Bioconductor tutorial

Adapted by Alex Sanchez from tutorials by
(1) Steffen Durinck, Robert Gentleman and Sandrine Dudoit
(2) Laurent Gautier
(3) Matt Ritchie
(4) Jean Yang
Outline

- The Bioconductor Project
- OOP in R and Bioconductor
- Start-up: Installation, Courses, Vignettes
The Bioconductor Project
Bioconductor

- Bioconductor is an open source and open development software project for the analysis of biomedical and genomic data.
- The project was started in the Fall of 2001 and includes more than 25 core developers in the US, Europe, and Australia.
- Releases
 - v 1.0: May 2nd, 2002, 15 packages.
 - v 1.1: November 18th, 2002, 20 packages.
 - v 1.2: May 28th, 2003, 30 packages.
 - v 1.9: October 4, 2006, 188 packages.
Goals

• Provide access to powerful statistical and graphical methods for the analysis of genomic data.
• Facilitate the integration of biological metadata (GenBank, GO, Entrez, PubMed) in the analysis of experimental data.
• Allow the rapid development of extensible, interoperable, and scalable software.
• Promote high-quality documentation and reproducible research.
• Provide training in computational and statistical methods.
Bioconductor packages

• **R** and the **R package system** are used to design and distribute Bioconductor software.

• An **R package** is a structured collection of code (R, C, or other), documentation, and/or data for performing specific types of analyses.

• Different types of packages
 – Code
 – Data (metadata or experimental data)
 – Other (course packages …)
Bioconductor packages

- **Code packages** provide implementations of specialized statistical and graphical methods.

- **Data packages:**
 - Biological metadata: mappings between different gene identifiers (e.g., AffyID, GO, Entrez, PMID), CDF and probe sequence information for Affy arrays.
 E.g. hgu133plus2, GO, KEGG.
 - Experimental data: code, data, and documentation for specific experiments or projects.
 - golubEsets: Golub et al. (2000) ALL/AML data.

- **Course packages**: code, data, documentation, and labs for the instruction of a particular course. E.g. EMBO03 course package.
Some packages arranged by their functionality

Pre-processing

- CEL, CDF
 - affy
 - vsn
- .gpr, .Spot, MAGEML
 - marray
 - limma
 - vsn

ExpressionSet

Differential expression
- edd
genefilter
limma
multtest
ROC
+ CRAN

Graphs & networks
- graph
- RBGL
- Rgraphviz

Cluster analysis
- CRAN
 - class
 - cluster
 - MASS
 - mva

Prediction
- CRAN
 - class
e1071
ipred
LogitBoost
MASS
nnet
randomForest
rpart

Annotation
- annotate
- annaffy
+ metadata packages

Data
- estrogen
- AMLL
OOP in Bioconductor and R
The Bioconductor project has adopted the object-oriented programming (OOP) paradigm proposed in J. M. Chambers (1998). *Programming with Data.*

This object-oriented class/method design allows efficient representation and manipulation of large and complex biological datasets of multiple types.

Tools for programming using the class/method mechanism are provided in the R `methods` package.

OOP: classes

• A class provides a software abstraction of a real world object. It reflects how we think of certain objects and what information these objects should contain.
• Classes are defined in terms of slots which contain the relevant data.
• An object is an instance of a class.
• A class defines the structure, inheritance, and initialization of objects.
OOP: methods

• A method is a function that performs an action on data (objects).
 – Methods define how a particular function should behave depending on the class of its arguments.
 – Methods allow computations to be adapted to particular data types, i.e., classes.

• A generic function is a dispatcher, it examines its arguments and determines the appropriate method to invoke.
 – Examples of generic functions in R include `plot`, `summary`, `print`.
It is important to realize that when calling a generic function (such as `plot`), the actions performed depend on the class of the arguments.

Methods define how a particular function should behave depending on the class of its arguments.

Methods allow computations to be adapted to particular data types, i.e., classes.
ExpressionSet class

Processed Affymetrix or spotted array data

- **assayData**: Matrix of expression measures, genes x samples
- **phenoData**: Sample level covariates, instance of class annotatedDataFrame
- **annotation**: Name of annotation data source (annotation package)
- **annotation**: Name of features = data identifiers
- **description**: MIAME information
 - Use of object-oriented programming to deal with data complexity.
 - S4 class/method mechanism (methods package).
- **notes**: Any notes
AffyBatch class

Probe-level intensity data for a batch of arrays (same CDF)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cdfName</code></td>
<td>Name of CDF file for arrays in the batch</td>
</tr>
<tr>
<td><code>nrow</code></td>
<td>Dimensions of the array</td>
</tr>
<tr>
<td><code>ncol</code></td>
<td></td>
</tr>
<tr>
<td><code>exprs</code></td>
<td>Matrices of probe-level intensities and SEs</td>
</tr>
<tr>
<td><code>se.exprs</code></td>
<td></td>
</tr>
<tr>
<td><code>phenoData</code></td>
<td>Sample level covariates, instance of class <code>phenoData</code></td>
</tr>
<tr>
<td><code>annotation</code></td>
<td>Name of annotation data</td>
</tr>
<tr>
<td><code>description</code></td>
<td>MIAME information</td>
</tr>
<tr>
<td><code>notes</code></td>
<td>Any notes</td>
</tr>
</tbody>
</table>
Getting Started
Installation

1. **Main R software**: download from CRAN (cran.r-project.org), use latest release.

2. **Bioconductor packages**: download from Bioconductor (www.bioconductor.org), use latest release.

Available for Linux/Unix, Windows, and Mac OS.
Installation

- After installing R, install Bioconductor packages using `getBioC` install script.

- From R
  ```r
  > source("http://www.bioconductor.org/biocLite().R")
  > biocLite()
  ```

- In general, R packages can be installed using the function `install.packages`.

- In Windows, can also use “Packages” pull-down menus.
Installing vs. loading

• Packages only need to be installed once.
• But … packages must be loaded with each new R session.
• Packages are loaded using the function library. From R
 > library(Biobase)
 or the “Packages” pull-down menus in Windows.
• To update packages, use function update.packages or “Packages” pull-down menus in Windows.
• To quit:
 > q()
Documentation and help

- **R manuals and tutorials**: available from the R website or on-line in an R session.

- **R on-line help system**: detailed on-line documentation, available in text, HTML, PDF, and LaTeX formats.

```
> help.start()
> help(lm)
> ?hclust
> apropos(mean)
> example(hclust)
> demo()
> demo(image)
```
Short courses

• Bioconductor short courses
 – modular training segments on software and statistical methodology;
 – lectures notes, computer labs, and course packages available on WWW for self-instruction.
Vignettes

• Bioconductor has adopted a new documentation paradigm, the vignette.
• A vignette is an executable document consisting of a collection of code chunks and documentation text chunks.
• Vignettes provide dynamic, integrated, and reproducible statistical documents that can be automatically updated if either data or analyses are changed.
• Vignettes can be generated using the Sweave function from the R tools package.
Vignettes

- Each Bioconductor package contains at least one vignette, providing task-oriented descriptions of the package's functionality.
- Vignettes are located in the `doc` subdirectory of an installed package and are accessible from the help browser.
- Vignettes can be used interactively.
- Vignettes are also available separately from the Bioconductor website.
Vignettes

• Tools are being developed for managing and using this repository of step-by-step tutorials.

• Some packages have functions to access or browse vignettes:
 - **Biobase:**
 • `openVignette` – Menu of available vignettes and interface for viewing vignettes (PDF).
 • `browseVignette()`–
 - **tkWidgets:**
 • `vExplorer` – Interactive use of vignettes.
Vignettes

- HowTo’s: Task-oriented descriptions of package functionality.
- Executable documents consisting of documentation text and code chunks.
- Dynamic, integrated, and reproducible statistical documents.
- Can be used interactively – vExplorer.
- Generated using Sweave (tools package).
References

• **R** www.r-project.org, cran.r-project.org
 – software (CRAN);
 – documentation;
 – newsletter: R News;
 – mailing list.

• **Bioconductor** www.bioconductor.org
 – software, data, and documentation (vignettes);
 – training materials from short courses;
 – mailing list.
Exercises

- Install Bioconductor using BiocLite()
- Load the Biobase package
- Browse which vignettes are available using the openVignette() function
- Browse the vignettes and carefully read and try the exercises in # 1: *An Introduction to Biobase and ExpressionSets*