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I. Two Moving Lines

Imagine two moving lines in P
2:

p = p1x + p2y + p3z = 0

q = q1x + q2y + q3z = 0

where pi ,qi ∈ R = k [s, t] are homogeneous and

deg(pi) = d1, deg(qi) = d2.

We assume the lines are always distinct.
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Picture

The point of intersection of the two moving lines traces out a rational
curve C ⊆ P
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Picture

The point of intersection of the two moving lines traces out a rational
curve C ⊆ P
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Assume the parametrization P
1 → C is birational.
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Properties of C ⊂ P
2

deg(C) = d1 + d2 = n.

The map P
1 → P

2 is given by

B = (a,b, c) = 2× 2 minors of A =





p1 q1

p2 q2

p3 q3



.

gcd(a,b, c) = 1.

I = 〈a,b, c〉 ⊆ R = k [s, t] has free resolution

0→R(−n− d1)⊕ R(−n− d2)
A
→R(−n)3 B

→ I→0.

p,q generate Syz(a,b, c) ≃R(−n−d1)⊕R(−n−d2).

All rational plane curves arise this way.
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II. Three Perspectives

We will think about our setup from three points of view:

Geometric Modeling

Projective Elimination Theory

Commutative Algebra
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Geometric Modeling

A moving curve in P
2 is

∑

i+j+k=m Aijk x iy jzk where
Aijk ∈ R = k [s, t] are homogeneous of the same degree.

It follows the parametrization (a,b, c) if
∑

i+j+k=m Aijk aibjck = 0.

The two given moving lines p (deg d1 = µ) and q
(deg d2 = n − µ) follow the parametrization, and

Syz(a,b, c) ≃ R(−n− µ)⊕ R(−n− (n − µ))

implies they generate all moving lines that follow the
parametrization (µ-basis).
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Moving Curve Ideal

The collection of all moving curves that follow the parametrization is
the moving curve ideal

MC ⊆ k [s, t , x , y , z] ← bigraded

Example
n = 4, µ = 2. The moving lines p,q determine the implicit equation
F = 0 via

F = Ress,t(p,q) ← 4× 4 determinant.

There are two moving conics C1,C2 that follow the parametrization of
degree 1 is s, t with

F = Ress,t(C1,C2) ← 2× 2 determinant.
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Example, Continued

A moving conic is

A x2 + B xy + C xz + D y2 + E yz + F z2
.

The kernel of

R6
1

︸︷︷︸

dim 12

a2
,...,c2

−→ R9
︸︷︷︸

dim 10

(R = k [s, t])

has dim 2, giving moving conics C1,C2 that follow the
parametrization of degree 1 is s, t .

For n = 4, µ = 2, the minimal generators of MC are

p, q, C1, C2, F .
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Elimination Theory

k [s, t , x , y , z] is the coordinate ring of P1 × P
2, and p = q = 0 defines

the graph Γ of the parametrization

P
1 × P

2

π

��

P
1

Γ

;;
w

w
w

w
w

w
w

w
w

//
P

2

Since C = π(Γ), eliminating s, t from p = q = 0 gives the implicit
equation

F = 0.
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Elimination Theory, Continued

(Affine) Given polynomials

f1, . . . , fs ∈ k [x1, . . . , xn, y1, . . . , ym],

eliminating x1, . . . , xn means computing

〈f1, . . . , fs〉 ∩ k [y1, . . . , ym].

(Projective) 〈p,q〉 ∩ k [x , y , z] = {0} for degree reasons. Instead,
we need to compute

(〈p,q〉 :〈s, t〉∞) ∩ k [x , y , z].

Hence we have the ideals 〈p,q〉 ⊆ 〈p,q〉 :〈s, t〉∞.
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Commutative Algebra

An ideal I in a commutative ring R gives two important R-algebras:

The symmetric algebra: Sym(I) =
⊕

d Symd (I)

The Rees algebra: R(I) =
⊕

d Id ed ⊆ R[e]

They are related by a natural surjection:

Sym(I) −→ R(I).

When I = 〈f1, . . . , fs〉, we have surjections:

R[x1, . . . , xs] −→ Sym(I), xi 7→ fi
R[x1, . . . , xs] −→ R(I), xi 7→ fie.
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The Viewpoints are the Same!

MC = 〈p,q〉 :〈s, t〉∞

We have a commutative diagram:

〈p,q〉
� _

��

� � // MC = 〈p,q〉 :〈s, t〉∞
� _

��
k [s, t , x , y , z]

����

k [s, t , x , y , z]

����
Sym(I) // // R(I) ⊆ R[e]

ker(Sym(I)→R(I)) = R-torsion in Sym(I).

MC = defining equations of R(I).
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III. Singularities

Two examples with n = 4:

0.50

2

2

1

0
1.5

-1

-2

1

2

1

1.5

0.5

1

0.5

0
0

-0.5

-0.5

-1

-1-1.5-2

µ = 2 µ = 1

Bi-degrees of minimal generators of MC:

µ = 2: (2,1), (2,1), (1,2), (1,2), (0,4)

µ = 1: (1,1), (3,1), (2,2), (1,3), (0,4)
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Main Question

When n = 4, we have µ = 1 or 2. Furthermore:

µ = 1 ⇐⇒ there is a point of mult 3.

µ = 2 ⇐⇒ all singularities have mult 2.

The bi-degrees of the minimal generators of MC are determined
by the singularities of the curve.

Question
In general, how do the singularities of the curve influence
the bi-degrees of the minimal generators of MC?
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Two Theorems

Theorem (Ascenzi, Song/Chen/Goldman, Chen/Wang/Liu)

Assume C ⊆ P
2 is a rational plane curve of degree n with µ ≤ n − µ.

Then the singular points of C have:

(µ = n − µ) Multiplicity ≤ µ.

(µ < n − µ) Multiplicity ≤ µ or = n − µ, and there is
at most one of multiplicity = n − µ.

Theorem (C/Hoffman/Wang, Hong/Simis/Vasconcelos,
Cortadellas/D’Andrea)

Assume n ≥ 3. Then:

µ = 1 ⇐⇒ ∃! singular point of multiplicity n − 1.

If µ = 1, then MC has minimal generators of bi-degrees:

(1,1), (n − 1,1), (n − 2,2), . . . , (1,n − 1), (0,n).
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IV. Degree 6

Main Focus
Bi-degrees of the minimal generators of the moving curve ideal
associated to a rational plane sextic.

Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich.

When n = 6, we have µ = 1,2,3.

We know what happens for µ = 1.

Question
What happens when µ = 2 or 3?
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n = 6, µ = 2

Previous results:

Singular points have multiplicity = 2 or 4.

It one of mult 4 occurs, it is unique.

(Song/Chen/Goldman) Multiplicity 4 occurs if and only if the
moving line of degree 2 spins about fixed point.

(Busé) Bi-degrees of generators of MC are known when a certain
depth condition is satisfied.

Theorem (CKPU)

If n = 6, µ = 2, then there are two possibilities for the bi-degrees of the
minimal generators of MC, corresponding to whether the moving line
of degree 2 spins about fixed point.

By Song/Chen/Goldman, these two possibilities correspond to whether
the curve has 0 or 1 singular point of multipicity = 4.
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n = 6, µ = 2, Continued

The bi-degrees of the minimal generators of MC:

1

2

1

4

1

3

All singular points

have multiplicity 2

1

2

1

1

1

One singular point

has multiplicity 4
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n = 6, µ = 3: Algebra

To analyze this case, write

p = s3C01 + s2tC11 + st2C21 + t3C31

q = s3C02 + s2tC12 + st2C22 + t3C32

where Cij is linear in x , y , z. Let I2(C) be the ideal generated by the
2× 2 minors of the 2× 4 matrix C = (Cij).

Theorem (KPU)

When n = 6, µ = 3:

There are four possibilities∗ for the bi-degrees of the
minimal generators of MC.
These correspond to whether the ideal I2(C) has
3,4,5 or 6 minimal generators.

∗ Later I will show the bi-degrees for when I2(C) has 6 generators.
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n=6, µ=3: Geometry

Here, the singular points of the curve have multiplicity = 2 or 3.

Theorem (CKPU)

When n = 6, µ = 3, the number of triple points (including infinitely
near) is 0,1,2 or 3 and is equal to

6−#minimal generators of I2(C).

Corollary
When n = 6, µ = 3, the number of triple points (including infinitely
near) determines the bi-degrees of the minimal generators of MC.

My next lecture will include a generalization of this theorem.
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An Unresolved Question

For n = 6, we can have:
µ = 2 with 10 ordinary double points.

µ = 3 with 10 ordinary double points.

The ideals of these points in P
2 have the same betti diagrams.

Yet the associated Rees algebras look quite different.

The next slide shows the bi-degrees of the minimal generators of MC
in these two cases.
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Bi-Degrees of Minimal Generators of MC

1

2

1

4

1

3

All singular points

have multiplicity 2

n = 6; µ = 2
1

4

3

2

All singular points

have multiplicity 2

n = 6; µ = 3
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Can Geometry Distinguish These Cases?

Consider a sextic curve in P
2 with 10 ordinary double points. Fix 9 of

the points.

Suggestion of Izzet Coskun
Consider the linear system of sextic curves spanned by
the implicit equation F of the sextic and the square G2 of the
unique cubic going through the 9 points.

Does this linear system have a reduced member that is
not irreducible?

Suggestion of Damiano Testa
Is the unique cubic through these 9 points singular?
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