Rees Algebras Associated to Rational Sextics

David A. Cox

Department of Mathematics
Amherst College
dac@math.amherst.edu

Barcelona

June 2012

Outline

Rational Curves via Commutative Algebra: Three Case Studies

- June 4: Rees Algebras Associated to Rational Sextics
- June 5: Singularities of Multiplicity c on Rational Plane Curves of Degree $2 c$.
- June 6: Singularities of Rational Plane Quartics

Outline

Rational Curves via Commutative Algebra: Three Case Studies

- June 4: Rees Algebras Associated to Rational Sextics
- I. Two Moving Lines
- II. Three Perspectives
- III. Singularities
- IV. Degree 6
- June 5: Singularities of Multiplicity c on Rational Plane Curves of Degree 2c.
- June 6: Singularities of Rational Plane Quartics

Outline

Rational Curves via Commutative Algebra: Three Case Studies

- June 4: Rees Algebras Associated to Rational Sextics
- I. Two Moving Lines
- II. Three Perspectives
- III. Singularities
- IV. Degree 6
- June 5: Singularities of Multiplicity c on Rational Plane Curves of Degree 2c.
- June 6: Singularities of Rational Plane Quartics

Outline

Rational Curves via Commutative Algebra: Three Case Studies

- June 4: Rees Algebras Associated to Rational Sextics
- I. Two Moving Lines
- II. Three Perspectives
- III. Singularities
- IV. Degree 6
- June 5: Singularities of Multiplicity c on Rational Plane Curves of Degree 2c.
- June 6: Singularities of Rational Plane Quartics

I. Two Moving Lines

Imagine two moving lines in \mathbb{P}^{2} :

$$
\begin{aligned}
& p=p_{1} x+p_{2} y+p_{3} z=0 \\
& q=q_{1} x+q_{2} y+q_{3} z=0
\end{aligned}
$$

where $p_{i}, q_{i} \in R=k[s, t]$ are homogeneous and

$$
\operatorname{deg}\left(p_{i}\right)=d_{1}, \operatorname{deg}\left(q_{i}\right)=d_{2}
$$

We assume the lines are always distinct.

Picture

The point of intersection of the two moving lines traces out a rational curve $C \subseteq \mathbb{P}^{2}$:

Picture

The point of intersection of the two moving lines traces out a rational curve $C \subseteq \mathbb{P}^{2}$:

Picture

The point of intersection of the two moving lines traces out a rational curve $C \subseteq \mathbb{P}^{2}$:

Assume the parametrization $\mathbb{P}^{1} \rightarrow C$ is birational.

Properties of $C \subset \mathbb{P}^{2}$

- $\operatorname{deg}(C)=d_{1}+d_{2}=n$.
- The map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by $\begin{aligned} B & =(a, b, c)=2 \times 2 \text { minors of } A=\left(\begin{array}{ll}p_{1} & q_{1} \\ p_{2} & q_{2} \\ p_{3} & q_{3}\end{array}\right) . \\ c) & =1 .\end{aligned}$
- $I=\langle a, b, c\rangle \subseteq \boldsymbol{P}=\boldsymbol{k}[s, t]$ has free resolution

$$
0 \rightarrow R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right) \xrightarrow{A} R(-n)^{3} \xrightarrow{B} I \rightarrow 0 .
$$

- p, q generate $\operatorname{Syz}(a, b, c) \simeq R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right)$.
- All rational plane curves arise this way.

Properties of $C \subset \mathbb{P}^{2}$

- $\operatorname{deg}(C)=d_{1}+d_{2}=n$.
- The map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by

$$
\begin{aligned}
& \mathbb{P}^{1} \rightarrow \mathbb{P}^{-} \text {is given by } \\
& B=(a, b, c)=2 \times 2 \text { minors of } A=\left(\begin{array}{ll}
p_{1} & q_{1} \\
p_{2} & q_{2} \\
p_{3} & q_{3}
\end{array}\right) .
\end{aligned}
$$

- $I=\langle a, b, c\rangle \subseteq R=k[s, t]$ has free resolution

- p, q generate $\operatorname{Syz}(a, b, c) \simeq R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right)$.
- All rational plane curves arise this way.

Properties of $C \subset \mathbb{P}^{2}$

- $\operatorname{deg}(C)=d_{1}+d_{2}=n$.
- The map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by

$$
\begin{aligned}
& \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{2} \text { is given by } \\
& B=(a, b, c)=2 \times 2 \text { minors of } A=\left(\begin{array}{ll}
p_{1} & q_{1} \\
p_{2} & q_{2} \\
p_{3} & q_{3}
\end{array}\right) . \\
&c)=1
\end{aligned}
$$

$-\operatorname{gcd}(a, b, c)=1$.

- $I=\langle a, b, c\rangle \subseteq R=k[s, t]$ has free resolution

- p, q generate $\operatorname{Syz}(a, b, c) \simeq R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right)$.
- All rational plane curves arise this way.

Properties of $C \subset \mathbb{P}^{2}$

- $\operatorname{deg}(C)=d_{1}+d_{2}=n$.
- The map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by

$$
\begin{aligned}
\mathbb{P}^{1} & \rightarrow \mathbb{P}^{2} \text { is given by } \\
B & =(a, b, c)=2 \times 2 \text { minors of } A=\left(\begin{array}{ll}
p_{1} & q_{1} \\
p_{2} & q_{2} \\
p_{3} & q_{3}
\end{array}\right) \\
c) & =1
\end{aligned}
$$

- $\operatorname{gcd}(a, b, c)=1$.
- $I=\langle a, b, c\rangle \subseteq R=k[s, t]$ has free resolution

$$
0 \rightarrow R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right) \xrightarrow{A} R(-n)^{3} \xrightarrow{B} I \rightarrow 0 .
$$

- p, q generate $\operatorname{Syz}(a, b, c) \simeq R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right)$.
- All rational plane curves arise this way.

Properties of $C \subset \mathbb{P}^{2}$

- $\operatorname{deg}(C)=d_{1}+d_{2}=n$.
- The map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by

$$
\begin{aligned}
\mathbb{P}^{1} & \rightarrow \mathbb{P}^{2} \text { is given by } \\
B & =(a, b, c)=2 \times 2 \text { minors of } A=\left(\begin{array}{ll}
p_{1} & q_{1} \\
p_{2} & q_{2} \\
p_{3} & q_{3}
\end{array}\right) \\
c) & =1
\end{aligned}
$$

- $\operatorname{gcd}(a, b, c)=1$.
- $I=\langle a, b, c\rangle \subseteq R=k[s, t]$ has free resolution

$$
0 \rightarrow R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right) \xrightarrow{A} R(-n)^{3} \xrightarrow{B} I \rightarrow 0 .
$$

- p, q generate $\operatorname{Syz}(a, b, c) \simeq R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right)$.
- All rational plane curves arise this way.

Properties of $C \subset \mathbb{P}^{2}$

- $\operatorname{deg}(C)=d_{1}+d_{2}=n$.
- The map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by

$$
\begin{aligned}
\mathbb{P}^{1} & \rightarrow \mathbb{P}^{2} \text { is given by } \\
B & =(a, b, c)=2 \times 2 \text { minors of } A=\left(\begin{array}{ll}
p_{1} & q_{1} \\
p_{2} & q_{2} \\
p_{3} & q_{3}
\end{array}\right) \\
c) & =1
\end{aligned}
$$

- $\operatorname{gcd}(a, b, c)=1$.
- $I=\langle a, b, c\rangle \subseteq R=k[s, t]$ has free resolution

$$
0 \rightarrow R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right) \xrightarrow{A} R(-n)^{3} \xrightarrow{B} I \rightarrow 0 .
$$

- p, q generate $\operatorname{Syz}(a, b, c) \simeq R\left(-n-d_{1}\right) \oplus R\left(-n-d_{2}\right)$.
- All rational plane curves arise this way.

II. Three Perspectives

We will think about our setup from three points of view:

- Geometric Modeling
- Projective Elimination Theory
- Commutative Algebra

II. Three Perspectives

We will think about our setup from three points of view:

- Geometric Modeling
- Projective Elimination Theory
- Commutative Algebra

II. Three Perspectives

We will think about our setup from three points of view:

- Geometric Modeling
- Projective Elimination Theory
- Commutative Algebra

II. Three Perspectives

We will think about our setup from three points of view:

- Geometric Modeling
- Projective Elimination Theory
- Commutative Algebra

Geometric Modeling

- A moving curve in \mathbb{P}^{2} is $\sum_{i+j+k=m} A_{i j k} x^{i} y^{j} z^{k}$ where $A_{i j k} \in R=k[s, t]$ are homogeneous of the same degree.
- It follows the parametrization (a, b, c) if $\sum_{i+j+k=m} A_{i j k} a^{i} b^{j} c^{k}=0$.
- The two given moving lines $p\left(\operatorname{deg} d_{1}=\mu\right)$ and q (deg $d_{2}=n-\mu$) follow the parametrization, and

$$
\operatorname{Syz}(a, b, c) \simeq R(-n-\mu) \oplus R(-n-(n-\mu))
$$

implies they generate all moving lines that follow the parametrization (μ-basis).

Geometric Modeling

- A moving curve in \mathbb{P}^{2} is $\sum_{i+j+k=m} A_{i j k} x^{i} y^{j} z^{k}$ where $A_{i j k} \in R=k[s, t]$ are homogeneous of the same degree.
- It follows the parametrization (a, b, c) if $\sum_{i+j+k=m} A_{i j k} a^{i} b^{j} c^{k}=0$.
- The two given moving lines $p\left(\operatorname{deg} d_{1}=\mu\right)$ and q (deg $d_{2}=n-\mu$) follow the parametrization, and

$$
\operatorname{Syz}(a, b, c) \simeq R(-n-\mu) \oplus R(-n-(n-\mu))
$$

implies they generate all moving lines that follow the parametrization (μ-basis).

Geometric Modeling

- A moving curve in \mathbb{P}^{2} is $\sum_{i+j+k=m} A_{i j k} x^{i} y^{j} z^{k}$ where $A_{i j k} \in R=k[s, t]$ are homogeneous of the same degree.
- It follows the parametrization (a, b, c) if $\sum_{i+j+k=m} A_{i j k} a^{i} b^{j} c^{k}=0$.
- The two given moving lines $p\left(\operatorname{deg} d_{1}=\mu\right)$ and q (deg $d_{2}=n-\mu$) follow the parametrization, and

$$
\operatorname{Syz}(a, b, c) \simeq R(-n-\mu) \oplus R(-n-(n-\mu))
$$

implies they generate all moving lines that follow the parametrization (μ-basis).

Moving Curve Ideal

The collection of all moving curves that follow the parametrization is the moving curve ideal

$$
M C \subseteq k[s, t, x, y, z] \leftarrow \text { bigraded }
$$

Example

$n=4, \mu=2$. The moving lines p, q determine the implicit equation
$F=0$ via

$$
F=\operatorname{Res}_{s, t}(p, q) \leftarrow 4 \times 4 \text { determinant. }
$$

There are two moving conics C_{1}, C_{2} that follow the parametrization of degree 1 is s, t with

$$
F=\operatorname{Res}_{s, t}\left(C_{1}, C_{2}\right) \leftarrow 2 \times 2 \text { determinant }
$$

Example, Continued

- A moving conic is

$$
A x^{2}+B x y+C x z+D y^{2}+E y z+F z^{2}
$$

- The kernel of

has dim 2, giving moving conics C_{1}, C_{2} that follow the parametrization of degree 1 is s, t.
- For $n=4, \mu=2$, the minimal generators of $M C$ are

Example, Continued

- A moving conic is

$$
A x^{2}+B x y+C x z+D y^{2}+E y z+F z^{2}
$$

- The kernel of

$$
\underbrace{R_{1}^{6}}_{\operatorname{dim} 12} \xrightarrow{a^{2}, \ldots, c^{2}} \underbrace{R_{9}}_{\operatorname{dim} 10}(R=k[s, t])
$$

has dim 2, giving moving conics C_{1}, C_{2} that follow the parametrization of degree 1 is s, t.

- For $n=4, \mu=2$, the minimal generators of $M C$ are

Example, Continued

- A moving conic is

$$
A x^{2}+B x y+C x z+D y^{2}+E y z+F z^{2}
$$

- The kernel of

$$
\underbrace{R_{1}^{6}}_{\operatorname{dim} 12} \xrightarrow{a^{2}, \ldots, c^{2}} \underbrace{R_{9}}_{\operatorname{dim} 10}(R=k[s, t])
$$

has dim 2, giving moving conics C_{1}, C_{2} that follow the parametrization of degree 1 is s, t.

- For $n=4, \mu=2$, the minimal generators of $M C$ are

$$
p, q, C_{1}, C_{2}, F
$$

Elimination Theory

$k[s, t, x, y, z]$ is the coordinate ring of $\mathbb{P}^{1} \times \mathbb{P}^{2}$, and $p=q=0$ defines the graph Γ of the parametrization

Since $C=\pi(\Gamma)$, eliminating s, t from $p=q=0$ gives the implicit equation

$$
F=0
$$

Elimination Theory, Continued

- (Affine) Given polynomials

$$
f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]
$$

eliminating x_{1}, \ldots, x_{n} means computing

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle \cap k\left[y_{1}, \ldots, y_{m}\right] .
$$

- (Projective) $\langle p, q\rangle \cap k[x, y, z]=\{0\}$ for degree reasons. Instead, we need to compute

$$
\left(\langle p, q\rangle:\langle s, t\rangle^{\infty}\right) \cap k[x, y, z] .
$$

- Hence we have the ideals $\langle p, q\rangle \subseteq\langle p, q\rangle:\langle s, t\rangle^{\infty}$.

Elimination Theory, Continued

- (Affine) Given polynomials

$$
f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]
$$

eliminating x_{1}, \ldots, x_{n} means computing

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle \cap k\left[y_{1}, \ldots, y_{m}\right] .
$$

- (Projective) $\langle p, q\rangle \cap k[x, y, z]=\{0\}$ for degree reasons. Instead, we need to compute

$$
\left(\langle p, q\rangle:\langle s, t\rangle^{\infty}\right) \cap k[x, y, z] .
$$

- Hence we have the ideals $\langle p, q\rangle \subseteq\langle p, q\rangle:\langle s, t\rangle^{\infty}$.

Elimination Theory, Continued

- (Affine) Given polynomials

$$
f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]
$$

eliminating x_{1}, \ldots, x_{n} means computing

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle \cap k\left[y_{1}, \ldots, y_{m}\right] .
$$

- (Projective) $\langle p, q\rangle \cap k[x, y, z]=\{0\}$ for degree reasons. Instead, we need to compute

$$
\left(\langle p, q\rangle:\langle s, t\rangle^{\infty}\right) \cap k[x, y, z] .
$$

- Hence we have the ideals $\langle p, q\rangle \subseteq\langle p, q\rangle:\langle s, t\rangle^{\infty}$.

Commutative Algebra

An ideal I in a commutative ring R gives two important R-algebras:

- The symmetric algebra: $\operatorname{Sym}(I)=\bigoplus_{d} \operatorname{Sym}^{d}(I)$
- The Rees algebra: $\mathcal{R}(I)=\bigoplus_{d} I^{d} e^{d} \subseteq R[e]$

They are related by a natural surjection:
$\operatorname{Sym}(I) \longrightarrow \mathcal{R}(I)$.
When $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, we have surjections:

Commutative Algebra

An ideal l in a commutative ring R gives two important R-algebras:

- The symmetric algebra: $\operatorname{Sym}(I)=\bigoplus_{d} \operatorname{Sym}^{d}(I)$
- The Rees algebra: $\mathcal{R}(I)=\bigoplus_{d} I^{d} e^{d} \subseteq R[e]$

They are related by a natural surjection:

When $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, we have surjections:

Commutative Algebra

An ideal l in a commutative ring R gives two important R-algebras:

- The symmetric algebra: $\operatorname{Sym}(I)=\bigoplus_{d} \operatorname{Sym}^{d}(I)$
- The Rees algebra: $\mathcal{R}(I)=\bigoplus_{d} I^{d} e^{d} \subseteq R[e]$

They are related by a natural surjection:
$\operatorname{Sym}(I) \longrightarrow \mathcal{R}(I)$.
When $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, we have surjections:

Commutative Algebra

An ideal l in a commutative ring R gives two important R-algebras:

- The symmetric algebra: $\operatorname{Sym}(I)=\bigoplus_{d} \operatorname{Sym}^{d}(I)$
- The Rees algebra: $\mathcal{R}(I)=\bigoplus_{d} I^{d} e^{d} \subseteq R[e]$

They are related by a natural surjection:

$$
\operatorname{Sym}(I) \longrightarrow \mathcal{R}(I) .
$$

When $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, we have surjections:

Commutative Algebra

An ideal l in a commutative ring R gives two important R-algebras:

- The symmetric algebra: $\operatorname{Sym}(I)=\bigoplus_{d} \operatorname{Sym}^{d}(I)$
- The Rees algebra: $\mathcal{R}(I)=\bigoplus_{d} I^{d} e^{d} \subseteq R[e]$

They are related by a natural surjection:

$$
\operatorname{Sym}(I) \longrightarrow \mathcal{R}(I) .
$$

When $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, we have surjections:

$$
\begin{aligned}
R\left[x_{1}, \ldots, x_{s}\right] & \longrightarrow \operatorname{Sym}(I), \\
R\left[x_{1}, \ldots, x_{s}\right] & \longrightarrow \mathcal{R}(I), \\
x_{i} & x_{i} \mapsto f_{i} e .
\end{aligned}
$$

The Viewpoints are the Same!

- $M C=\langle p, q\rangle:\langle s, t\rangle^{\infty}$
- We have a commutative diagram:

- $\operatorname{ker}(\operatorname{Sym}(I) \rightarrow \mathcal{R}(I))=R$-torsion in $\operatorname{Sym}(I)$.
- $M C=$ defining equations of $\mathcal{R}(I)$.

The Viewpoints are the Same!

- $M C=\langle p, q\rangle:\langle s, t\rangle^{\infty}$
- We have a commutative diagram:

- $\operatorname{ker}(\operatorname{Sym}(I) \rightarrow \mathcal{R}(I))=R$-torsion in $\operatorname{Sym}(I)$.
- $M C=$ defining equations of $\mathcal{R}(I)$.

The Viewpoints are the Same!

- $M C=\langle p, q\rangle:\langle s, t\rangle^{\infty}$
- We have a commutative diagram:

- $\operatorname{ker}(\operatorname{Sym}(I) \rightarrow \mathcal{R}(I))=R$-torsion in $\operatorname{Sym}(I)$.
- $M C=$ defining equations of $\mathcal{R}(I)$.

The Viewpoints are the Same!

- $M C=\langle p, q\rangle:\langle s, t\rangle^{\infty}$
- We have a commutative diagram:

- $\operatorname{ker}(\operatorname{Sym}(I) \rightarrow \mathcal{R}(I))=R$-torsion in $\operatorname{Sym}(I)$.
- $M C=$ defining equations of $\mathcal{R}(I)$.

III. Singularities

Two examples with $n=4$:

$$
\mu=2
$$

$\mu=1$

Bi-degrees of minimal generators of $M C$:

- $\mu=2:(2,1),(2,1),(1,2),(1,2),(0,4)$
- $\mu=1$: $(1,1),(3,1),(2,2),(1,3),(0,4)$

Main Question

When $n=4$, we have $\mu=1$ or 2 . Furthermore:

- $\mu=1 \Longleftrightarrow$ there is a point of mult 3 .
- $\mu=2 \Longleftrightarrow$ all singularities have mult 2 .
- The bi-degrees of the minimal generators of MC are determined by the singularities of the curve.

Question
 In general, how do the singularities of the curve influence the bi-degrees of the minimal generators of MC?

Main Question

When $n=4$, we have $\mu=1$ or 2 . Furthermore:

- $\mu=1 \Longleftrightarrow$ there is a point of mult 3 .
- $\mu=2 \Longleftrightarrow$ all singularities have mult 2 .
- The bi-degrees of the minimal generators of $M C$ are determined by the singularities of the curve.

Question
 In deneral, how do the singularities of the curve influence the bi-degrees of the minimal generators of MC?

Main Question

When $n=4$, we have $\mu=1$ or 2 . Furthermore:

- $\mu=1 \Longleftrightarrow$ there is a point of mult 3 .
- $\mu=2 \Longleftrightarrow$ all singularities have mult 2 .
- The bi-degrees of the minimal generators of MC are determined by the singularities of the curve.

Question
 In general, how do the singularities of the curve influence the bi-degrees of the minimal generators of MC?

Main Question

When $n=4$, we have $\mu=1$ or 2 . Furthermore:

- $\mu=1 \Longleftrightarrow$ there is a point of mult 3 .
- $\mu=2 \Longleftrightarrow$ all singularities have mult 2 .
- The bi-degrees of the minimal generators of $M C$ are determined by the singularities of the curve.

Question
 In general, how do the singularities of the curve influence the bi-degrees of the minimal generators of MC?

Main Question

When $n=4$, we have $\mu=1$ or 2 . Furthermore:

- $\mu=1 \Longleftrightarrow$ there is a point of mult 3 .
- $\mu=2 \Longleftrightarrow$ all singularities have mult 2 .
- The bi-degrees of the minimal generators of $M C$ are determined by the singularities of the curve.

Question

In general, how do the singularities of the curve influence the bi-degrees of the minimal generators of $M C$?

Two Theorems

Theorem (Ascenzi, Song/Chen/Goldman, Chen/Wang/Liu)
Assume $C \subseteq \mathbb{P}^{2}$ is a rational plane curve of degree n with $\mu \leq n-\mu$. Then the singular points of C have:

- $(\mu=n-\mu)$ Multiplicity $\leq \mu$.
- $(\mu<n-\mu)$ Multiplicity $\leq \mu$ or $=n-\mu$, and there is at most one of multiplicity $=n-\mu$.

Two Theorems

Theorem (Ascenzi, Song/Chen/Goldman, Chen/Wang/Liu)
Assume $C \subseteq \mathbb{P}^{2}$ is a rational plane curve of degree n with $\mu \leq n-\mu$. Then the singular points of C have:

- $(\mu=n-\mu)$ Multiplicity $\leq \mu$.
- $(\mu<n-\mu)$ Multiplicity $\leq \mu$ or $=n-\mu$, and there is at most one of multiplicity $=n-\mu$.

Two Theorems

Theorem (Ascenzi, Song/Chen/Goldman, Chen/Wang/Liu)
Assume $C \subseteq \mathbb{P}^{2}$ is a rational plane curve of degree n with $\mu \leq n-\mu$. Then the singular points of C have:

- $(\mu=n-\mu)$ Multiplicity $\leq \mu$.
- $(\mu<n-\mu)$ Multiplicity $\leq \mu$ or $=n-\mu$, and there is at most one of multiplicity $=n-\mu$.

Two Theorems

Theorem (Ascenzi, Song/Chen/Goldman, Chen/Wang/Liu)
Assume $C \subseteq \mathbb{P}^{2}$ is a rational plane curve of degree n with $\mu \leq n-\mu$. Then the singular points of C have:

- $(\mu=n-\mu)$ Multiplicity $\leq \mu$.
- $(\mu<n-\mu)$ Multiplicity $\leq \mu$ or $=n-\mu$, and there is at most one of multiplicity $=n-\mu$.

Theorem (C/Hoffman/Wang, Hong/Simis/Vasconcelos, Cortadellas/D'Andrea) Assume $n \geq 3$. Then:

- $\mu=1 \Longleftrightarrow \exists$! singular point of multiplicity $n-1$
- If $\mu=1$, then MC has minimal generators of bi-degrees:

Two Theorems

Theorem (Ascenzi, Song/Chen/Goldman, Chen/Wang/Liu)
Assume $C \subseteq \mathbb{P}^{2}$ is a rational plane curve of degree n with $\mu \leq n-\mu$. Then the singular points of C have:

- $(\mu=n-\mu)$ Multiplicity $\leq \mu$.
- $(\mu<n-\mu)$ Multiplicity $\leq \mu$ or $=n-\mu$, and there is at most one of multiplicity $=n-\mu$.

Theorem (C/Hoffman/Wang, Hong/Simis/Vasconcelos, Cortadellas/D'Andrea) Assume $n \geq 3$. Then:

- $\mu=1 \Longleftrightarrow$ 引! singular point of multiplicity $n-1$.
- If $\mu=1$, then MC has minimal generators of bi-degrees:

Two Theorems

Theorem (Ascenzi, Song/Chen/Goldman, Chen/Wang/Liu)
Assume $C \subseteq \mathbb{P}^{2}$ is a rational plane curve of degree n with $\mu \leq n-\mu$. Then the singular points of C have:

- $(\mu=n-\mu)$ Multiplicity $\leq \mu$.
- $(\mu<n-\mu)$ Multiplicity $\leq \mu$ or $=n-\mu$, and there is at most one of multiplicity $=n-\mu$.

Theorem (C/Hoffman/Wang, Hong/Simis/Vasconcelos, Cortadellas/D'Andrea) Assume $n \geq 3$. Then:

- $\mu=1 \Longleftrightarrow \exists$! singular point of multiplicity $n-1$.
- If $\mu=1$, then MC has minimal generators of bi-degrees:

$$
(1,1),(n-1,1),(n-2,2), \ldots,(1, n-1),(0, n)
$$

IV. Degree 6

Main Focus
 Bi-degrees of the minimal generators of the moving curve ideal associated to a rational plane sextic.

- Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich.
- When $n=6$, we have $\mu=1,2,3$.
- We know what happens for $\mu=1$
\square
Question
What happens when $\mu=2$ or 3 ?

IV. Degree 6

Main Focus

Bi-degrees of the minimal generators of the moving curve ideal associated to a rational plane sextic.

- Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich.
- When $n=6$, we have $\mu=1,2,3$.
- We know what happens for $\mu=1$

What happens when $\mu=2$ or 3 ?

IV. Degree 6

Main Focus

Bi-degrees of the minimal generators of the moving curve ideal associated to a rational plane sextic.

- Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich.
- When $n=6$, we have $\mu=1,2,3$.
- We know what happens for $\mu=1$

What happens when $\mu=2$ or 3 ?

IV. Degree 6

Main Focus

Bi-degrees of the minimal generators of the moving curve ideal associated to a rational plane sextic.

- Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich.
- When $n=6$, we have $\mu=1,2,3$.
- We know what happens for $\mu=1$.

IV. Degree 6

Main Focus

Bi-degrees of the minimal generators of the moving curve ideal associated to a rational plane sextic.

- Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich.
- When $n=6$, we have $\mu=1,2,3$.
- We know what happens for $\mu=1$.

Question

What happens when $\mu=2$ or 3 ?

$n=6, \mu=2$

Previous results:

- Singular points have multiplicity $=2$ or 4 .
- It one of mult 4 occurs, it is unique.
- (Song/Chen/Goldman) Multiplicity 4 occurs if and only if the moving line of degree 2 spins about fixed point.
- (Busé) Bi-degrees of generators of MC are known when a certain depth condition is satisfied.

Theorem (CKPU)

If $n=6, \mu=2$, then there are two possibilities for the bi-degrees of the minimal generators of MC, corresponding to whether the moving line of degree 2 spins about fixed point.

By Song/Chen/Goldman, these two possibilities correspond to whether the curve has 0 or 1 singular point of multipicity $=4$.

$n=6, \mu=2$

Previous results:

- Singular points have multiplicity $=2$ or 4 .
- It one of mult 4 occurs, it is unique.
- (Song/Chen/Goldman) Multiplicity 4 occurs if and only if the moving line of degree 2 spins about fixed point.
- (Busé) Bi-degrees of generators of MC are known when a certain depth condition is satisfied.

Theorem (CKDII)

If $n=6, \mu=2$, then there are two possibilities for the bi-degrees of the minimal generators of MC, corresponding to whether the moving line of degree 2 spins about fixed point.

By Song/Chen/Goldman, these two possibilities correspond to whether the curve has 0 or 1 singular point of multipicity $=4$.

$$
n=6, \mu=2
$$

Previous results:

- Singular points have multiplicity $=2$ or 4 .
- It one of mult 4 occurs, it is unique.
- (Song/Chen/Goldman) Multiplicity 4 occurs if and only if the moving line of degree 2 spins about fixed point.
- (Busé) Bi-degrees of generators of MC are known when a certain depth condition is satisfied.

Theorem (CKPU)
 If $n=6$. $u=2$, then there are two possibilities for the bi-degrees of the

 minimal generators of MC, corresponding to whether the moving line of degree 2 spins about fixed point.By Song/Chen/Goldman, these two possibilities correspond to whether the curve has 0 or 1 singular point of multipicity $=4$.

$$
n=6, \mu=2
$$

Previous results:

- Singular points have multiplicity $=2$ or 4 .
- It one of mult 4 occurs, it is unique.
- (Song/Chen/Goldman) Multiplicity 4 occurs if and only if the moving line of degree 2 spins about fixed point.

- (Busé) Bi-degrees of generators of MC are known when a certain depth condition is satisfied.

> Theorem (CKDII)
If $n=6, \mu=2$, then there are two possibilities for the bi-degrees of the
> minimal generators of MC, corresponding to whether the moving line of degree 2 spins about fixed point.

> By Song/Chen/Goldman, these two possibilities correspond to whether the curve has 0 or 1 singular point of multipicity $=4$.

$$
n=6, \mu=2
$$

Previous results:

- Singular points have multiplicity $=2$ or 4 .
- It one of mult 4 occurs, it is unique.
- (Song/Chen/Goldman) Multiplicity 4 occurs if and only if the moving line of degree 2 spins about fixed point.
- (Busé) Bi-degrees of generators of MC are known when a certain depth condition is satisfied.

Theorem (CKPU)
If $n=6, \mu=2$, then there are two possibilities for the bi-degrees of the
minimal generators of MC, corresponding to whether the moving line
of degree 2 spins about fixed point.
By Song/Chen/Goldman, these two possibilities correspond to whether
the curve has 0 or 1 singular point of multipicity $=4$.
$n=6, \mu=2$
Previous results:

- Singular points have multiplicity $=2$ or 4 .
- It one of mult 4 occurs, it is unique.
- (Song/Chen/Goldman) Multiplicity 4 occurs if and only if the moving line of degree 2 spins about fixed point.
- (Busé) Bi-degrees of generators of $M C$ are known when a certain depth condition is satisfied.

Theorem (CKPU)

If $n=6, \mu=2$, then there are two possibilities for the bi-degrees of the minimal generators of MC, corresponding to whether the moving line of degree 2 spins about fixed point.
\square
$n=6, \mu=2$
Previous results:

- Singular points have multiplicity $=2$ or 4 .
- It one of mult 4 occurs, it is unique.
- (Song/Chen/Goldman) Multiplicity 4 occurs if and only if the moving line of degree 2 spins about fixed point.
- (Busé) Bi-degrees of generators of $M C$ are known when a certain depth condition is satisfied.

Theorem (CKPU)

If $n=6, \mu=2$, then there are two possibilities for the bi-degrees of the minimal generators of MC, corresponding to whether the moving line of degree 2 spins about fixed point.

By Song/Chen/Goldman, these two possibilities correspond to whether the curve has 0 or 1 singular point of multipicity $=4$.

$n=6, \mu=2$, Continued

The bi-degrees of the minimal generators of $M C$:

All singular points have multiplicity 2

One singular point has multiplicity 4

$n=6, \mu=3:$ Algebra

To analyze this case, write

$$
\begin{aligned}
& p=s^{3} C_{01}+s^{2} t C_{11}+s t^{2} C_{21}+t^{3} C_{31} \\
& q=s^{3} C_{02}+s^{2} t C_{12}+s t^{2} C_{22}+t^{3} C_{32}
\end{aligned}
$$

where $C_{i j}$ is linear in x, y, z. Let $I_{2}(C)$ be the ideal generated by the 2×2 minors of the 2×4 matrix $C=\left(C_{i j}\right)$.

Theorem (KPU)
When $n=6, \mu=3$:

- There are four possibilities* for the bi-degrees of the minimal generators of MC.
- These correspond to whether the ideal $l_{2}(C)$ has 3,4,5 or 6 minimal generators.

Later I will show the bi-degrees for when $I_{2}(C)$ has 6 generators.

$n=6, \mu=3:$ Algebra

To analyze this case, write

$$
\begin{aligned}
& p=s^{3} C_{01}+s^{2} t C_{11}+s t^{2} C_{21}+t^{3} C_{31} \\
& q=s^{3} C_{02}+s^{2} t C_{12}+s t^{2} C_{22}+t^{3} C_{32}
\end{aligned}
$$

where $C_{i j}$ is linear in x, y, z. Let $I_{2}(C)$ be the ideal generated by the 2×2 minors of the 2×4 matrix $C=\left(C_{i j}\right)$.

Theorem (KPU)
When $n=6, \mu=3$:

- There are four possibilities* for the bi-degrees of the minimal generators of MC.
- These correspond to whether the ideal $l_{2}(C)$ has $3,4,5$ or 6 minimal generators.

Later I will show the bi-degrees for when $I_{2}(C)$ has 6 generators.

$n=6, \mu=3:$ Algebra

To analyze this case, write

$$
\begin{aligned}
& p=s^{3} C_{01}+s^{2} t C_{11}+s t^{2} C_{21}+t^{3} C_{31} \\
& q=s^{3} C_{02}+s^{2} t C_{12}+s t^{2} C_{22}+t^{3} C_{32}
\end{aligned}
$$

where $C_{i j}$ is linear in x, y, z. Let $I_{2}(C)$ be the ideal generated by the 2×2 minors of the 2×4 matrix $C=\left(C_{i j}\right)$.

Theorem (KPU)
When $n=6, \mu=3$:

- There are four possibilities* for the bi-degrees of the minimal generators of MC.
- These correspond to whether the ideal $I_{2}(C)$ has $3,4,5$ or 6 minimal generators.

$$
\text { Later I will show the bi-degrees for when } I_{2}(C) \text { has } 6 \text { generators. }
$$

$n=6, \mu=3:$ Algebra

To analyze this case, write

$$
\begin{aligned}
& p=s^{3} C_{01}+s^{2} t C_{11}+s t^{2} C_{21}+t^{3} C_{31} \\
& q=s^{3} C_{02}+s^{2} t C_{12}+s t^{2} C_{22}+t^{3} C_{32}
\end{aligned}
$$

where $C_{i j}$ is linear in x, y, z. Let $I_{2}(C)$ be the ideal generated by the 2×2 minors of the 2×4 matrix $C=\left(C_{i j}\right)$.

Theorem (KPU)

When $n=6, \mu=3$:

- There are four possibilities* for the bi-degrees of the minimal generators of MC.
- These correspond to whether the ideal $I_{2}(C)$ has $3,4,5$ or 6 minimal generators.
* Later I will show the bi-degrees for when $I_{2}(C)$ has 6 generators.

$n=6, \mu=3$: Geometry

Here, the singular points of the curve have multiplicity $=2$ or 3 .

```
Theorem (CKPU)
When n=6, }\mu=3\mathrm{ , the number of triple points (including infinitely
near) is 0,1,2 or 3 and is equal to
6 - # minimal generators of l2(C)
```

``` near) determines the bi-degrees of the minimal generators of MC.
```

My next lecture will include a generalization of this theorem.

$n=6, \mu=3$: Geometry

Here, the singular points of the curve have multiplicity $=2$ or 3 .
Theorem (CKPU)
When $n=6, \mu=3$, the number of triple points (including infinitely near) is $0,1,2$ or 3 and is equal to

$$
6 \text { - \# minimal generators of } I_{2}(C) \text {. }
$$

> Corollary
> When $n=6, \mu=3$, the number of triple points (including infinitely near) determines the bi-degrees of the minimal generators of MC.

My next lecture will include a generalization of this theorem.

$n=6, \mu=3$: Geometry

Here, the singular points of the curve have multiplicity $=2$ or 3 .
Theorem (CKPU)
When $n=6, \mu=3$, the number of triple points (including infinitely near) is $0,1,2$ or 3 and is equal to

$$
6 \text { - \# minimal generators of } I_{2}(C) \text {. }
$$

Corollary

When $n=6, \mu=3$, the number of triple points (including infinitely near) determines the bi-degrees of the minimal generators of MC.

My next lecture will include a generalization of this theorem.

$n=6, \mu=3$: Geometry

Here, the singular points of the curve have multiplicity $=2$ or 3 .
Theorem (CKPU)
When $n=6, \mu=3$, the number of triple points (including infinitely near) is $0,1,2$ or 3 and is equal to

$$
6 \text { - \# minimal generators of } I_{2}(C) \text {. }
$$

Corollary

When $n=6, \mu=3$, the number of triple points (including infinitely near) determines the bi-degrees of the minimal generators of MC.

My next lecture will include a generalization of this theorem.

An Unresolved Question

For $n=6$, we can have:

- $\mu=2$ with 10 ordinary double points.
- $\mu=3$ with 10 ordinary double points.
- The ideals of these points in \mathbb{P}^{2} have the same betti diagrams.
- Yet the associated Rees algebras look quite different.

The next slide shows the bi-degrees of the minimal generators of $M C$ in these two cases.

An Unresolved Question

For $n=6$, we can have:

- $\mu=2$ with 10 ordinary double points.
- $\mu=3$ with 10 ordinary double points.
- The ideals of these points in \mathbb{P}^{2} have the same betti diagrams.
- Yet the associated Rees algebras look quite different.

The next slide shows the bi-degrees of the minimal generators of $M C$

 in these two cases.
An Unresolved Question

For $n=6$, we can have:

- $\mu=2$ with 10 ordinary double points.
- $\mu=3$ with 10 ordinary double points.
- The ideals of these points in \mathbb{P}^{2} have the same betti diagrams.
- Yet the associated Rees algebras look quite different.

> The next slide shows the bi-degrees of the minimal generators of $M C$ in these two cases.

An Unresolved Question

For $n=6$, we can have:

- $\mu=2$ with 10 ordinary double points.
- $\mu=3$ with 10 ordinary double points.
- The ideals of these points in \mathbb{P}^{2} have the same betti diagrams.
- Yet the associated Rees algebras look quite different.

> The next slide shows the bi-degrees of the minimal generators of $M C$ in these two cases.

An Unresolved Question

For $n=6$, we can have:

- $\mu=2$ with 10 ordinary double points.
- $\mu=3$ with 10 ordinary double points.
- The ideals of these points in \mathbb{P}^{2} have the same betti diagrams.
- Yet the associated Rees algebras look quite different.

The next slide shows the bi-degrees of the minimal generators of $M C$ in these two cases.

An Unresolved Question

For $n=6$, we can have:

- $\mu=2$ with 10 ordinary double points.
- $\mu=3$ with 10 ordinary double points.
- The ideals of these points in \mathbb{P}^{2} have the same betti diagrams.
- Yet the associated Rees algebras look quite different.

The next slide shows the bi-degrees of the minimal generators of $M C$ in these two cases.

Bi-Degrees of Minimal Generators of MC

All singular points have multiplicity 2

$$
n=6 ; \mu=3
$$

All singular points have multiplicity 2

Can Geometry Distinguish These Cases?

Consider a sextic curve in \mathbb{P}^{2} with 10 ordinary double points. Fix 9 of the points.

Suggestion of Izzet Coskun

- Consider the linear system of sextic curves spanned by the implicit equation F of the sextic and the square G^{2} of the unique cubic going through the 9 points.
- Does this linear system have a reduced member that is not irreducible?

Suggestion of Damiano Testa

Can Geometry Distinguish These Cases?

Consider a sextic curve in \mathbb{P}^{2} with 10 ordinary double points. Fix 9 of the points.

Suggestion of Izzet Coskun

- Consider the linear system of sextic curves spanned by the implicit equation F of the sextic and the square G^{2} of the unique cubic going through the 9 points.
- Does this linear system have a reduced member that is not irreducible?

Can Geometry Distinguish These Cases?

Consider a sextic curve in \mathbb{P}^{2} with 10 ordinary double points. Fix 9 of the points.

Suggestion of Izzet Coskun

- Consider the linear system of sextic curves spanned by the implicit equation F of the sextic and the square G^{2} of the unique cubic going through the 9 points.
- Does this linear system have a reduced member that is not irreducible?

Suggestion of Damiano Testa

Can Geometry Distinguish These Cases?

Consider a sextic curve in \mathbb{P}^{2} with 10 ordinary double points. Fix 9 of the points.

Suggestion of Izzet Coskun

- Consider the linear system of sextic curves spanned by the implicit equation F of the sextic and the square G^{2} of the unique cubic going through the 9 points.
- Does this linear system have a reduced member that is not irreducible?

Suggestion of Damiano Testa

- Is the unique cubic through these 9 points singular?

Can Geometry Distinguish These Cases?

Consider a sextic curve in \mathbb{P}^{2} with 10 ordinary double points. Fix 9 of the points.

Suggestion of Izzet Coskun

- Consider the linear system of sextic curves spanned by the implicit equation F of the sextic and the square G^{2} of the unique cubic going through the 9 points.
- Does this linear system have a reduced member that is not irreducible?

Suggestion of Damiano Testa

- Is the unique cubic through these 9 points singular?

