Singularities of Rational Plane Quartics

David A. Cox

Department of Mathematics
Amherst College
dac@math.amherst.edu

Barcelona
 June, 2012

Outline

Joint work with Andy Kustin, Claudia Polini and Bernd Ulrich

Goal

Study the singularities of rational plane quartics using the methods of commutative algebra

- Computer: Describe the singularities and give the strategy
- Blackboard: Give some of the details

Full details appear in Sections 8 and 9 of A Study of Singularities on Rational Curves via Syzygies.

Singular Points of Rational Quartics

For an irreducible rational quartic in \mathbb{P}^{2}, there are nine possible singular points:

Name	Name	Mult: ∞-near;Branches
node	A_{1}	$2 ; 2$
cusp	A_{2}	$2 ; 1$
tacnode	A_{3}	$2: 2 ; 2$
ramphoid cusp	A_{4}	$2: 2 ; 1$
oscnode	A_{5}	$2: 2: 2 ; 2$
A_{6}-cusp	A_{6}	$2: 2: 2 ; 1$
ord triple pt	D_{4}	$3 ; 3$
tacnode-cusp	D_{5}	$3 ; 2$
mult-3 cusp	E_{6}	$3 ; 1$

Configurations of Singular Points

For an irreducible rational quartic in \mathbb{P}^{2}, there are 13 possible configurations of singular points:

3 with $\mu=1$:

- 1 ordinary triple point
- 1 tacnode-cusp
- 1 multiplicity-3 cusp

10 with $\mu=2$:

- 4 with i nodes and j cusps, $i+j=3$
- 2 with one tacnode plus one node or cusp
- 2 with a ramphoid cusp plus one node or cusp
- 1 oscnode
- $1 A_{6}$-cusp

Two Pictures

Three nodes

Tacnode and node

Two More Pictures

Oscnode

Tacnode-cusp

Organize the Configurations

We focus on the 10 configurations with $\mu=2$.

A Coarse Stratification

We organize these configurations as follows:

- $S_{2,2,2}: \begin{cases}3 \text { nodes } & \text { (6 branches) } \\ 2 \text { nodes and } 1 \text { cusp } & \text { (5 branches) } \\ 1 \text { node and } 2 \text { cusps } & \text { (4 branches) } \\ 3 \text { cusps } & \text { (3 branches) }\end{cases}$
$-S_{2: 2,2}:\left\{\begin{array}{l}1 \text { tacnode and } 1 \text { node } \\ 1 \text { tacnode and } 1 \text { cusp } \\ 1 \text { ramphoid cusp and } 1 \text { nod } \\ 1 \text { ramphoid cusp and } 1 \text { cu }\end{array}\right.$
$-S_{2: 2: 2}:\left\{\begin{array}{lll}1 & \text { oscnode (2 branches) } \\ 1 & A_{6} \text {-cusp } & \text { (1 branch) }\end{array}\right.$
The notation $S_{2,2,2}, S_{2: 2,2}, S_{2: 2: 2}$ is from my second lecture.

Count Branches

To count branches, we use the following:

Theorem (CKPU)

Let (a, b, c) give a parametrization $\mathbb{P}^{1} \rightarrow \mathcal{C} \subseteq \mathbb{P}^{2}$ and set

$$
N=\left(\begin{array}{lll}
\frac{\partial a}{\partial s} & \frac{\partial b}{\partial s} & \frac{\partial c}{\partial s} \\
\frac{\partial a}{\partial t} & \frac{\partial b}{\partial t} & \frac{\partial c}{\partial t}
\end{array}\right) .
$$

If s_{P} is the number of branches at P, then

$$
\operatorname{deg} \operatorname{gcd} l_{2}(N)=\sum_{P} m_{P}-s_{P} .
$$

If we know the multiplicities, this gives the number of branches.

Strategy

Three Steps

- Step 1: Stratify using the number of visible singular points $\left(S_{2,2,2}, S_{2: 2,2}, S_{2: 2: 2}\right)$.
- Sten 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

Strategy

Three Steps

- Step 1: Stratify using the number of visible singular points $\left(S_{2,2,2}, S_{2: 2,2}, S_{2: 2: 2}\right)$.
- Step 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

Strategy

Three Steps

- Step 1: Stratify using the number of visible singular points $\left(S_{2,2,2}, S_{2: 2,2}, S_{2: 2: 2}\right)$.
- Step 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

Strategy

Three Steps

- Step 1: Stratify using the number of visible singular points $\left(S_{2,2,2}, S_{2: 2,2}, S_{2: 2: 2}\right)$.
- Step 2: Refine the stratification using the number of branches.
- Step 3: Curves with 1 tacnode and 1 cusp and with 1 ramphoid cusp and 1 node both have two visible singular points and three total branches. Separate these using the conductor.

The Conductor

Let (a, b, c) of degree d parametrize $\mathcal{C} \subseteq \mathbb{P}^{2}$, and let

$$
B^{(d)}=\bigoplus_{\ell=0}^{\infty} B_{\ell d} \subseteq B=k[s, t]
$$

be the d th Veronese subring. Then

$$
\mathfrak{c}=\left\{r \in k[a, b, c] \mid r \cdot B^{(d)} \subseteq k[a, b, c]\right\}
$$

is the conductor of

$$
k[a, b, c] \subseteq B^{(d)}
$$

Theorem 1 (General d)
$c B=F(s, t)\langle s, t\rangle^{d-2}$, where deg $F=(d-1)(d-2)$.

The Conductor

Let (a, b, c) of degree d parametrize $\mathcal{C} \subseteq \mathbb{P}^{2}$, and let

$$
B^{(d)}=\bigoplus_{\ell=0}^{\infty} B_{\ell d} \subseteq B=k[s, t]
$$

be the d th Veronese subring. Then

$$
\mathfrak{c}=\left\{r \in k[a, b, c] \mid r \cdot B^{(d)} \subseteq k[a, b, c]\right\}
$$

is the conductor of

$$
k[a, b, c] \subseteq B^{(d)} .
$$

Theorem 1 (General d)
$c B=F(s, t)\langle s, t\rangle^{d-2}$, where $\operatorname{deg} F=(d-1)(d-2)$.
Theorem $2(d=4)$

- 1 tacnode and 1 cusp $\Rightarrow F=\ell_{1}^{2} \ell_{2}^{2} \ell_{3}^{2}$.
- 1 ramphoid cusp and 1 node $\Rightarrow F=\ell_{1}^{4} \ell_{2} \ell_{3}$.

