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The embedding problem

De�nition

� A Markov matrix is a non-negative square matrix with row

sum equal to one.

� A rate matrix is a real square matrix with row sum equal to

zero and non-negative o�-diagonal entries.

A Markov matrix M is said to be embeddable if M = exp(Q) for

some rate matrix Q. In this case, we say that Q is a Markov

generator for M.

Embedding Problem (Elfving 1937)

Given a Markov matrix M, decide whether it is embeddable or not.



The embedding problem

2× 2 M embeddable ⇔ det(M) > 0 (Kingman 1962).

3× 3 Characterization split in cases depending on eigenvalues.

(Cuthbert 1973, Johansen 1974, Chen 2011).

n × n Solved for some particular cases:

� Di�erent and real eigenvalues (Singer 1976).

� Double-stochastic matrices (Jia 2016).

� Equal-input model (Baake-Sumner 2019).

In this talk:

� Di�erent eigenvalues (real or not).

� 4× 4 Markov matrices.



Modelling evolution

� Nucleotides are represented as the states of random variables.

� Nucleotide substitution is modelled as a Markov process.
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Markov Processes

Markov matrices encode the conditional substitution probabilities

between states:

M =

Ö
P(A→ A) P(A→ G) P(A→ C) P(A→ T)

P(G→ A) P(G→ G) P(G→ C) P(G→ T)

P(C→ A) P(C→ G) P(C→ C) P(C→ T)

P(T→ A) P(T→ G) P(T→ C) P(T→ T)

è

The change between probability distributions πi is computed as

π1 = π0 ·M

π1X = π0
A
P(A→ x) + π0

G
P(G→ x) + π0

C
P(C→ x) + π0

T
P(T→ x)
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Markov Processes: Continuous Approach

Hypothesis

� Substitution events ruled by the same instantaneous transition

matrix R .

� Substitution events follow a homogeneous Poisson distribution.

Then the transition matrix corresponding to time t is:

M(t) =
∞∑
k=0

(µt)k · e−µt

k!
Rk = · · · = eQt , where Q = µ(R−Id)

The matrix Q is the instantaneous rate matrix ruling the Markov

process.



Nucleotide substitution models

Each evolutionary model assumes meaningful constraints on the set

of substitution probabilities or rates :

� Algebraic models : Constraints on probabilities (M).

� Continuous-time models: Constraints on rates (Q) .

A matrix structure provides two di�erent but related models.

Embedding Problem (Related questions)

� Which Markov matrices are rejected/considered for each

approach?

� Are we allowed to concatenate homogeneous processes?



Drawbacks

� Algebraic models consider unrealistic matrices.Ü
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

ê
� The product of embeddable matrices is not necessarily an

embeddable matrix.

� There are Markov matrices close to Id that are not the

exponential of any rate matrix.Ü
1 0 0 0

0 1 0 0

0 0 1− ε1 ε1
0 ε2 0 1− ε2

ê



Rate identi�ability

If the determinant is small enough there might be more than one

generator:

Q1 =

Ö−π 0 0 π

0 −π π 0

π 0 −π 0

0 π 0 −π

è
Q2 =

Ö−π 0 π 0

0 −π 0 π

π 0 −π 0

0 π 0 −π

è
.

Identi�ability Problem

Given an embeddable Markov matrix, is there a unique Markov

generator? If not, how many Markov generators does it admit?



Enumerating all the logarithms of a matrix

All the logarithms of a (non-singular) diagonalizable matrix are

given by choosing a diagonalizing basis and a determination of the

logarithm for each of its eigenvalues:

Theorem

Given a non-singular matrix M = P diag(λ1, λ2, . . . , λn) P
−1, then

any solution Q of the equation M = eQ can be expressed as:

Q = (P A) diag
(
logk1(λ1), logk2(λ2), . . . , logkn(λn)

)
(P A)−1

for some k1, k2, . . . , kn ∈ Z, A ∈ Comm∗(diag(λ1, λ2, . . . , λn)).



The principal logarithm

Any non-singular matrix A ∈ GLn(R) has a unique logarithm, called

the principal logarithm Log(A), all of whose eigenvalues lie in the

strip {z ∈ C | −π < Im(z) ≤ π}.

� Log(M) is real i� M has no negative eigenvalues.

� Log(M) is the only possible Markov generator if M is close

enough to Id.

Cuthbert(1972), Singer and Spilerman(1976), Israel et al.,(2001)

Theorem (Singer and Spilerman(1976))

Solution to the embedding problem and the rate identi�ability

problem for Markov matrices with di�erent real eigenvalues.



Embeddability of n × n Markov matrices

Lemma

Let Q be a rate matrix. Then for any eigenvalue λ ∈ σ(Q) we have

|Im(λ)| ≤ min

ß»
2 tr(Q) Re(λ)− (Re(λ))2,− Re(λ)

tan(π/n)

™
.

We can bound the number of real logarithms with rows summing to

zero in terms of the eigenvalues and the determinant of M.

Theorem

(Algorithmic) Solution to the embedding problem for a dense

subset of n × n Markov matrices (for any n).

MC, JFS and JRL The embedding problem for Markov matrices. arXiv:2005.00818



Embeddability of 4× 4 Markov matrices

Theorem

Let M = Pdiag(1, λ1, λ2, λ3)P
−1, be a Markov matrix with

di�erent eigenvalues λ1 ∈ R, λ2, λ3 ∈ C.

λ2, λ3 ∈ R: Let V be the zero matrix and L = U = 0.

λ2, λ3 6∈ R: Take V = P diag(0, 0, 2πi ,−2πi) P−1

L := max
i 6=j, Vi,j>0

°
−Log(M)i,j

Vi,j

§
, U := min

i 6=j, Vi,j<0

õ
−Log(M)i,j

Vi,j

û
.

M is embeddable if and only if

� λi 6∈ R≤0,

� {(i , j) : i 6= j , Vi ,j = 0 and Log(M)i ,j < 0} = ∅,
� L ≤ U .

The Markov generators of M are Log(M) + kV with k ∈ [L,U ].



Embeddability of 4× 4 Markov matrices

Sketch of proof

λ2, λ3 ∈ R

M is embeddable ⇔ Log(M) is a rate (even if λ = 1).

λ2, λ3 6∈ R

All the real logarithms with rows summing to 0 can be written

as Logk(M) := Log(M) + k · V for some k ∈ Z.

Logk(M) is a rate matrix if and only if N = ∅ and L ≤ k ≤ U .

MC, JFS and JRL The embedding problem for Markov matrices. arXiv:2005.00818



Embeddability of 4× 4 Markov matrices

Theorem

For all k ∈ Z, there is a non-empty open set of embeddable Markov

matrices whose unique Markov generator is Logk .

MC, JFS and JRL An open set of 4× 4 embeddable matrices whose principal

logarithm is not a Markov generator. To appear in Linear and Multilinear Algebra.

In particular, there is a non-empty Euclidean open set of 4× 4

Markov matrices that are embeddable and whose principal

logarithm is not a rate matrix.



Embeddability of 4× 4 Markov matrices

Special case: M = Pdiag(1, λ, µ, µ)P−1 with λ ≥ 0, µ 6= 0, λ.

� De�ne Qk(x , y , z) = L+ (2πk + Argµ) V (x , y , z), where

L = P diag(0, log(λ), log |µ|, log |µ|) P−1

V (x , y , z) = P diag
Ä
0, 0,
Ä
−y x

−z y

ää
P−1.

� Pk =
{
(x , y , z) ∈ R3 : Qk(x , y , z) is a rate matrix

}
.

V =
{
(x , y , z) ∈ R3 : x > 0, z > 0 and xz − y2 = 1

}
.



Embeddability of 4× 4 Markov matrices

Special case: M = Pdiag(1, λ, λ, λ)P−1 with λ ∈ R.

� Log(M) = − log(λ)
1−λ (M − Id).

� The following are equivalent:

i) M is embeddable.

ii) det(M) > 0.

iii) Log(M) is a rate matrix.

Special case: M does not diagonalize.

M embeddable ⇔ Log(M) is a rate matrix.



Evolutionary Models: Kimura models

De�nition

Kimura 3-parameter model (K3P) assign probabilities/rates

depending on the types of the substitution.

A

Purines

b

G

d

c

c T

Pyrimidines

C

b

á
· b c d

b · d c

c d · b

d c b ·

ë
� K2P model: c = d .

� JC model: b = c = d .



Embedding problem: Kimura 3-parameter model

Theorem

Let M be a Markov K3ST matrix with eigenvalues 1, x , y , z .

� If all eigenvalues are positive, then

M is embeddable ⇔ x ≥ yz , y ≥ xz , z ≥ xy .

� If M has a negative eigenvalue, say x , then

M is embeddable ⇔ x has algebraic multiplicity 2, and

x2 ≤ y ≤ e−2π.

Relative volume of K3P embeddable matrices = 0.09375.

JRL and JFS, Embeddability of Kimura 3ST Markov matrices, Journal of

theoretical biology 445)

D. Kosta and K. Kubjas. Geometry of time-reversible group-based models.



Embedding problem: Kimura 2-parameter model

Theorem

Relative volume of K2P embeddable matrices = (1+e−3π)
3 .

MC, JFS and JRL Embeddability and rate identi�ability of Kimura 2ST Markov

matrices, Journal of Mathematical Biology Nov-2019.



Some other nucleotide substitution models

De�nition

The strand symmetric model (SSM) takes into account the double

strand structure of DNA ( Watson-Crick base pairing A�T, C�G ),á
· b c d

e · g h

h g · e

d c b ·

ë
De�nition

The General Markov model (GM) allows any 4× 4 Markov/rate

matrix a nucleotide substitution process.



Embedding problem: Nucleotide substitution models

Corollary

Percentage of embeddable matrices w.r.t all 4× 4 Markov matries

(GM model), the strand symmetric model (SSM), the K3P model

and its submodels.

Model Dimension Embeddable

JC 1 75%

K2P 2 33.336 . . .%

K3P 3 9.375%

SSM 6 ∼ 1.745%

GM 12 ∼ 0.05774%
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