Singularities of Multiplicity c on Rational Plane Curves of degree 2c

David A. Cox

Department of Mathematics Amherst College dac@math.amherst.edu

Barcelona June 2012

David A. Cox (Amherst College)

Singularities of Multiplicity c

A

• Let $C \subseteq \mathbb{P}^2$ be irreducible and rational of degree *d*. Then

$$0 = (d-1)(d-2)/2 - \sum_{P} m_{P}(m_{P}-1)/2,$$

where the sum is over all singular and ∞ -near singular points of C.

- Now assume *d* = 2*c* and µ = *c*. The latter implies that all singular points of *C* have multiplicity ≤ *c*. We also assume *c* ≥ 3.
- Let s = # singular points of multiplicity *c* (including ∞ -near). Then

$$\frac{(2c-1)(2c-2)}{2} = \frac{1}{2}\sum_{P} m_{P}(m_{P}-1) \ge s \cdot \frac{1}{2}c(c-1).$$

This easily implies that

$$s \leq 3.$$

Goal

Study these singularities using the methods of commutative algebra.

David A. Cox (Amherst College)

• Let $C \subseteq \mathbb{P}^2$ be irreducible and rational of degree *d*. Then

$$0 = (d-1)(d-2)/2 - \sum_{P} m_{P}(m_{P}-1)/2,$$

where the sum is over all singular and ∞ -near singular points of C.

- Now assume *d* = 2*c* and μ = *c*. The latter implies that all singular points of *C* have multiplicity ≤ *c*. We also assume *c* ≥ 3.
- Let s = # singular points of multiplicity c (including ∞ -near). Then

$$\frac{(2c-1)(2c-2)}{2} = \frac{1}{2}\sum_{P}m_{P}(m_{P}-1) \ge s \cdot \frac{1}{2}c(c-1).$$

This easily implies that

$$s \leq 3.$$

Goal

Study these singularities using the methods of commutative algebra.

David A. Cox (Amherst College)

• Let $C \subseteq \mathbb{P}^2$ be irreducible and rational of degree *d*. Then

$$0 = (d-1)(d-2)/2 - \sum_{P} m_{P}(m_{P}-1)/2,$$

where the sum is over all singular and ∞ -near singular points of \mathcal{C} .

- Now assume *d* = 2*c* and μ = *c*. The latter implies that all singular points of *C* have multiplicity ≤ *c*. We also assume *c* ≥ 3.
- Let s = # singular points of multiplicity *c* (including ∞ -near). Then

$$\frac{(2c-1)(2c-2)}{2} = \frac{1}{2}\sum_{P}m_{P}(m_{P}-1) \geq s \cdot \frac{1}{2}c(c-1).$$

This easily implies that

Goal

Study these singularities using the methods of commutative algebra.

David A. Cox (Amherst College)

• Let $\mathcal{C} \subseteq \mathbb{P}^2$ be irreducible and rational of degree d. Then

$$0 = (d-1)(d-2)/2 - \sum_{P} m_{P}(m_{P}-1)/2,$$

where the sum is over all singular and ∞ -near singular points of \mathcal{C} .

- Now assume *d* = 2*c* and μ = *c*. The latter implies that all singular points of *C* have multiplicity ≤ *c*. We also assume *c* ≥ 3.
- Let s = # singular points of multiplicity *c* (including ∞ -near). Then

$$\frac{(2c-1)(2c-2)}{2} = \frac{1}{2}\sum_{P}m_{P}(m_{P}-1) \geq s \cdot \frac{1}{2}c(c-1).$$

This easily implies that

$$s \leq 3.$$

Goal

Study these singularities using the methods of commutative algebra.

David A. Cox (Amherst College)

Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich

- Computer: Describe the main results
- Blackboard: Give some of the details

Full details appear in Sections 1–7 of *A Study of Singularities on Rational Curves via Syzygies*.

This paper will appear in the Memoirs of the American Mathematical Society.

A D N A B N A B N A B N

Setup

Let $C \subseteq \mathbb{P}^2$ be irreducible and rational of degree d = 2c. Parametrize C: $\mathbb{P}^1 \longrightarrow C \subseteq \mathbb{P}^2$

where $(s, t) \mapsto (a(s, t), b(s, t), c(s, t))$ have degree d, gcd(a, b, c) = 1.

Our assumptions d = 2c and $\mu = c$ imply $I = \langle a, b, c \rangle \subseteq R = k[s, t]$ has a free resolution

$$0
ightarrow R(-3c) \oplus R(-3c) \xrightarrow{\varphi} R(-2c)^3 \xrightarrow{(a,b,c)} I.$$

We call φ the Hilbert-Burch Matrix and write it as

$$arphi = egin{pmatrix} \mathsf{Q}_1 & \mathsf{Q}_4 \ \mathsf{Q}_2 & \mathsf{Q}_5 \ \mathsf{Q}_3 & \mathsf{Q}_6 \end{pmatrix}.$$

David A. Cox (Amherst College)

3

The Hilbert-Burch matrix

$$arphi = egin{pmatrix} \mathsf{Q}_1 & \mathsf{Q}_4 \ \mathsf{Q}_2 & \mathsf{Q}_5 \ \mathsf{Q}_3 & \mathsf{Q}_6 \end{pmatrix}$$

has the following properties:

- The columns Q₁, Q₂, Q₃ and Q₄, Q₅, Q₆ have degree c.
- They generate the syzygy module Syz(*a*, *b*, *c*).

• We also have
$$\bigwedge^2 \varphi = (a, b, c)$$
.

Our Approach

We will use the Hilbert-Burch matrix φ to study singularities of multiplicity *c* of the rational curve $C \subseteq \mathbb{P}^2$.

The Hilbert-Burch matrix

$$arphi = egin{pmatrix} \mathsf{Q}_1 & \mathsf{Q}_4 \ \mathsf{Q}_2 & \mathsf{Q}_5 \ \mathsf{Q}_3 & \mathsf{Q}_6 \end{pmatrix}$$

has the following properties:

- The columns Q₁, Q₂, Q₃ and Q₄, Q₅, Q₆ have degree c.
- They generate the syzygy module Syz(*a*, *b*, *c*).
- We also have $\bigwedge^2 \varphi = (a, b, c)$.

Our Approach

We will use the Hilbert-Burch matrix φ to study singularities of multiplicity *c* of the rational curve $C \subseteq \mathbb{P}^2$.

(日)

The Hilbert-Burch matrix

$$arphi = egin{pmatrix} \mathsf{Q}_1 & \mathsf{Q}_4 \ \mathsf{Q}_2 & \mathsf{Q}_5 \ \mathsf{Q}_3 & \mathsf{Q}_6 \end{pmatrix}$$

has the following properties:

- The columns Q₁, Q₂, Q₃ and Q₄, Q₅, Q₆ have degree c.
- They generate the syzygy module Syz(*a*, *b*, *c*).

• We also have
$$\bigwedge^2 \varphi = (a, b, c)$$
.

Our Approach

We will use the Hilbert-Burch matrix φ to study singularities of multiplicity c of the rational curve $C \subseteq \mathbb{P}^2$.

The Hilbert-Burch matrix

$$arphi = egin{pmatrix} \mathsf{Q}_1 & \mathsf{Q}_4 \ \mathsf{Q}_2 & \mathsf{Q}_5 \ \mathsf{Q}_3 & \mathsf{Q}_6 \end{pmatrix}$$

has the following properties:

- The columns Q₁, Q₂, Q₃ and Q₄, Q₅, Q₆ have degree c.
- They generate the syzygy module Syz(*a*, *b*, *c*).

• We also have
$$\bigwedge^2 \varphi = (a, b, c)$$
.

Our Approach

We will use the Hilbert-Burch matrix φ to study singularities of multiplicity *c* of the rational curve $C \subseteq \mathbb{P}^2$.

A D N A B N A B N A B N

The Partition For d = 2c, $\mu = c$

Define $\mathcal{U} \subseteq R^3_{2c}$ to be

 $\mathcal{U} = \left\{ (a, b, c) \in R^3_{2c} \mid (a, b, c) \text{ gives a parametrization with } \mu = c
ight\}$

The set \mathcal{U} is open and dense in R_{2c}^3 . Then partition \mathcal{U} as follows:

$$\begin{split} S_{\emptyset} &= \left\{ (a,b,c) \in \mathcal{U} \mid \text{no points of mult } c \right\} \\ S_{c} &= \left\{ (a,b,c) \in \mathcal{U} \mid \text{one point of mult } c \right\} \\ S_{c,c} &= \left\{ (a,b,c) \in \mathcal{U} \mid \text{two distinct points of mult } c \right\} \\ S_{c,c,c} &= \left\{ (a,b,c) \in \mathcal{U} \mid \text{three distinct points of mult } c \right\} \\ S_{c:c} &= \left\{ (a,b,c) \in \mathcal{U} \mid \text{one point & one } \infty\text{-near point of mult } c \right\} \\ S_{c:c,c} &= \left\{ (a,b,c) \in \mathcal{U} \mid \text{one point & one } \infty\text{-near point of mult } c, \\ &\qquad \text{and one additional point of mult } c \right\} \end{split}$$

 $\mathcal{S}_{c:c:c} = ig\{(a,b,c) \in \mathcal{U} \mid ext{one point \& two ∞-near points of mult c}ig\}$

We call the S_i the strata of \mathcal{U} .

David A. Cox (Amherst College)

The Main Result

Theorem (CKPU)

The strata S_i are open in their closures, irreducible, and fit into the diagram:

Furthermore:

- Arrows mean "is contained in the closure of".
- Superscripts indicate the dimension of each strata.
- Note dim $\mathcal{U} = \dim R^3_{2c} = 3(2c+1) = 6c+3$.

A Hint of the Proof

To compute the dimension of $S_{c:c,c}$, the first step is to show that for suitable coordinates in \mathbb{P}^2 and a suitable basis of the syzygy module, we have the normal form

$$arphi = egin{pmatrix} \mathsf{Q}_1 & \mathsf{0} \ \mathsf{Q}_2 & \mathsf{Q}_3 \ \mathsf{0} & \mathsf{Q}_2 \end{pmatrix}$$

where the point of multiplicity *c*:*c* is (0, 0, 1) and the other point of multiplicity *c* is (1, 0, 0).

Let
$$N_{c:c,c} = \left\{ \begin{pmatrix} Q_1 & 0 \\ Q_2 & Q_3 \\ 0 & Q_2 \end{pmatrix} \right\}$$
 be the set of normal forms.

A D N A B N A B N A B N

A Hint of the Proof, Continued

We have the normal form $\begin{pmatrix} Q_1 & 0 \\ Q_2 & Q_3 \\ 0 & Q_2 \end{pmatrix}$ and the maps

$$\mathsf{GL}(3) imes \mathsf{GL}(2) imes \mathsf{N}_{c:c,c} \xrightarrow{\Phi} \{\mathsf{HB} \text{ matrices for } c:c,c\} \xrightarrow{\Psi} \mathcal{S}_{c:c,c},$$

where $\Psi(\varphi) = \bigwedge^2 \varphi$.

Furthermore:

- Φ and Ψ are surjective.
- The generic fiber of Φ has dimension 5 (takes proof).
- the generic fiber of Ψ has dimension 3 (easy to see).

Hence $S_{c:c,c}$ is irreducible of dimension

dim
$$S_{c:c,c} = 9 + 4 + 3(c+1) - 5 - 3 = 3c + 8$$
.