Singularities of Rational Plane Quartics

David A. Cox

Department of Mathematics Amherst College dac@math.amherst.edu

> Barcelona June, 2012

David A. Cox (Amherst College)

Singularities of Rational Quartics

Barcelona June, 2012 1 / 10

< 回 > < 回 > < 回 >

Outline

Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich

Goal

Study the singularities of rational plane quartics using the methods of commutative algebra

- Computer: Describe the singularities and give the strategy
- Blackboard: Give some of the details

Full details appear in Sections 8 and 9 of *A Study of Singularities on Rational Curves via Syzygies*.

(日)

Singular Points of Rational Quartics

For an irreducible rational quartic in \mathbb{P}^2 , there are nine possible singular points:

Name	Name	$\textbf{Mult:} \infty \textbf{-near;} \textbf{Branches}$
node	A_1	2;2
cusp	A ₂	2;1
tacnode	A_3	2:2;2
ramphoid cusp	A_4	2:2;1
oscnode	A_5	2:2:2;2
A ₆ -cusp	A_6	2:2:2;1
ord triple pt	D_4	3;3
tacnode-cusp	D_5	3;2
mult-3 cusp	E_6	3;1

(日)

Configurations of Singular Points

For an irreducible rational quartic in \mathbb{P}^2 , there are 13 possible configurations of singular points:

3 with $\mu = 1$:

- I ordinary triple point
- 1 tacnode-cusp
- 1 multiplicity-3 cusp

10 with μ = 2:

- 4 with *i* nodes and *j* cusps, i + j = 3
- 2 with one tacnode plus one node or cusp
- 2 with a ramphoid cusp plus one node or cusp
- 1 oscnode
- 1 A₆-cusp

э

Two Pictures

Three nodes

Tacnode and node

イロト イヨト イヨト イヨト

Barcelona June, 2012 5 / 10

æ

Two More Pictures

Oscnode

Tacnode-cusp

David A. Cox (Amherst College)

Singularities of Rational Quartics

Barcelona June, 2012 6 / 10

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Organize the Configurations

We focus on the 10 configurations with $\mu = 2$.

A Coarse Stratification

We organize these configurations as follows:

(3 nodes		(6 branches)		
• S _{2,2,2} : {	2 nodes and 1 cusp 1 node and 2 cusps	(5 branches)		
	1 node and 2 cusps	(4 brand	(4 branches)	
	3 cusps	(3 brand	branches)	
	1 tacnode and 1 node		(4 branches)	
• S _{2:2,2} : {	1 tacnode and 1 cusp		(3 branches)	
	1 ramphoid cusp and 1 node		(3 branches)	
	1 tachode and 1 cusp 1 ramphoid cusp and 1 node 1 ramphoid cusp and 1 cusp		(2 branches)	
0	(1 oscnode (2 branch	nes)		
• $S_{2:2:2}$: $\begin{cases} 1 \text{ oscnode } (2 \text{ branches}) \\ 1 A_6 \text{-cusp } (1 \text{ branch}) \end{cases}$				

The notation $S_{2,2,2}$, $S_{2:2,2}$, $S_{2:2:2}$ is from my second lecture.

Count Branches

To count branches, we use the following:

Theorem (CKPU)

Let (a, b, c) give a parametrization $\mathbb{P}^1 o \mathcal{C} \subseteq \mathbb{P}^2$ and set

$$N = \begin{pmatrix} \frac{\partial a}{\partial s} & \frac{\partial b}{\partial s} & \frac{\partial c}{\partial s} \\ \frac{\partial a}{\partial t} & \frac{\partial b}{\partial t} & \frac{\partial c}{\partial t} \end{pmatrix}$$

If s_P is the number of branches at P, then

$$\deg \gcd I_2(N) = \sum_P m_P - s_P.$$

If we know the multiplicities, this gives the number of branches.

David A. Cox (Amherst College)

Singularities of Rational Quartics

Barcelona June, 2012 8 / 10

- Step 1: Stratify using the number of visible singular points (S_{2,2,2}, S_{2:2,2}, S_{2:2,2}).
- Step 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

- Step 1: Stratify using the number of visible singular points (S_{2,2,2}, S_{2:2,2}, S_{2:2:2}).
- Step 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

- Step 1: Stratify using the number of visible singular points (S_{2,2,2}, S_{2:2,2}, S_{2:2:2}).
- Step 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

- Step 1: Stratify using the number of visible singular points (S_{2,2,2}, S_{2:2,2}, S_{2:2:2}).
- Step 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

(日)

The Conductor

Let (a, b, c) of degree *d* parametrize $C \subseteq \mathbb{P}^2$, and let

$$B^{(d)} = \bigoplus_{\ell=0}^{\infty} B_{\ell d} \subseteq B = k[s, t]$$

be the dth Veronese subring. Then

$$\mathfrak{c} = \{r \in k[a, b, c] \mid r \cdot B^{(d)} \subseteq k[a, b, c]\}$$

is the conductor of

$$k[a, b, c] \subseteq B^{(d)}.$$

Theorem 1 (General d)

 $\mathfrak{c}B = F(\mathfrak{s}, t)\langle \mathfrak{s}, t \rangle^{d-2}$, where deg F = (d-1)(d-2).

Theorem 2 (d = 4)

• 1 tacnode and 1 cusp $\Rightarrow F = \ell_1^2 \ell_2^2 \ell_3^2$.

• 1 ramphoid cusp and 1 node $\Rightarrow F = \ell_1^4 \ell_2 \ell_3$

David A. Cox (Amherst College)

Singularities of Rational Quartics

The Conductor

Let (a, b, c) of degree *d* parametrize $C \subseteq \mathbb{P}^2$, and let

$$B^{(d)} = \bigoplus_{\ell=0}^{\infty} B_{\ell d} \subseteq B = k[s, t]$$

be the dth Veronese subring. Then

$$\mathfrak{c} = \{r \in k[a, b, c] \mid r \cdot B^{(d)} \subseteq k[a, b, c]\}$$

is the conductor of

$$k[a, b, c] \subseteq B^{(d)}.$$

Theorem 1 (General d)

$$cB = F(s, t)\langle s, t \rangle^{d-2}$$
, where deg $F = (d-1)(d-2)$.

Theorem 2 (d = 4)

- 1 tacnode and 1 cusp $\Rightarrow F = \ell_1^2 \ell_2^2 \ell_3^2$.
- 1 ramphoid cusp and 1 node $\Rightarrow F = \ell_1^4 \ell_2 \ell_3$.