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The embedding problem

Definition
e A Markov matrix is a non-negative square matrix with row

sum equal to one.

e A rate matrix is a real square matrix with row sum equal to
zero and non-negative off-diagonal entries.

A Markov matrix M is said to be embeddable if M = exp(Q) for
some rate matrix Q. In this case, we say that Q is a Markov
generator for M.

Embedding Problem (Elfving 1937)

Given a Markov matrix M, decide whether it is embeddable or not.



The embedding problem

2 x 2 M embeddable < det(M) > 0 (Kingman 1962).

3 x 3 Characterization split in cases depending on eigenvalues.
(Cuthbert 1973, Johansen 1974, Chen 2011).
n x n Solved for some particular cases:
o Different and real eigenvalues (Singer 1976).
e Double-stochastic matrices (Jia 2016).
e Equal-input model (Baake-Sumner 2019).
In this talk:
o Different eigenvalues (real or not).
e 4 x 4 Markov matrices.



Modelling evolution




Modelling evolution
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e Nucleotides are represented as the states of random variables.

¢ Nucleotide substitution is modelled as a Markov process.



Markov Processes

Markov matrices encode the conditional substitution probabilities
between states:

P(A—A) P(A—G) PA—C) P(A—T)
M — P(G—4) P(G—G) P(G—C) PG—T)
P(C—4A) P(C—G) P(C—C) P(C—T)
P(T—4) P(T—G) P(T—C) P(T—T)



Markov Processes

Markov matrices encode the conditional substitution probabilities
between states:

P(A—A) P(A—G) PA—C) P(A—T)
M — P(G—4) P(G—G) P(G—C) PG—T)
P(C—4A) P(C—G) P(C—C) P(C—T)
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The change between probability distributions 7; is computed as
T =m M

% =1 P(a = x) + 1IP(6 = x) + 10 P(c = x) 4+ 1IP(T — x)



Markov Processes: Continuous Approach

Hypothesis
o Substitution events ruled by the instantaneous transition
matrix R.
e Substitution events follow a Poisson distribution.

Then the transition matrix corresponding to time t is:

t k . o—pt
M(t) = Z (M)klel-?k =...=e% where Q = p(R—Id)
k=0 '

The matrix @ is the instantaneous rate matrix ruling the Markov
process.



Nucleotide substitution models

Each evolutionary model assumes meaningful constraints on the set

of substitution probabilities or rates :

e Algebraic models : Constraints on probabilities (M).

e Continuous-time models: Constraints on rates (Q) .

A matrix structure provides two different but related models.

Embedding Problem (Related questions)
o Which Markov matrices are rejected/considered for each
approach?

e Are we allowed to concatenate homogeneous processes?



e Algebraic models consider unrealistic matrices.

0 0 01
0 010
0 1 0O
1 0 00

e The product of embeddable matrices is not necessarily an
embeddable matrix.

o There are Markov matrices close to Id that are not the

exponential of any rate matrix.

0 0 0
1 0 0
0 1—¢; €1
& 0 1—¢e5
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Rate identifiability

If the determinant is small enough there might be more than one

generator:
—m 0 0 s - 0 s 0
0 - 0 0 —-7m 0 T
Q1= e 0 —m 0 Qz B T 0 —m 0
0 s 0 - 0 iy 0 -7

Identifiability Problem
Given an embeddable Markov matrix, is there a unique Markov
generator? If not, how many Markov generators does it admit?



Enumerating all the logarithms of a matrix

All the logarithms of a (non-singular) diagonalizable matrix are
given by choosing a and a determination of the
logarithm for each of its eigenvalues:

Theorem
Given a non-singular matrix M = P diag(\1, M2, ..., \n) P71, then
any solution Q of the equation M = e® can be expressed as:

Q= diag( log, (A1), logy, (A2), - -, |0gkn()\n))

for some ki, ko, ... k, € Z,



The principal logarithm

Any non-singular matrix A € GL,(R) has a unique logarithm, called
the principal logarithm Log(A), all of whose eigenvalues lie in the
strip {ze C| —m < Im(z) < 7}.

e Log(M) is real iff M has no negative eigenvalues.

e Log(M) is the only possible Markov generator if M is close
enough to Id.
Cuthbert(1972), Singer and Spilerman(1976), Israel et al.,(2001)

Theorem (Singer and Spilerman(1976))
Solution to the embedding problem and the rate identifiability
problem for Markov matrices with different real eigenvalues.



Embeddability of n x n Markov matrices

Lemma

Let Q be a rate matrix. Then for any eigenvalue A € o(Q) we have

lIm(2)] < min {\/Qtr(Q) Re(\) — (Re(V)?, Re(A)} .

~ tan(r/n)

We can bound the number of real logarithms with rows summing to
zero in terms of the eigenvalues and the determinant of M.

Theorem
(Algorithmic) Solution to the embedding problem for a dense
subset of n x n Markov matrices ( ).

MC, JFS and JRL The embedding problem for Markov matrices. arXiv:2005.00818



Embeddability of 4 x 4 Markov matrices

Theorem
Let M = Pdiag(1,\1, A2, A\3)P~1, be a Markov matrix with
different eigenvalues \1 € R, Xy, \3 € C.

: Let V be the zero matrix and L =U = 0.
: Take V = P diag(0,0,2mi, —2mi) P!

._ _ Log(M)i; _ : _ Log(M),;
L= i#j, Vi ;>0 [ Vi —‘ U= i#j-,m\/lir,}<0 { Vi J .
M is embeddable if and only if
* \i ¢ Reo,
o {(i,j):i#j, Vij=0 and Log(M);; <0} =0,
o L<U.

The Markov generators of M are Log(M) + kV with k € [L,U].



Embeddability of 4 x 4 Markov matrices

Sketch of proof

M is embeddable < Log(M) is a rate (even if A = 1).

All the real logarithms with rows summing to 0 can be written
as Logk(M) := Log(M) + k - V for some k € Z.

Logk(M) is a rate matrix if and only if N =0 and £L < k <U.

MC, JFS and JRL The embedding problem for Markov matrices. arXiv:2005.00818



Embeddability of 4 x 4 Markov matrices

Theorem
For all k € Z, there is a non-empty open set of embeddable Markov
matrices whose unique Markov generator is Log,.

MC, JFS and JRL An open set of 4 x 4 embeddable matrices whose principal

logarithm is not a Markov generator. To appear in Linear and Multilinear Algebra.

In particular, there is a non-empty Euclidean open set of 4 x 4
Markov matrices that are embeddable and whose principal
logarithm is not a rate matrix.



Embeddability of 4 x 4 Markov matrices

Special case: M = Pdiag(1, \, , £)P~1 with A >0, u # 0, \.
e Define Qx(x,y,z) = L+ (2rk + Argp) V(x,y,z), where
L = P diag(0, log()), log |, log [u]) P!

V(x,y,z) = P diag (O,O7 (:i ;)) Pt

o Pe={(x,y,z) € R3: Qu(x,y,z) is a rate matrix} .
V:{(X’%Z)ERai x>0, z>0and xz—y? =1}.
%

_ Markov

— generators



Embeddability of 4 x 4 Markov matrices

Special case: M = Pdiag(1, A\, A\, \)P~! with X € R.

o Log(M) = = EQ)(p1 — 1),

e The following are equivalent:

i) M is embeddable.
ii) det(M) > 0.
iii) Log(M) is a rate matrix.

Special case: M does not diagonalize.

M embeddable < Log(M) is a rate matrix.



Evolutionary Models: Kimura models

Definition
Kimura 3-parameter model (K3P) assign probabilities/rates

depending on the types of the substitution.

H<]]

Pyrimidines

Purines
b ¢ d
d c o K2P model: c =d .
d - b
e JC model: b=c=d.
C .

Q 0 o



Embedding problem: Kimura 3-parameter model

Theorem
Let M be a Markov K3ST matrix with eigenvalues 1,x,y, z.

o If all eigenvalues are positive, then
M is embeddable < x > yz, y > xz, z > xy.
e If M has a negative eigenvalue, say x, then

M is embeddable < x has algebraic multiplicity 2, and
X2 S y S 67271'.
Relative volume of K3P embeddable matrices = 0.09375.
JRL and JFS, Embeddability of Kimura 3ST Markov matrices, Journal of

theoretical biology 445)

D. Kosta and K. Kubjas. Geometry of time-reversible group-based models.



Embedding problem: Kimura 2-parameter model

Theorem
b @
Ll e
W= c ¢ - b
c b

MC, JFS and JRL Embeddability and rate identifiability of Kimura 25T Markov

matrices, Journal of Mathematical Biology Nov-2019.



Some other nucleotide substitution models

Definition
The strand symmetric model (SSM) takes into account the double
strand structure of DNA ( Watson-Crick base pairing A-T, C-G ),

b ¢ d
€ g h
h g e
d c b

Definition
The General Markov model (GM) allows any 4 x 4 Markov/rate
matrix a nucleotide substitution process.



Embedding problem: Nucleotide substitution models

Corollary

Percentage of embeddable matrices w.r.t all 4 x 4 Markov matries

(GM model), the strand symmetric model (SSM), the K3P model
and its submodels.

Model | Dimension Embeddable

1 75%

2 33.336... %
3 9.375%

6 ~ 1.745%

12 ~ 0.05774%
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