Singularities of Multiplicity c on Rational Plane Curves of degree 2c

David A. Cox

Department of Mathematics
Amherst College
dac@math.amherst.edu

Barcelona June 2012

Explain the Title

- Let $\mathcal{C} \subseteq \mathbb{P}^{2}$ be irreducible and rational of degree d. Then

$$
0=(d-1)(d-2) / 2-\sum_{P} m_{P}\left(m_{P}-1\right) / 2
$$

where the sum is over all singular and ∞-near singular points of \mathcal{C}.

This easily implies that
Study these singularities using the methods of commutative algebra.

Explain the Title

- Let $\mathcal{C} \subseteq \mathbb{P}^{2}$ be irreducible and rational of degree d. Then

$$
0=(d-1)(d-2) / 2-\sum_{P} m_{P}\left(m_{P}-1\right) / 2
$$

where the sum is over all singular and ∞-near singular points of \mathcal{C}.

- Now assume $d=2 c$ and $\mu=c$. The latter implies that all singular points of \mathcal{C} have multiplicity $\leq c$. We also assume $c \geq 3$.

This easily implies that

Explain the Title

- Let $\mathcal{C} \subseteq \mathbb{P}^{2}$ be irreducible and rational of degree d. Then

$$
0=(d-1)(d-2) / 2-\sum_{P} m_{P}\left(m_{P}-1\right) / 2
$$

where the sum is over all singular and ∞-near singular points of \mathcal{C}.

- Now assume $d=2 c$ and $\mu=c$. The latter implies that all singular points of \mathcal{C} have multiplicity $\leq c$. We also assume $c \geq 3$.
- Let $s=\#$ singular points of multiplicity c (including ∞-near). Then

$$
\frac{(2 c-1)(2 c-2)}{2}=\frac{1}{2} \sum_{P} m_{P}\left(m_{P}-1\right) \geq s \cdot \frac{1}{2} c(c-1)
$$

This easily implies that

$$
s \leq 3
$$

Study these singularities using the methods of commutative algebra.

Explain the Title

- Let $\mathcal{C} \subseteq \mathbb{P}^{2}$ be irreducible and rational of degree d. Then

$$
0=(d-1)(d-2) / 2-\sum_{P} m_{P}\left(m_{P}-1\right) / 2
$$

where the sum is over all singular and ∞-near singular points of \mathcal{C}.

- Now assume $d=2 c$ and $\mu=c$. The latter implies that all singular points of \mathcal{C} have multiplicity $\leq c$. We also assume $c \geq 3$.
- Let $s=\#$ singular points of multiplicity c (including ∞-near). Then

$$
\frac{(2 c-1)(2 c-2)}{2}=\frac{1}{2} \sum_{P} m_{P}\left(m_{P}-1\right) \geq s \cdot \frac{1}{2} c(c-1)
$$

This easily implies that

$$
s \leq 3
$$

Goal

Study these singularities using the methods of commutative algebra.

Outline

Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich

- Computer: Describe the main results
- Blackboard: Give some of the details

Full details appear in Sections 1-7 of A Study of Singularities on Rational Curves via Syzygies.

This paper will appear in the Memoirs of the American Mathematical Society.

Setup

Let $\mathcal{C} \subseteq \mathbb{P}^{2}$ be irreducible and rational of degree $d=2 c$. Parametrize \mathcal{C} :

$$
\mathbb{P}^{1} \longrightarrow \mathcal{C} \subseteq \mathbb{P}^{2}
$$

where $(s, t) \mapsto(a(s, t), b(s, t), c(s, t))$ have degree $d, \operatorname{gcd}(a, b, c)=1$.
Our assumptions $d=2 c$ and $\mu=c$ imply $I=\langle a, b, c\rangle \subseteq R=k[s, t]$ has a free resolution

$$
0 \rightarrow R(-3 c) \oplus R(-3 c) \xrightarrow{\varphi} R(-2 c)^{3} \xrightarrow{(a, b, c)} I .
$$

We call φ the Hilbert-Burch Matrix and write it as

$$
\varphi=\left(\begin{array}{ll}
Q_{1} & Q_{4} \\
Q_{2} & Q_{5} \\
Q_{3} & Q_{6}
\end{array}\right)
$$

The Hilbert-Burch Matrix

The Hilbert-Burch matrix

$$
\varphi=\left(\begin{array}{ll}
Q_{1} & Q_{4} \\
Q_{2} & Q_{5} \\
Q_{3} & Q_{6}
\end{array}\right)
$$

has the following properties:

- The columns Q_{1}, Q_{2}, Q_{3} and Q_{4}, Q_{5}, Q_{6} have degree c.
- They generate the syzygy module $\operatorname{Syz}(a, b, c)$.
- We also have $\Lambda^{2} \varphi=(a, b, c)$.

Our Approach
We will use the Hilbert-Burch matrix φ to study singularities of multiplicity c of the rational curve $\mathcal{C} \subseteq \mathbb{P}^{2}$.

The Hilbert-Burch Matrix

The Hilbert-Burch matrix

$$
\varphi=\left(\begin{array}{ll}
Q_{1} & Q_{4} \\
Q_{2} & Q_{5} \\
Q_{3} & Q_{6}
\end{array}\right)
$$

has the following properties:

- The columns Q_{1}, Q_{2}, Q_{3} and Q_{4}, Q_{5}, Q_{6} have degree c.
- They generate the syzygy module $\operatorname{Syz}(a, b, c)$.
- We also have $\wedge^{2} \varphi=(a, b, c)$.

We will use the Hilbert-Burch matrix φ to study singularities of multiplicity c of the rational curve $\mathcal{C} \subseteq \mathbb{P}^{2}$.

The Hilbert-Burch Matrix

The Hilbert-Burch matrix

$$
\varphi=\left(\begin{array}{ll}
Q_{1} & Q_{4} \\
Q_{2} & Q_{5} \\
Q_{3} & Q_{6}
\end{array}\right)
$$

has the following properties:

- The columns Q_{1}, Q_{2}, Q_{3} and Q_{4}, Q_{5}, Q_{6} have degree c.
- They generate the syzygy module $\operatorname{Syz}(a, b, c)$.
- We also have $\Lambda^{2} \varphi=(a, b, c)$.

We will use the Hilbert-Burch matrix φ to study singularities of multiplicity c of the rational curve $\mathcal{C} \subseteq \mathbb{P}^{2}$.

The Hilbert-Burch Matrix

The Hilbert-Burch matrix

$$
\varphi=\left(\begin{array}{ll}
Q_{1} & Q_{4} \\
Q_{2} & Q_{5} \\
Q_{3} & Q_{6}
\end{array}\right)
$$

has the following properties:

- The columns Q_{1}, Q_{2}, Q_{3} and Q_{4}, Q_{5}, Q_{6} have degree c.
- They generate the syzygy module $\operatorname{Syz}(a, b, c)$.
- We also have $\Lambda^{2} \varphi=(a, b, c)$.

Our Approach

We will use the Hilbert-Burch matrix φ to study singularities of multiplicity c of the rational curve $\mathcal{C} \subseteq \mathbb{P}^{2}$.

The Partition For $d=2 c, \mu=c$

Define $\mathcal{U} \subseteq R_{2 c}^{3}$ to be

$$
\mathcal{U}=\left\{(a, b, c) \in R_{2 c}^{3} \mid(a, b, c) \text { gives a parametrization with } \mu=c\right\}
$$

The set \mathcal{U} is open and dense in $R_{2 c}^{3}$. Then partition \mathcal{U} as follows:

$$
\begin{aligned}
& S_{\emptyset}=\{(a, b, c) \in \mathcal{U} \mid \text { no points of mult } c\} \\
& S_{c}=\{(a, b, c) \in \mathcal{U} \mid \text { one point of mult } c\} \\
& S_{c, c}=\{(a, b, c) \in \mathcal{U} \mid \text { two distinct points of mult } c\} \\
& S_{c, c, c}=\{(a, b, c) \in \mathcal{U} \mid \text { three distinct points of mult } c\} \\
& S_{c: c}=\{(a, b, c) \in \mathcal{U} \mid \text { one point } \& \text { one } \infty \text {-near point of mult } c\} \\
& S_{c: c, c}=\{(a, b, c) \in \mathcal{U} \mid \text { one point } \& \text { one } \infty \text {-near point of mult } c, \\
&\quad \text { and one additional point of mult } c\} \\
& S_{c: c: c}=\{(a, b, c) \in \mathcal{U} \mid \text { one point } \& \text { two } \infty \text {-near points of mult } c\}
\end{aligned}
$$

We call the S_{i} the strata of \mathcal{U}.

The Main Result

Theorem (CKPU)

The strata S_{i} are open in their closures, irreducible, and fit into the diagram:

Furthermore:

- Arrows mean "is contained in the closure of".
- Superscripts indicate the dimension of each strata.
- Note $\operatorname{dim} \mathcal{U}=\operatorname{dim} R_{2 c}^{3}=3(2 c+1)=6 c+3$.

A Hint of the Proof

To compute the dimension of $S_{c: c, c}$, the first step is to show that for suitable coordinates in \mathbb{P}^{2} and a suitable basis of the syzygy module, we have the normal form

$$
\varphi=\left(\begin{array}{cc}
Q_{1} & 0 \\
Q_{2} & Q_{3} \\
0 & Q_{2}
\end{array}\right)
$$

where the point of multiplicity $c: c$ is $(0,0,1)$ and the other point of multiplicity c is $(1,0,0)$.

Let $N_{c: c, c}=\left\{\left(\begin{array}{cc}Q_{1} & 0 \\ Q_{2} & Q_{3} \\ 0 & Q_{2}\end{array}\right)\right\}$ be the set of normal forms.

A Hint of the Proof, Continued

We have the normal form $\left(\begin{array}{cc}Q_{1} & 0 \\ Q_{2} & Q_{3} \\ 0 & Q_{2}\end{array}\right)$ and the maps

$$
\mathrm{GL}(3) \times \mathrm{GL}(2) \times N_{c: c, c} \xrightarrow{\Phi}\{\mathrm{HB} \text { matrices for } c: c, c\} \xrightarrow{\Psi} S_{c: c, c},
$$

where $\Psi(\varphi)=\bigwedge^{2} \varphi$.
Furthermore:

- Φ and ψ are surjective.
- The generic fiber of Φ has dimension 5 (takes proof).
- the generic fiber of Ψ has dimension 3 (easy to see).

Hence $S_{c: c, c}$ is irreducible of dimension

$$
\operatorname{dim} S_{c: c, c}=9+4+3(c+1)-5-3=3 c+8
$$

