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Outline

Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich

Goal

Study the singularities of rational plane quartics using
the methods of commutative algebra

@ Computer: Describe the singularities and give the strategy
@ Blackboard: Give some of the details

Full details appear in Sections 8 and 9 of A Study of Singularities on
Rational Curves via Syzygies.
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Singular Points of Rational Quartics

For an irreducible rational quartic in P2, there are nine possible

singular points:

Name Name

node A

cusp A,

tacnode Az
ramphoid cusp A4
oscnode Asg
Ag-cusp Ag

ord triple pt Dy
tacnode-cusp  Ds
mult-3 cusp  Eg

Mult:co-near;Branches
2:2

2:1

2:2:2

2:2:1

2:2:2:2

2:2:2:1

3;3

3;2

3;1
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Configurations of Singular Points

For an irreducible rational quartic in P?, there are 13 possible
configurations of singular points:

3 with p = 1:
@ 1 ordinary triple point
@ 1 tacnode-cusp
@ 1 multiplicity-3 cusp

10 with p = 2:
@ 4 with i nodes and j cusps,i+j=3
@ 2 with one tacnode plus one node or cusp

@ 2 with a ramphoid cusp plus one node or cusp
@ 1 oscnode

@ 1 Ag-cusp
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Two Pictures

Three nodes Tacnode and node
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Two More Pictures
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Organize the Configurations

We focus on the 10 configurations with p = 2.

A Coarse Stratification
We organize these configurations as follows:

(3 nodes (6 branches)
©S .. 2 nodes and 1 cusp (5 branches)
2.22° ) 1 node and 2 cusps (4 branches)
| 3 cusps (3 branches)
1 tacnode and 1 node (4 branches)
0 S 1 tacnode and 1 cusp (3 branches)
%22 ) 1 ramphoid cusp and 1 node (3 branches)
| 1 ramphoid cusp and 1 cusp (2 branches)
0 S 1 oscnode (2 branches)
222 ) 1 Ag-cusp (1 branch)

The notation Sy 5 5, Sy.2 2, Sz.2.2 is from my second lecture.
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Count Branches

To count branches, we use the following:

Theorem (CKPU)

Let (a,b, c) give a parametrization P! — C C P? and set

da b 0o
N — 0s 0s O0s
oa b 0o
ot ot ot
If sp is the number of branches at P, then
deggcd (N Z Mp — Sp.

If we know the multiplicities, this gives the number of branches.
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Strategy

Three Steps
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Strategy

Three Steps

@ Step 1: Stratify using the number of visible singular points
(S2,2,2, S2:2.2, $2:2.2).
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Strategy

Three Steps

@ Step 1: Stratify using the number of visible singular points
(S2,2,2, S2:2.2, $2:2.2).

@ Step 2: Refine the stratification using the number of branches.

David A. Cox (Amherst College) Singularities of Rational Quartics Barcelona June, 2012 9/10



Strategy

Three Steps
@ Step 1: Stratify using the number of visible singular points
(S2,2,2) S2:2.2, S2:2:2)-
@ Step 2: Refine the stratification using the number of branches.

@ Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid
cusp and 1 node both have two visible singular points and three
total branches. Separate these using the conductor.
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The Conductor
Let (a, b, c) of degree d parametrize C C P?, and let
B = @B C B =K|s,1]
be the dth Veronese subring. Then
¢ ={r ekla,b,c]|r-B@ CkJa,b,c]}

is the conductor of
kla,b,c] € B(®).

Theorem 1 (General d)
B = F(s,t)(s,t)972, where degF = (d — 1)(d — 2). J

David A. Cox (Amherst College) Singularities of Rational Quartics Barcelona June, 2012 10/ 10



The Conductor
Let (a, b, c) of degree d parametrize C C P?, and let
B = @B C B =K|s,1]
be the dth Veronese subring. Then
¢ ={r ekla,b,c]|r-B@ CkJa,b,c]}

is the conductor of
kla,b,c] € B(®).

Theorem 1 (General d)
B = F(s,t)(s,t)972, where degF = (d — 1)(d — 2).

Theorem 2 (d = 4)

@ 1tacnode and 1 cusp = F = (2/5/2.
@ 1 ramphoid cusp and 1 node = F = ({/,(3.

v
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