Stable homology of spaces of embedded surfaces:
Closed background manifolds

Federico Cantero Morán
Universität Münster

January 14, 2014
The space of embedded surfaces in a manifold

Our purpose is to study the space of all \textit{oriented} subsurfaces of a given manifold.
The space of embedded surfaces in a manifold

Our purpose is to study the space of all *oriented* subsurfaces of a given manifold. For this, we fix a compact, connected, *oriented* surface Σ_g and a “background” manifold M, and consider the set

$$E_g(M) = \left\{ W \subset M \mid W \text{ is an } oriented \text{ surface in } M \text{ diffeomorphic to } \Sigma_g \right\}$$
The space of embedded surfaces in a manifold

Our purpose is to study the space of all oriented subsurfaces of a given manifold. For this, we fix a compact, connected, oriented surface Σ_g and a “background” manifold M, and consider the set

$$\mathcal{E}_g(M) = \left\{ W \subset M \mid W \text{ is an oriented surface in } M \text{ diffeomorphic to } \Sigma_g \right\}$$

We endow it with the quotient topology of the quotient map

$$\text{Emb}(\Sigma_g, M) \longrightarrow \mathcal{E}_g(M)$$

given by sending an embedding f to its image $f(\Sigma_g)$.
The space of embedded surfaces in a manifold

Our purpose is to study the space of all oriented subsurfaces of a given manifold. For this, we fix a compact, connected, oriented surface Σ_g and a “background” manifold M, and consider the set

$$\mathcal{E}_g(M) = \left\{ W \subset M \mid W \text{ is an oriented surface in } M \text{ diffeomorphic to } \Sigma_g \right\}$$

We endow it with the quotient topology of the quotient map

$$\text{Emb}(\Sigma_g, M) \longrightarrow \mathcal{E}_g(M)$$

given by sending an embedding f to its image $f(\Sigma_g)$.

We’ll need to consider the space $\mathcal{E}^\nu_g(M)$ of pairs (W, u) where $W \in \mathcal{E}_g(M)$ and $u: NW \to U \subset M$ is a tubular neighbourhood.
The space of embedded surfaces in a manifold

Our purpose is to study the space of all oriented subsurfaces of a given manifold. For this, we fix a compact, connected, oriented surface Σ_g and a “background” manifold M, and consider the set

$$\mathcal{E}_g(M) = \left\{ W \subset M \mid W \text{ is an oriented surface in } M \text{ diffeomorphic to } \Sigma_g \right\}$$

We endow it with the quotient topology of the quotient map

$$\text{Emb}(\Sigma_g, M) \longrightarrow \mathcal{E}_g(M)$$

given by sending an embedding f to its image $f(\Sigma_g)$.

We’ll need to consider the space $\mathcal{E}_g(M)$ of pairs (W, u) where $W \in \mathcal{E}_g(M)$ and $u: NW \rightarrow U \subset M$ is a tubular neighbourhood. Forgetting the tubular neighbourhood gives a fibre bundle

$$\mathcal{E}_g(M) \longrightarrow \mathcal{E}_g(M)$$

which is also a weak homotopy equivalence.
Theorem A (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, and $\partial M \neq \emptyset$, then the scanning map

$$\mathcal{I}_g : \mathcal{E}_g^\nu(M) \to \Gamma_c(S(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g - 1)$.

Theorem C (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, then the scanning map

$$\mathcal{I}_g : \mathcal{E}_g^\nu(M) \to \Gamma_c(S(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g - 1)$.
The fibre bundle $S(TM)$

From an inner product vector space V, we can construct the following:

- The Grassmannian of oriented linear 2-planes in V,

$$Gr_2^+(V) = \{\text{oriented linear 2-planes in } V\}.$$
The fibre bundle $S(TM)$

From an inner product vector space V, we can construct the following:

- The Grassmannian of oriented linear 2-planes in V,
 \[\text{Gr}^+_2(V) = \{ \text{oriented linear 2-planes in } V \} \]

- The Grassmannian of oriented affine 2-planes in V,
 \[\gamma^+_2(V) = \{ \text{oriented affine 2-planes in } V \} = \{ (P, v) \mid P \text{ is an oriented linear 2-plane and } v \in P^\perp \} \]
The fibre bundle $S(TM)$

From an inner product vector space V, we can construct the following:

- The Grassmannian of oriented linear 2-planes in V,
 \[\text{Gr}^+_2(V) = \{\text{oriented linear 2-planes in } V\} \]

- The Grassmannian of oriented affine 2-planes in V,
 \[
 \gamma^+_2(V) = \{\text{oriented affine 2-planes in } V\}
 = \{(P, v) \mid P \text{ is an oriented linear 2-plane and } v \in P^\perp\}. \]

 Forgetting the vector v we obtain a vector bundle of rank $\dim V - 2$:
 \[
 \gamma^+_2(V) \longrightarrow \text{Gr}^+_2(V)
 \]

- The Thom space of this vector bundle,
 \[
 S(V) := \text{Th}(\gamma^+_2(V) \rightarrow \text{Gr}^+_2(V))
 \]
Consider now a vector bundle $E \to M$ endowed with a metric.

Definition

The fibre bundle $S(E) \to M$ is the result of applying the construction S fibrewise to the fibre bundle $E \to M$.

If E_p is the fibre of E over $p \in M$, then we obtain a fibre bundle

$$S(E_p) \longrightarrow S(E) \longrightarrow M.$$

In particular, for the tangent bundle of a *Riemannian* manifold M, we obtain a fibre bundle

$$S(T_pM) \longrightarrow S(TM) \longrightarrow M.$$
The scanning map $\mathcal{I}_g : \mathcal{E}_g(M) \rightarrow \Gamma_c(S(TM) \rightarrow M)_g$

The scanning map approximates each oriented surface $W \subset M$ with its tangent bundle.

First, if $p \in W$, we have the Gauss map. Second, if $\pi : U \rightarrow W \subset U$ is a tubular neighbourhood of W, we can identify $T_p M$ as a translation of $T_{\pi(p)} M$, and $T_{\pi(p)} W$ as an affine subspace of $T_p M$. Third, we may send any other point to the point at infinity (interpreted as the empty subspace).
The scanning map

We have obtained the *scanning map*:

\[\mathcal{I}_g : \mathcal{E}^\nu_g(M) \to \Gamma_c(S(TM) \to M) \]
\[(W, u) \mapsto \mathcal{I}_g(W, u). \]
The scanning map

We have obtained the \textit{scanning map}:

$$\mathcal{S}_g : \mathcal{E}_g(M) \longrightarrow \Gamma_c(S(TM) \longrightarrow M)$$

$$\quad (W, u) \mapsto \mathcal{S}_g(W, u).$$

\textbf{Lemma}

If M is simply connected and of dimension at least 5, then

$$\pi_0(\Gamma_c(S(TM) \rightarrow M)) \cong H_2(M; \mathbb{Z}) \times 2\mathbb{Z}.$$
The scanning map

We have obtained the *scanning map*:

\[\mathcal{S}_g : \mathcal{E}_g^\nu(M) \longrightarrow \Gamma_c(S(TM) \longrightarrow M) \]
\[(W, u) \longmapsto \mathcal{S}_g(W, u). \]

Lemma

If *M* *is simply connected and of dimension at least* 5, *then*

\[\pi_0(\Gamma_c(S(TM) \rightarrow M)) \cong H_2(M; \mathbb{Z}) \times 2\mathbb{Z}. \]

The space of compactly supported genus \(g\) *sections* \(\Gamma_c(S(TM) \rightarrow M)_g\) *is the union of those components labeled by* \(H_2(M; \mathbb{Z}) \times \{2 - 2g\}\).
The scanning map

We have obtained the *scanning map*:

\[
\mathcal{I}_g : \mathcal{E}_g^\nu(M) \to \Gamma_c(S(TM) \to M) \\
(W, u) \mapsto \mathcal{I}_g(W, u).
\]

Lemma

If \(M \) *is simply connected and of dimension at least 5, then*

\[
\pi_0(\Gamma_c(S(TM) \to M)) \cong H_2(M; \mathbb{Z}) \times 2\mathbb{Z}.
\]

The space of compactly supported genus \(g \) *sections* \(\Gamma_c(S(TM) \to M)_g \) *is the union of those components labeled by* \(H_2(M; \mathbb{Z}) \times \{2 - 2g\} \).

Lemma

The image of \(\mathcal{I}_g \) *is contained in* \(\Gamma_c(S(TM) \to M)_g \).
Theorem A (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, and $\partial M \neq \emptyset$, then the scanning map

$$\mathcal{I}_g : \mathcal{E}^\nu_g(M) \longrightarrow \Gamma_c(S(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g - 1)$.

Theorem C (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, then the scanning map

$$\mathcal{I}_g : \mathcal{E}^\nu_g(M) \longrightarrow \Gamma_c(S(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g - 1)$.
Relation to previous works

<table>
<thead>
<tr>
<th>$B\Sigma_n$</th>
<th>$C_n(M) := \text{Emb}([n], M)/\Sigma_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thm B</td>
<td>Nakaoka '60</td>
</tr>
<tr>
<td>Thm A</td>
<td>Barratt–Priddy '72</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$BDiff^+(\Sigma_g)$</td>
<td>$E_g(M) := \text{Emb}(\Sigma_g, M)/\text{Diff}^+(\Sigma_g)$</td>
</tr>
<tr>
<td>Thm B</td>
<td>Harer '85</td>
</tr>
<tr>
<td>Thm A</td>
<td>Madsen–Weiss '07</td>
</tr>
</tbody>
</table>

Thm B Martin Palmer: Stability for embedded disconnected submanifolds.
Definition

A semi-simplicial space X_\bullet is a simplicial space without degeneracies, that is, a functor $X_\bullet : \Delta_{\text{inj}} \to \text{Spaces}$ from the full subcategory $\Delta_{\text{inj}} \subset \Delta$ whose morphisms are the inclusions. A maps of semi-simplicial spaces is a natural transformation.

As usual, we denote by X_n the image of $[n]$.
A semi-simplicial space X_\bullet is a simplicial space without degeneracies, that is, a functor $X_\bullet : \Delta_{\text{inj}} \rightarrow \text{Spaces}$ from the full subcategory $\Delta_{\text{inj}} \subset \Delta$ whose morphisms are the inclusions. A map of semi-simplicial spaces is a natural transformation.

As usual, we denote by X_n the image of $[n]$.

An augmented semi-simplicial space is a triple consisting of
- a space X,
- a semi-simplicial space X_\bullet and
- a map $\epsilon : X_0 \rightarrow X$ (called augmentation) that equalizes the face maps $\partial_0 : X_1 \rightarrow X_0$ and $\partial_1 : X_1 \rightarrow X_0$.

We denote by $\epsilon_i : X_i \rightarrow X$ the unique composition of face maps and ϵ. A map between augmented semi-simplicial spaces is a pair $(X \rightarrow Y, X_\bullet \rightarrow Y_\bullet)$ that commutes with the augmentation maps.
Definition

A semi-simplicial space $X \bullet$ is a simplicial space without degeneracies, that is, a functor $X \bullet : \Delta_{\text{inj}} \to \text{Spaces}$ from the full subcategory $\Delta_{\text{inj}} \subset \Delta$ whose morphisms are the inclusions. A map of semi-simplicial spaces is a natural transformation.

Definition

An augmented semi-simplicial space is a triple consisting of

- a space X,
- a semi-simplicial space $X \bullet$ and
- a map $\epsilon : X_0 \to X$ (called augmentation) that equalizes the face maps $\partial_0 : X_1 \to X_0$ and $\partial_1 : X_1 \to X_0$.

We denote by $\epsilon_i : X_i \to X$ the unique composition of face maps and ϵ. A map between augmented semi-simplicial spaces is a pair $(X \to Y, X \bullet \to Y \bullet)$ that commutes with the augmentation maps.

An augmented semi-simplicial space $(X, X \bullet, \epsilon)$ is the same as a map from $X \bullet$ to the constant semi-simplicial space X whose face maps are identities.
Example (Hatcher, *Algebraic Topology*)

A semi-simplicial space with values in discrete spaces (aka sets) is called a Δ-set.
Example (Hatcher, *Algebraic Topology*)

A semi-simplicial space with values in discrete spaces (aka sets) is called a Δ-set.

There is a functor (the *realization*)

$$\| - \| : \text{Semi-simplicial spaces} \rightarrow \text{Spaces},$$

that sends the constant semi-simplicial space X to X, hence an augmentation map $X_0 \rightarrow X$ induces a map $\|X_{\bullet}\| \rightarrow X$, which we call *realized augmentation*.
Example (Hatcher, *Algebraic Topology*)

A semi-simplicial space with values in discrete spaces (aka sets) is called a Δ-set.

There is a functor (the *realization*)

$$\| - \| : \text{Semi-simplicial spaces} \to \text{Spaces},$$

that sends the constant semi-simplicial space X to X, hence an augmentation map $X_0 \to X$ induces a map $\|X_\bullet\| \to X$, which we call *realized augmentation*.

Definition

We say that a semi-simplicial space X_\bullet is a resolution of a space X if X_\bullet is augmented over X and the realized augmentation is a weak homotopy equivalence. A resolution of a map $f : X \to Y$ is a pair X_\bullet, Y_\bullet of resolutions of X, Y and a map $f_\bullet : X_\bullet \to Y_\bullet$ that extends the map f.
Let \((X, X_\bullet, \epsilon)\) be an augmented semi-simplicial space.

Lemma

If \(x \in X\), then there is a homotopy fibre sequence

\[
\|\text{hofib}_x(\epsilon_\bullet)\| \to \|X_\bullet\| \to X.
\]
Let \((X, X_\bullet, \epsilon)\) be an augmented semi-simplicial space.

Lemma

If \(x \in X\), *then there is a homotopy fibre sequence*

\[
\|\text{hofib}_x(\epsilon_\bullet)\| \to \|X_\bullet\| \to X.
\]

We say that \((X, X_\bullet, \epsilon)\) is an augmented *topological flag complex* if in addition

- the product map \(X_i \to X_0 \times_X \cdots \times_X X_0\) is an open embedding;
- a tuple \((x_0, \ldots, x_i)\) is in \(X_i \iff (x_j, x_k) \in X_1\) for all \(0 \leq j < k \leq i\).
Techniques I: How to prove that something is a resolution

Let \((X, X_\bullet, \epsilon)\) be an augmented semi-simplicial space.

Lemma

If \(x \in X\), then there is a homotopy fibre sequence

\[\|\text{hofib}_x(\epsilon_\bullet)\| \to \|X_\bullet\| \to X. \]

We say that \((X, X_\bullet, \epsilon)\) is an augmented topological flag complex if in addition
- the product map \(X_i \to X_0 \times X \cdots \times X X_0\) is an open embedding;
- a tuple \((x_0, \ldots, x_i)\) is in \(X_i \iff (x_j, x_k) \in X_1\) for all \(0 \leq j < k \leq i\).

Lemma (Galatius–Randal-Williams ’12)

Suppose in addition that

1. \(\epsilon: X_0 \to X\) has local sections;
2. given any finite collection \(\{x_1, \ldots, x_n\} \subset X_0\) in a single fibre of \(\epsilon\) over some \(x \in X\), there is a \(x_\infty\) in that fibre such that each \((x_j, x_\infty) \in X_1\).

Then \(\|\epsilon_\bullet\|: \|X_\bullet\| \to X\) is a weak homotopy equivalence.
Definition (Palais ’60, Cerf ’61)

If G is a (topological) group acting on X, we say that X is G-locally retractile if, for each point $x \in X$, the orbit map $G \times \{x\} \rightarrow X$ that sends $g \mapsto g \cdot x$ has local sections (in the weak sense).
Techniques II: How to prove that something is a fibration

Definition (Palais '60, Cerf '61)

If G is a (topological) group acting on X, we say that X is G-locally retractile if, for each point $x \in X$, the orbit map $G \times \{x\} \to X$ that sends $g \mapsto g \cdot x$ has local sections (in the weak sense).

Lemma (Palais '60, Cerf '61)

If X and Y are G-spaces, and $f : X \to Y$ is G-equivariant and Y is G-locally retractile, then f is a locally trivial fibration.
Techniques II: How to prove that something is a fibration

Definition (Palais ’60, Cerf ’61)

If G is a (topological) group acting on X, we say that X is G-locally retractile if, for each point $x \in X$, the orbit map $G \times \{x\} \to X$ that sends $g \mapsto g \cdot x$ has local sections (in the weak sense).

Lemma (Palais ’60, Cerf ’61)

If X and Y are G-spaces, and $f : X \to Y$ is G-equivariant and Y is G-locally retractile, then f is a locally trivial fibration.

Proposition (Palais ’60, Cerf ’61, Lima ’63, Binz–Fischer ’81)

The space of embeddings of a compact manifold into a manifold M and the space $\mathcal{E}_g(M)$ are $\text{Diff}(M)$-locally retractile.
Lemma

If $X_\bullet \to X$ is an m-resolution, X_i is homologically $(n - i)$-connected, and $m \geq n$, then X is homologically n-connected.
Lemma

If $X_{\bullet} \rightarrow X$ is an m-resolution, X_i is homologically $(n - i)$-connected, and $m \geq n$, then X is homologically n-connected.

Lemma

If a bundle map over B

\[
\begin{array}{ccc}
F_p & \rightarrow & F'_p \\
\downarrow & & \downarrow \\
E & \rightarrow & E' \\
\downarrow & & \downarrow \\
B & \rightarrow & B
\end{array}
\]

satisfies that for each $p \in B$ the induced map of fibres $F_p \rightarrow F'_p$ is homologically k-connected, then the map between total spaces is also homologically k-connected.
Proof: The two steps

1. construct **resolutions** of the source and target of the scanning map

\[\mathcal{F}_g(M) \longrightarrow \mathcal{E}_g^\nu(M), \quad \mathcal{G}_g(M) \longrightarrow \Gamma_c(S(TM) \rightarrow M)_g \]

and a resolution of the scanning map

\[\mathcal{F}_g(M) \longrightarrow \mathcal{G}_g(M) \]

\[\mathcal{E}_g^\nu(M) \longrightarrow \Gamma_c(S(TM) \rightarrow M)_g. \]
Proof: The two steps

1. Construct resolutions of the source and target of the scanning map

\[\mathcal{F}_g(M) \rightarrow \mathcal{E}_g^\nu(M), \quad \mathcal{G}_g(M) \rightarrow \Gamma_c(S(TM) \rightarrow M)_g \]

and a resolution of the scanning map

\[\mathcal{F}_g(M) \rightarrow \mathcal{G}_g(M) \]

\[\mathcal{E}_g^\nu(M) \rightarrow \Gamma_c(S(TM) \rightarrow M)_g. \]

2. Construct vertical maps (called approximations)

\[\mathcal{E}_g^\nu(M \setminus \{p_1, \ldots, p_i\}) \rightarrow \Gamma_c(S(TM \setminus \{p_1, \ldots, p_i\}) \rightarrow M \setminus \{p_1, \ldots, p_i\})_g \]

\[\mathcal{F}_g(M)_i \rightarrow \mathcal{G}_g(M)_i \]

from a scanning map for which Theorem A applies, and deduce that the bottom map is homologically \(\frac{2}{3}(g - 1) \)-connected.
Proof: Resolution of $\mathcal{E}_g^\nu(M)$

Let $\mathcal{F}_g(M)_i$ be the space of tuples (W, a, d_0, \ldots, d_i) where

1. $(W, u) \in \mathcal{E}_g^\nu(M)$
2. $d_0, \ldots, d_i: D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all j.

These spaces form a semi-simplicial space $\mathcal{F}_g(M)_\bullet$ where the jth face map forgets the jth disc, and there is an augmentation to $\mathcal{E}_g^\nu(M)$ that forgets all the discs.
Proof: Resolution of $E^\nu_g(M)$

Let $F_g(M)_i$ be the space of tuples (W, a, d_0, \ldots, d_i) where

1. $(W, u) \in E^\nu_g(M)$
2. $d_0, \ldots, d_i: D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all j.

These spaces form a semi-simplicial space $F_g(M)_\bullet$, where the jth face map forgets the jth disc, and there is an augmentation to $E^\nu_g(M)$ that forgets all the discs.

Proposition

$F_g(M)$ is a resolution of $E^\nu_g(M)$.
Proof: Resolution of $E^\nu_g(M)$

Let $F_g(M)_i$ be the space of tuples (W, a, d_0, \ldots, d_i) where
1. $(W, u) \in E^\nu_g(M)$
2. $d_0, \ldots, d_i: D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all j.

These spaces form a semi-simplicial space $F_g(M)_\bullet$ where the jth face map forgets the jth disc, and there is an augmentation to $E^\nu_g(M)$ that forgets all the discs.

Proposition

$F_g(M)$ is a resolution of $E^\nu_g(M)$.

Proof.

Let $F'_g(M)_\bullet$, the semi-simplicial space defined as $F_g(M)_\bullet$, except that the embeddings are only required to be disjoint at the centers of the discs. Then
- the inclusion $F_g(M)_\bullet \subset F'_g(M)_\bullet$ is a levelwise equivalence.
- $F'_g(M)_\bullet$ is a topological flag complex augmented over $E^\nu_g(M)$.
- $F'_g(M)_\bullet$ satisfies the conditions of our lemma on topological flag complexes, hence is a resolution.
Proof: Resolution of $\Gamma^c_c(S(TM) \to M)_g$

Let $G_g(M)_i$ be the space of tuples $(f, d_0, \ldots, d_i, h_0, \ldots, h_i)$ where

1. $f \in \Gamma^c_c(S(TM) \to M)_g$;
2. $d_0, \ldots, d_i: D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all j.
3. h_0, \ldots, h_i are smooth homotopies of sections of $d_j^*(S(TM))$, constant near the boundary, and such that

$$h_j(x, 0) = f \circ d_j, \quad h_j(0, 1) = \infty.$$

The jth face map forgets d_j and h_j, and there is an augmentation to $\Gamma^c_c(S(TM) \to M)_g$ by forgetting all discs and homotopies.
Proof: Resolution of $\Gamma_c(S(TM) \to M)_g$

Let $G_g(M)_i$ be the space of tuples $(f, d_0, \ldots, d_i, h_0, \ldots, h_i)$ where

1. $f \in \Gamma_c(S(TM) \to M)_g$;
2. $d_0, \ldots, d_i: D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all j.
3. h_0, \ldots, h_i are smooth homotopies of sections of $d_j^*(S(TM))$, constant near the boundary, and such that

 $$h_j(x, 0) = f \circ d_j, \quad h_j(0, 1) = \infty.$$

The jth face map forgets d_j and h_j, and there is an augmentation to $\Gamma_c(S(TM) \to M)_g$ by forgetting all discs and homotopies.

Proposition

$G_g(M)_\bullet$ is a resolution of $\Gamma_c(S(TM) \to M)_g$.

Proof.
Proof: Resolution of the scanning map

We can extend the scanning map to a map of resolutions:

\[
\begin{array}{c}
\mathcal{F}_g(M) \quad \longrightarrow \quad \mathcal{G}_g(M) \\
\downarrow \quad \quad \downarrow \\
\mathcal{E}_g^\nu(M) \quad \longrightarrow \quad \Gamma_c(S(TM) \to M)_g
\end{array}
\]

by sending a tuple \((W, u, d_0, \ldots, d_i)\) to \((\mathcal{S}(W, u), d_0, \ldots, d_i, h_0, \ldots, h_i)\), where \(h_j\) are constant homotopies.
Proof: First step accomplished

1. construct resolutions of the source and target of the scanning map

\[\mathcal{F}_g(M) \longrightarrow \mathcal{E}_g(M), \quad \mathcal{G}_g(M) \longrightarrow \Gamma_c(S(TM) \to M)_g \]

and a resolution of the scanning map

\[\mathcal{E}_g(M) \longrightarrow \Gamma_c(S(TM) \to M)_g. \]

2. Construct vertical maps (called approximations)

\[\mathcal{E}_g(M \setminus \{p_1, \ldots, p_i\}) \longrightarrow \Gamma_c(S(TM \setminus \{p_1, \ldots, p_i\}) \to M \setminus \{p_1, \ldots, p_i\})_g \]

from a scanning map for which Theorem A applies, and deduce that the bottom map is homologically \(\frac{2}{3}(g - 1) \)-connected.
Proof: The approximation maps

Forgetting the surface + tubular neighbourhood or the section defines a pair of maps

\[\mathcal{F}_g(M)_i \quad \downarrow \quad \mathcal{G}_g(M)_i \]

\[C_i(M) \quad \downarrow \quad C_i(M), \]

to the space \(C_i(M) := \text{Emb}([i] \times D^d, M). \)
Proof: The approximation maps

Forgetting the surface $\mathcal{W} +$ tubular neighbourhood or the section gives homotopy fibre sequences

$$
\begin{align*}
\mathcal{E}_g^\nu (M \setminus p) & \quad \rightarrow \quad \Gamma_c (S(TM \setminus p) \rightarrow M \setminus p)_g \\
\mathcal{F}_g (M)_i & \quad \rightarrow \quad \mathcal{G}_g (M)_i \\
C_i (M) & \quad \rightarrow \quad C_i (M),
\end{align*}
$$

\[
\xymatrix{
\mathcal{E}_g^\nu (M \setminus p) \ar[r] & \Gamma_c (S(TM \setminus p) \rightarrow M \setminus p)_g \\
\mathcal{F}_g (M)_i \ar[r] & \mathcal{G}_g (M)_i \\
C_i (M) \ar[u] & C_i (M), \quad \text{to the space } C_i (M) := \text{Emb}([i] \times D^d, M). \text{ The fibre is taken over the point } (d_0, \ldots, d_j) \text{ and } p = \{d_0(0), \ldots, d_i(0)\}.}
\]
Proof: The approximation maps

Forgetting the surface + tubular neighbourhood or the section defines a pair of maps

\[
\begin{align*}
E_\nu(M \setminus p) & \longrightarrow \Gamma_c(S(TM \setminus p) \to M \setminus p)_g \\
\downarrow & \quad \downarrow \\
F_g(M)_i & \longrightarrow G_g(M)_i \\
\downarrow & \quad \downarrow \\
C_i(M) & \longrightarrow C_i(M),
\end{align*}
\]

to the space \(C_i(M) := \text{Emb}([i] \times D^d, M)\). The fibre is taken over the point \((d_0, \ldots, d_j)\) and \(p = \{d_0(0), \ldots, d_i(0)\}\).
Proof: The approximation maps

Forgetting the surface + tubular neighbourhood or the section defines a pair of maps

\[\mathcal{E}_g(M \setminus p) \longrightarrow \Gamma_c(S(TM \setminus p) \rightarrow M \setminus p)_g \]

\[\mathcal{F}_g(M)_i \longrightarrow \mathcal{G}_g(M)_i \]

\[C_i(M) \longrightarrow C_i(M), \]

to the space \(C_i(M) := \text{Emb}([i] \times D^d, M) \). The fibre is taken over the point \((d_0, \ldots, d_j)\) and \(p = \{d_0(0), \ldots, d_i(0)\}\).

The scanning map commutes with the map between spaces of \(i \)-simplices.
Proof: The approximation maps

Forgetting the surface + tubular neighbourhood or the section defines a pair of maps

\[
\begin{array}{ccc}
\mathcal{E}_g^\nu(M \setminus p) & \longrightarrow & \Gamma_c(S(TM \setminus p) \rightarrow M \setminus p)_g \\
\downarrow & & \downarrow \\
\mathcal{F}_g(M)_i & \longrightarrow & \mathcal{G}_g(M)_i \\
\downarrow & & \downarrow \\
C_i(M) & \longrightarrow & C_i(M),
\end{array}
\]

to the space \(C_i(M) := \text{Emb}([i] \times D^d, M) \). The fibre is taken over the point \((d_0, \ldots, d_i)\) and \(p = \{d_0(0), \ldots, d_i(0)\} \).

The scanning map commutes with the map between spaces of \(i \)-simplices.

Corollary

Since the scanning map on the fibres is a homology isomorphism in degrees \(* \leq \frac{2}{3}(g - 1) \), it follows from a previous lemma that the map between total spaces is a homology isomorphism in those degrees.
Proof: Second step accomplished

1. Construct resolutions of the source and target of the scanning map

\[\mathcal{F}_g(M) \rightarrow \mathcal{E}_g(M), \quad \mathcal{G}_g(M) \rightarrow \Gamma_c(S(TM) \rightarrow M)_g \]

and a resolution of the scanning map

\[\mathcal{F}_g(M) \rightarrow \mathcal{E}_g(M) \rightarrow \Gamma_c(S(TM) \rightarrow M)_g. \]

2. Construct a map of pairs (called *approximation*)

\[\mathcal{E}_g(M \setminus \{p_1, \ldots, p_i\}) \rightarrow \Gamma_c(S(TM \setminus \{p_1, \ldots, p_i\}) \rightarrow M \setminus \{p_1, \ldots, p_i\}_g \]

\[\mathcal{F}_g(M)_i \rightarrow \mathcal{G}_g(M)_i \]

from a scanning map for which Theorem A applies, and deduce that the bottom map is homologically \(\frac{2}{3}(g - 1) \)-connected.