founds the 290 solutions.

The computations were performed on a machine with 10 Dual Core Intel(R) Xeon(R) Silver 64 Processor 4114 (2.20 GHz, 13.75M Cache) equipped with 256 GB RAM running Ubuntu 18.04.2.

Lemma [Draisma – Horobet – Ottaviani – Sturmfels – Thomas] For general $P \in \mathbb{C}^{4^n}$ the number of critical points of f_P on the manifold $\mathcal{V} \setminus \mathcal{V}_{sing}$ is finite and is called the **Euclidean Distance degree** of \mathcal{V} .

Algorithm

- **1.** Compute the Euclidean distance degree d for the variety V_T .
- 2. Compute the *d* critical points *x* such that $\nabla f(x) = 0$ and $x \in \Omega$.
- **3**. Compute the critical points $\nabla f = 0$ at the boundaries $\partial \Omega$.
- 4. Choose point with the lowest value when evaluated at f.

Simulations

- We took trees with branch lengths *a* and *b* at the exterior edges. *M* is a *JC* matrix with eigenvalue $m \in [0.94, 1.06]$.
- For each set of parameters we considered 100 data points, each corresponding to 10000 independent samples from the corresponding multinomial distribution.

Simulations

- We took trees with branch lengths *a* and *b* at the exterior edges. *M* is a *JC* matrix with eigenvalue $m \in [0.94, 1.06]$.
- For each set of parameters we considered 100 data points, each corresponding to 10000 independent samples from the corresponding multinomial distribution.

Simulations a = 0.5 & b = 0.5

December 11, 2020

larina Garrote-López

Simulations a = 0.75 & b = 0.1

December 11, 2020

larina Garrote-López

Theorem [Allman – Rhodes – Taylor]

Let $P = \varphi_T(\pi, \{M_e\}_{e \in E(T)})$ be a 4-tensor that arises from nonsingular real parameters for $GM(\kappa)$ model on $T_{12|34}$. If the marginalizations $P_{+\dots}$ and $P_{\dots+}$ arise from stochastic parameters and, moreover, the $\kappa^2 \times \kappa^2$ matrix

$$\textit{Flatt}_{13|24} (P *_2 (\textit{adj}(P_{+..+}^T)P_{.+.+}^T) *_3 (\textit{adj}(P_{.+.+})P_{.++.}))$$

Theorem [Allman – Rhodes – Taylor]

Let $P = \varphi_T(\pi, \{M_e\}_{e \in E(T)})$ be a 4-tensor that arises from nonsingular real parameters for $GM(\kappa)$ model on $T_{12|34}$. If the marginalizations $P_{+...}$ and $P_{...+}$ arise from stochastic parameters and, moreover, the $\kappa^2 \times \kappa^2$ matrix

$$\textit{Flatt}_{13|24}(P*_{2}(\textit{adj}(P_{+..+}^{T})P_{.+.+}^{T})*_{3}(\textit{adj}(P_{.+.+})P_{.++.}))$$

Theorem [Allman – Rhodes – Taylor]

Let $P = \varphi_T(\pi, \{M_e\}_{e \in E(T)})$ be a 4-tensor that arises from nonsingular real parameters for $GM(\kappa)$ model on $T_{12|34}$. If the marginalizations $P_{+...}$ and $P_{...+}$ arise from stochastic parameters and, moreover, the $\kappa^2 \times \kappa^2$ matrix

$$\textit{Flatt}_{13|24}(P*_{2}(\textit{adj}(P_{+..+}^{T})P_{.+.+}^{T})*_{3}(\textit{adj}(P_{.+.+})P_{.++.}))$$

Theorem [Allman – Rhodes – Taylor]

Let $P = \varphi_T(\pi, \{M_e\}_{e \in E(T)})$ be a 4-tensor that arises from nonsingular real parameters for $GM(\kappa)$ model on $T_{12|34}$. If the marginalizations $P_{+...}$ and $P_{...+}$ arise from stochastic parameters and, moreover, the $\kappa^2 \times \kappa^2$ matrix

$$Flatt_{13|24}(P *_{2}(adj(P_{+,+}^{T})P_{+,++}^{T}) *_{3}(adj(P_{+,++})P_{++++}))$$

Theorem (Casanellas, Fernández-Sánchez, G-L)

Let $P = \varphi_{\mathcal{T}}(\pi, \{M_e\}_{e \in E(\mathcal{T})})$ be a 4-tensor for $GM(\kappa)$ model on $T_{12|34}$. Let \tilde{P} be constructed as in the previous theorem. Then,

$${\it Flat}_{13|24}(ilde{P})={\it Flat}_{14|23}(ilde{P}),$$

and

$$\textit{Flatt}_{12|34}(\tilde{P}) \neq \textit{Flatt}_{13|24}(\tilde{P}).$$

In particular

$$det(P_{+..+})det(P_{.+.+})Flatt_{13|24}(P *_{2} (adj(P_{+..+}^{T})P_{.+.+}^{T})) *_{3} (adj(P_{.+.+})P_{.++.})))$$

= $det(P_{+..+})det(P_{.+.+})Flatt_{14|23}(P *_{2} (adj(P_{+..+}^{T})P_{.+.+}^{T})) *_{3} (adj(P_{.+.+})P_{.++.}))$
gives rise to 256 topology invariants of degree 17.

12|34 Leaf-transformations

Original tree T

Resulting trees associated with the 12|34 leaf-transformations on the (theoretical) distribution from T

13|24 Leaf-transformations

Original tree T

Resulting trees associated with some 13|24 leaf-transformations on the (theoretical) distribution from T

Leaf-transformations on distributions of T = 12|34

Theorem [Casanellas - Fernández-Sánchez - G-L]

The rank of the *psd* approximation of a real matrix M is less than or equal to rank(M).

Theorem [Casanellas - Fernández-Sánchez - G-L]

The rank of the *psd* approximation of a real matrix M is less than or equal to rank(M).

Lemma [Casanellas - Fernández-Sánchez - G-L]

Let *P* be the theoretical distribution from a 3-parameter Kimura process on the quartet tree T = 12|34. Then, the rank of the *psd* approximation of the flattening matrix $Flat_{T'}(\alpha^{T'}(P))$ is grater than 4 for $T' \neq T$.

SAQ method

Let ${\it P}$ be a data point obtained from an alignment, then the score for ${\it T}=12|34$ is:

$$s_{12|34}^{i} := \frac{\min\left\{\delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{13|24}\left(\alpha_{i}^{12}(P)\right)\right)\right), \delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{14|23}\left(\alpha_{i}^{12}(P)\right)\right)\right)\right\}}{\delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{12|34}\left(\alpha_{i}^{12}(P)\right)\right)\right)}$$

SAQ method

Let ${\it P}$ be a data point obtained from an alignment, then the score for ${\it T}=12|34$ is:

$$s_{12|34}^{i} := \frac{\min\left\{\delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{13|24}\left(\alpha_{i}^{12}(P)\right)\right)\right), \delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{14|23}\left(\alpha_{i}^{12}(P)\right)\right)\right)\right\}}{\delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{12|34}\left(\alpha_{i}^{12}(P)\right)\right)\right)}$$

and $s_{12|34} := \text{mean}_i \{ s_{12|34}^i \}$

SAQ method

Let ${\it P}$ be a data point obtained from an alignment, then the score for ${\cal T}=12|34$ is:

$$s_{12|34}^{i} := \frac{\min\left\{\delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{13|24}\left(\alpha_{i}^{12}(P)\right)\right)\right), \delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{14|23}\left(\alpha_{i}^{12}(P)\right)\right)\right)\right\}}{\delta_{4}\left(\textit{psd}\left(\textit{Flatt}_{12|34}\left(\alpha_{i}^{12}(P)\right)\right)\right)}$$

and
$$s_{12|34} := \text{mean}_i \{ s_{12|34}^i \}$$

$$\operatorname{SAQ}(P) := \frac{1}{s_{12|34}(P) + s_{13|24}(P) + s_{14|23}(P)} \left(s_{12|34}(P), s_{13|24}(P), s_{14|23}(P) \right).$$

If $Q \in \mathbb{R}^{256}$ is a distribution that tends to P generated on the tree 12|34 with generic stochastic parameters, then

$$\lim_{Q\to P} \operatorname{SAQ}(Q) = \operatorname{SAQ}(P) = (1,0,0).$$

Simulations: Tree Space

GM; length 500 bp

GM; length 1 000 bp

base pairs	SAQ	Erik+2	NJ	ML
500	84.6	72.4	72.5	72.1
1 000	88.8	80.3	79.7	73.6

December 11, 2020
Simulations: Random branch lengths

A total of 10 000 alignments are considered, obtained from 4-taxa trees with random branch lengths uniformly distributed in the interval (0,1), and generated according to the General Markov substitution model.

Simulations: Mixture models

December 11, 2020

Marina Garrote-López

Simulations: Mixture models

internal branch length	0.01	0.05	0.1	0.2	0.3
SAQ	37	83	96	100	100
Erik+2 (2)	12	35	60	86	96
MP	0	2	19	76	99
$ML(GTR+2 \Gamma)$	0	4	14	77	95

December 11, 2020

