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Abstract

This article describes a method to analyze time series with a neural net-
work using a matrix of area-normalized persistence landscapes obtained
with topological data analysis. The network’s architecture includes a gat-
ing layer that is able to identify the most relevant landscape levels for
a classification task, thus working as an importance attribution system.
Next, a matching is performed between the selected landscape levels and
the corresponding critical points of the original time series. This matching
enables reconstruction of a simplified shape of the time series that gives
insight into the grounds of the classification decision. As a use case, this
technique is tested in the article with input data from a dataset of elec-
trocardiographic signals. The classification accuracy obtained using only
a selection of landscape levels from data was 94.00% = 0.13 averaged
after five runs of a neural network, while the original signals achieved
98.41% =+ 0.09 and landscape-reduced signals yielded 97.04% =+ 0.14.
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1 Introduction

In this article we use topological data analysis (TDA) for the purpose of inter-
pretability of classification results in deep learning. More precisely, we use
persistence landscapes to retrieve information about features from data on
which a neural network focuses to perform a classification task.

While the use of topological methods to enhance the performance of neural
networks is widespread, this is the first study, to our knowledge, in which
TDA-based algorithms have been implemented for importance attribution.

Related work. A number of articles have used TDA in connection with neu-
ral networks since 2018. Tracking changes in the topology of a dataset as it
passes through the layers of a trained neural network is the subject of [1], while
the topology of neuron activations is analyzed in [2]. Assessment of the gener-
alization gap by means of persistence descriptors without the need of a testing
set is discussed in [3, 4]. None of these articles, however, addresses attribution
of importance based on classification outcomes.

The use of landscapes as persistence descriptors was initiated by Bubenik
in [5]. Landscapes were used in connection with deep learning in [6] with
the goal of improving learnability by adding information on topological fea-
tures of input data into subsequent layers, but not for explainability purposes
either. Activation landscapes have also been used as topological summaries of
performance of neural networks in [7].

Many articles address the study of time series by means of neural net-
works without using topology. For example, in [8], a pre-training method using
auto-encoders was designed for time series prediction, and in [9] a multilayer
feedforward perceptron neural network was used to assess its capability of
accurately predicting stock market short-term trends.

A survey of topological methods for time-series analysis in deep learning
using Betti numbers is offered in [10]. Persistent homology is used in [11] to
detect and quantify topological patterns in time series of financial crashes, and
for personalized arrhythmia classification in [12]. In different directions, meth-
ods from topological data analysis have also been used to provide versatile
vectorizations [13], or to achieve a higher prediction accuracy or classification
accuracy [14], or to regularize learning algorithms by feeding topological infor-
mation extracted from data [15-17]. Topology has also been used to reduce
the size of datasets without much loss in training accuracy [18].

In contrast with most of the aforementioned articles, the purpose of the
present paper is neither to achieve an increased classification accuracy nor to
investigate any aspects of the structure of a neural network, but rather to link
classification outcomes with specific topological characteristics of the dataset.
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Problem statement. While the reasons for a classification outcome from a
neural network often remain unknown, it is feasible to determine which features
of data were especially relevant after training a network. The purpose of this
article is twofold: First, to design a mechanism for importance attribution using
persistence descriptors, and second, to ascertain whether such descriptors (or a
skeleton of data focusing on selected descriptors) achieve a similar classification
accuracy through the same architecture.

Research approach and methods. The hierarchical structure of persistence
landscapes allows us to design a method for finding the most informative levels.
For this, we preprocess data so that the network is fed with a persistence
landscape extracted from data instead of the original signals. Furthermore,
we introduce an additional layer to a chosen architecture, whose mission is to
assign weights to landscape levels. Then we run again the network using only
those levels with the highest weights. The results show that the set of selected
landscape levels (normally 2 to 4) yield similar classification accuracies as the
whole landscape.

Selecting the most relevant landscape levels for a deep learning classifica-
tion task opens the possibility of reconstructing the given data using only the
chosen landscape functions. The resulting simplified version of the given data
sheds light on which parts of data signals were most relevant for the network’s
classification task. Our reconstruction method is described more precisely in a
companion article [19], which addresses some mathematical questions related
with the present paper and is related with the inverse problem in TDA, namely
recovering certain types of data from persistence summaries [20—22].

In the context of a heartbeat analysis (Section 4.2) we checked that our
neural network obtains similar accuracies when fed with reconstructions of
signals from selected landscape levels in comparison with those obtained with
raw data. This enhances confidence in the classification results by providing
evidence that the network is not focusing on artifactual details during the
learning process.

Outline. Basic facts about persistence landscapes are collected in Section 2,
and our attribution algorithm for landscape levels is described in Section 3.
In Subsection 4.1 we validate our technique with nine datasets from the UCR
Time Series Classification Archive [23], and use it in Subsection 4.2 to test the
accuracy of classification of electrocardiographic signals from the MIT-BIH
Arrhytmia Database [24]. In Subsection 4.3, the effect of shifting signals on
classification accuracy is analyzed.

2 Persistence landscapes for sublevel sets

Time-series arrays can be viewed as one-dimensional continuous piecewise lin-
ear functions where persistent homology can be applied to study the evolution
of sublevel sets. Thus we consider a sliding parameter ¢ along the y-axis, and
for each function f defined on an interval [a,b] and each value of ¢t we com-
pute the number of connected components of the corresponding sublevel set
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Li(f) = {z € [a,b] | f(x) < t}. This coincides with the number of connected
components of the part of the graph of f which lies at or below height ¢. The
collection of all sublevel sets for a given function yields a persistence mod-
ule whose value at t is the vector space Ho(L:(f); R), where Hy denotes
zero-dimensional homology and coefficients in the field R of reals are used.

For background about persistence modules and their associated barcodes
and persistence diagrams, see [25]. Barcodes were first considered in a topolog-
ical context in [26]. A barcode depicts the lifetime of each connected component
of a sublevel set, from the height ¢ = b (birth) where it appears until the height
t = d (death) in which it merges with some other connected component. The
corresponding persistence diagram contains a point (b, d) for each barcode line
starting at b and ending at d. The infinite ray depicting the essential homology
class that survives to infinity is discarded for practical purposes.

Persistence barcode Persistence diagram

| 1.000
. |

Death

Divth

Fig. 1 From left to right, a piecewise linear function, its barcode of zero-dimensional homol-
ogy of sublevel sets and the corresponding persistence diagram.

Persistence diagrams are not optimal for their use in deep learning. Neural
networks perform best with array-shaped data. Therefore, in this article we
use landscapes as persistence summaries. Persistence landscapes were defined
in [5] and, in our case, they express the evolution of connected components of
sublevel sets of signals by means of a finite sequence of continuous piecewise
linear functions with compact support. Computationally, each landscape func-
tion can be expressed as an array of discretized values, which makes it suitable
to be introduced into a deep learning system.

The sequence of landscape functions associated with a persistence diagram
is defined as follows. For each point (b,d) in the persistence diagram, one
considers the corresponding tent function

Ap,ay(t) = max{0, min{t — b,d — t}}.
Next, a piecewise linear function A\;: R — R is defined for each k > 1 as

i (t) = kmax{A 4 (1)},

where kmax returns the k-th largest value of a given set of real numbers whose
elements are counted with multiplicities, or zero if there is no k-th largest
value. Therefore, since the number of points in a persistence diagram is finite,
Ar = 0 for all sufficiently large values of k. The first landscape levels A1, Ao . ..
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depict the most persistent topological features, while the last ones correspond
to less persistent phenomena.

Fig. 2 Sequence of nonzero levels A\; of a persistence landscape (left).

3 Attribution of importance

The fact that persistence landscapes can be stratified into a hierarchical
sequence of levels makes it possible to design a mechanism for importance
attribution ranking landscape levels of a given sample of signals. In [19] a
deterministic procedure is described to reconstruct signals from directional
persistence landscapes in a number of chosen directions. It is also shown in [19]
how to partially reconstruct the given signals using only a subset of selected
landscape levels, which is the focus of interest in the present article. By com-
bining this procedure with a machine learning assignment of a sequence of
weights to landscapes, we achieve a substantial reduction of the number of
critical points of the given data functions without losing much classification
accuracy.

To do this, we stack landscape functions from persistence of sublevel sets of
the given signals in a matrix that will be fed into a neural network. Landscapes
provide a convenient representation, since each landscape level corresponds to
a different region of the oscillation of the input signal.

Since our objective is to feed a deep learning model, we decided to normalize
the area under each landscape function in order to force the network to focus
on their morphology instead of their actual values. This process is illustrated
in Fig. 3.

I Neural
‘ . ) network
. | . PN with
. T gating layer

Input Persistence landscape

Fig. 3 Extracting information through persistence landscapes to feed a neural network.

The existence of different levels of information naturally leads to the study
of which levels are more important than others for the classification task.
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In order to implement this idea, we propose the use of a gating layer: we
maintain the matrix shape throughout the architecture and, before applying
the fully connected layers, each landscape level A\, is multiplied by a positive
less-than-one learnable weight wy. Thus we obtain a set of weights that indicate
how influential is each landscape level for the classification task. Typically,
a network should regard the first landscape levels as more important than
the last ones, given that the first levels contain information about the most
persistent topological features.

By building a ranking of landscape levels, we are able to decide at which
threshold of information the network stops learning. This is helpful in two
main ways: first, we are able to reduce the information that we use to train
our system by reducing the number of landscape functions that we pass to our
network; and second, we can attribute importance to the parts of the original
data that are producing the most relevant landscape levels.

4 Experimental setting and results

In this section, we present the results of our experiments using a neural network
with a fixed architecture and different input signals. Our main aims are to
assess the changes in classification accuracy by using only a set of selected
landscape levels in comparison with the full landscape and with the original
data, while determining which are the most relevant landscape features in
each database. Robustness of our method is estimated by applying it to nine
databases of very different nature.

Data. We applied our methodology to a collection of datasets taken from the
UCR Time Series Classification Archive [23]. The criteria for choosing a dataset
were the following: the dataset should have at most five different classes and
the total number of samples divided by the number of classes should be greater
than or equal to 500. These criteria were adopted in order to avoid dealing with
data scarcity problems and difficulties caused by imbalanced classes or by an
excessive number of classes. Table 1 contains a summary of the characteristics
of each dataset.

Methodology. In order to avoid discrepancies in the accuracy of the method
due to the different ranges of values among datasets, input functions have been
standardized to have values between 0 and 1. Moreover, when the topological
preprocessing is applied, landscapes have been normalized so that the area
under each landscape function is equal to 1. In doing so, we force the neural
network to study the shape of the landscape, rather than only taking into
account its actual values.

The main objective of our study is to compare the ability of landscape levels
to capture information against a baseline of the raw data with the only pre-
processing of standardization. Furthermore, to assess if the selected landscape
levels are sufficient to classify, the results of feeding a neural network with the
full landscape and the results of using only the selected levels are compared.
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Table 1 A summary of the characteristics of each dataset. For each dataset we
indicate the total number of samples, the length of each sample, the number of classes
and whether the dataset is imbalanced or not.

Dataset Samples Length Classes Imbalanced
ECG5000 5000 140 5 Yes
FreezerRegularTrain 3000 301 2 No
HandOutlines 1370 2709 2 Yes
ItalyPowerDemand 1096 24 2 No
MoteStrain 1272 84 2 No
PhalangesOutlinesCorrect 2658 80 2 Yes
StarLightCurves 9236 1024 3 Yes
Wafer 7164 152 2 Yes
Yoga 3300 426 2 Yes

The architecture of the neural network is as follows: three convolutional
layers combined with row-preserving max pooling layers followed by two dense
layers (Fig. 4). Our gating layer is used for selection and attribution purposes
and it is only present when landscape levels are used as input. In such case, the
gating layer is placed between the last max pooling layer and the first dense
layer. The experiments are conducted using a 5-fold cross-validation. Training
sets amount to 80% of each dataset. The neural network is trained during
240 epochs, with a starting learning rate of 0.01 that is divided by 5 every
100 epochs. This architecture has been chosen to be rather generic, without
attempting to achieve the highest possible accuracy, neither with the original
data nor by means of landscapes. Our purpose was to assess the validity our
method while avoiding possible particularities due to a tailored choice of an
optimal architecture.

As for performance metrics, only accuracy is taken into account in the
present article.

64@10x70

64@10x35

32@10635 555 10x1732@10x17 32@10x8
1x100

NN\

Fig. 4 Architecture of the neural network designed for this study. The gating layer is placed
immediately before the first dense layer (pink) when landscapes are used as input.

1@10x80
[—
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4.1 Validation of the method
4.1.1 Performance results

We carried out the same experiment for 9 different datasets from [23] to ver-
ify the stability of the results (Table 2). For each dataset, we ran a neural
network (Fig. 4) with three different inputs: the original data, a sequence of
persistence landscape levels, and a selected subset of levels. Since the length
of the full sequence of nonzero landscape levels is variable, we chose the first
10 levels Aq,..., A0 as in most cases the 10th level was already zero, and fix-
ing a larger number of landscape levels caused memory difficulties during the
training process without a significant increase in accuracy.

Subsequently, the selection of a smaller number of principal landscape levels
was made by choosing the highest weights provided by the gating layer. The
number of selected levels ranged from 2 to 5 depending on the dataset (Fig. 5).
Further details about the selection of an appropriate subset of landscape levels
are given in Subsection 4.1.2.

Table 2 shows the average accuracy and standard deviation of each exper-
iment using 5-fold cross-validation. The table contains average accuracy
results using raw data, unnormalized landscapes, normalized landscapes, and
a selected subset of normalized landscape levels. The results show that land-
scapes achieve sufficiently high classification accuracies, especially when they
are normalized (third and fourth columns). In that respect, landscape accu-
racies are statistically comparable up to one standard deviation to using raw
data in four out of the nine datasets.

In Table 2, the results obtained by TDA-based strategies that are statisti-
cally comparable among them —including the method that achieved maximum
accuracy— are highlighted in bold font. Unnormalized landscapes consistently
miss relevant information in most cases, and this is translated into a significant
reduction in accuracy. It is also remarkable that the selected landscape levels
achieve similar performances as whole (normalized) landscapes. This reinforces
the hypothesis that most of the information contained in data is captured by
a small subset of landscape levels.

In the PhalangesOC dataset, normalized landscapes perform even bet-
ter than the original data. As pointed out in the Discussion, this could be
due to the inherent elastic deformation invariance provided by the landscape
representation.

4.1.2 Ranking of landscape levels

The keystone of our process is to be able to identify which landscape levels
carry the highest amount of information for classification outcomes. The gat-
ing layer multiplies each landscape level A, (with k = 1,...,10) by a learnable
weight wy, with 0 < wy, < 1. After the full training process of the neural net-
work, the resulting weights are used to attribute importance to each landscape
level.
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Table 2 Average accuracies given as percentages and standard deviations on test sets
from five runs of a neural network (Fig. 4) for nine signal datasets. Accuracies obtained
from original data (first column) are compared with those obtained from the first 10
landscape levels without area normalization (second column) and with area normalization
(third column), and from the most informative landscape levels (fourth colum). The last
column indicates how many landscape levels were selected in each case. Statistically
comparable accuracies among TDA-based strategies appear in boldface.

Dataset Raw data Unnormalized Normalized Selected No.
ECG5000 94.72 + 0.7 92.96 + 0.5 93.12+0.4 92.88 £0.3 3
FreezerRT 99.53+ 0.4 63.70 £ 4.2 88.97 £0.3 88.70 £ 1.6 2
HandOutlines 89.20 + 1.7 75.77+ 4.6 85.26 £ 2.0 81.90 £ 2.0 5
ItalyPowerD 97.73+ 1.1 87.18 £ 3.4 8945+ 1.7 90.36 £ 1.3 2
MoteStrain 90.98 + 1.1 71.84+1.8 77.33+2.8 76.31+1.7 3
PhalangesOC 64.02 + 2.1 63.95 + 4.2 68.95 +0.9 69.21 £ 0.8 4
StarlightC 95.70 + 0.4 89.82 + 2.3 94.92 +£0.1 95.22 +£0.5 3
‘Wafer 99.65 + 0.2 90.86 + 0.8 98.63 £0.3 98.79+£0.4 3
Yoga 82.48 + 1.6 64.21 +£4.1 75.36 £ 1.1 78.33+1.0 4

To ensure significance, we performed the experiment five times and
recorded the mean weight value and standard deviation for each landscape
level, as seen in Fig. 5. Although there is no obvious numerical method to
determine the number of landscape levels that should be considered important
in view of their weights, we used the following criterion. If wy < %wk,l for
some k, we call k a significant drop. If k is the largest significant drop with

wg_1 > 0.1, then we select A1, ..., A\x_1 as most important landscape levels. If
there is no significant drop with wy_1 > 0.1, then we pick the smallest k& such
that wy + - -+ + wr_1 > wg + - -+ + wyo and also select A\1,..., A\p_1.

With very few exceptions, the network regards the first landscape levels as
more important. These contain information of the most persistent topological
features of each signal (connected components of sublevel sets). The first 10
levels were used in all the experiments. In some cases —namely, ItalyPowerD
and PhalangesOC— landscape levels Ay with k& > 6 were zero for all samples in
the dataset. In these cases, the gating layer assigned small but not necessarily
zero weights to the null levels.

It is remarkable that the terminal landscape level (i.e., the 10th in our
study) tends to be consistently more relevant than the immediately precedent
ones, except in those cases where it is zero for the whole dataset. This sug-
gests that the terminal landscape level may convey discriminant information,
deserving further study.

Fig. 5 shows that for certain datasets all weights are below 0.4, specifi-
cally HandOutlines and PhalangesOC, and marginally also Yoga. Looking at
Table 2, we find that these datasets are precisely the ones that yield accuracies
below 90% on test sets after the neural network had been trained with the orig-
inal data. The datasets where the original data achieved a higher classification
accuracy coincide with those with a smallest number of important landscape
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ECG5000 FreezerRegularTrain HandOutlines
1.0 1.0 1.0
0.8 0.8 0.8
0.6 I 0.6
0.4 0.4 0.4
0.2 I 0.2 0.2 { \ l
: |
1y ol I - o s Il
12

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

ItalyPowerDemand MoteStrain PhalangesOutlinesCorrect

0.8 08 0.8
0.6 0.6 I 0.6
0.4 0.4 I 0.4
0.2 l 0.2 0.2 ] I
ol g ! e s
0.0 - 1 da 0.0 0.0 I o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
StarLightCurves Wafer Yoga
1.0 1.0 1.0
0.8 l 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2 l l
I L i oin ol B g o
00 ook 00 | 00 | o o wlpels
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Fig. 5 Average weights and standard deviations of the first ten landscape levels for nine
datasets after five runs of a neural network (Fig. 4) equipped with a gating layer.

levels. Indeed, Fig. 6 shows an inverse relationship between accuracies and the
number of selected landscape levels.

As examples of unfavorable cases, we now discuss results obtained with the
datasets FordA and TwoPatterns from [23]. These datasets share a common
property, namely they consist of wave-like signals with a varying wavelength
and the key information to classify them is the z-coordinate where the changes
in the waves are happening. In one of them (FordA), the original data are dif-
ficult to classify, while in the other one (TwoPatterns) the original data are
easily classifiable. In both cases, replacing the data by persistence landscapes
erases the relevant information for a neural network classifier —since land-
scapes are invariant under wavelength changes if amplitude is preserved— and
thus we obtain low accuracy and considerable overfitting if landscapes are used
instead of raw data.

In Fig. 7 we see that, for the FordA datasets (where the neural network
has trouble classifying even with the original data) the weights of persis-
tence landscape levels are all similar and with a low relevance. In contrast,
in the TwoPatterns case we see a clear ranking of the first landscape levels.
Hence, landscape selection yields meaningful information about the dataset
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Fig. 6 Inverse relationship between the accuracy of our neural network (red) trained with
the original raw data and the number of landscape levels (blue) that were selected as impor-
tant. Datasets in the horizontal axis are ordered by increasing accuracy.

even in disadvantageous situations, since there is a consistent inverse relation-
ship between the ability of the neural network to correctly classify the original
data and the number of important landscape levels found through our method.
In conclusion, Fig. 6 and Fig. 7 provide evidence that the outcome of landscape
level selection can be related to how well a neural network can perform.

TwoPatterns FordA
1.0 1.0
0.8 1 0.8
0.6 0.6
0.4 0.4
02 0.2 I Iy ol ]
I ey o i Bl
I T oo ok ok ok
0.0 0.0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Fig. 7 Average weights and standard deviations of the first ten landscape levels for two
datasets after five runs of a neural network (Fig. 4) equipped with a gating layer.

4.2 A use case: Results of a heartbeat analysis

As an application case, we used our algorithm for a classification of electro-
cardiogram signals (ECG) from the MIT-BIH Arrhytmia Database [24] for
evaluation of arrhytmia detectors. The dataset can be retrieved from [27] and
it includes 48 half-hour excerpts of 24-hour ECG recordings obtained from 47
subjects (25 men aged 32 to 89 years and 22 women aged 23 to 89 years) stud-
ied between 1975 and 1979. Our data sample includes 87,554 heartbeats of five
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classes: one corresponding to normal beats (82.77%); three classes correspond-
ing to different arrhythmia types, namely supraventricular premature beats
(2.54%), premature ventricular contraction (6.61%), and fusion of ventricular
and normal beats (0.73%); and one class for unidentifiable heartbeats (7.35%).

Table 3 shows average accuracy after a 5-fold cross-validation. The classifi-
cation accuracy of our neural network (Fig. 4) fed with the original unprocessed
signals (98.41%) is compared with the accuracy of the same architecture using a
10-level landscape (94.55%) and using only the three most important landscape
levels (94.00%). Landscapes were area-normalized since Table 2 evidenced an
advantage of normalized landscapes versus unnormalized ones. The choice of
three levels was based on weights assigned by the network, as shown in Fig. 8,
where k = 4 is the largest significant drop.

1.0

0.8

0.6 :

0.2

0.0 B e o]
1 2 3 4 5 6 7 8 9 10

Fig. 8 Average weights and standard deviations of the first ten landscape levels for a sample
of the MIT-BIH Arrhytmia Database after five runs of a neural network (Fig. 4).

Next we used the partial reconstruction technique described in detail in
[19, Section 3] in four examples, corresponding to the classes of (a) normal
heartbeats, (b) supraventricular premature beats, (¢) premature ventricular
contraction, and (d) fusion of ventricular and normal beats. Three landscape
levels were used for approximation in each case. Results are shown in Fig. 10.

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

Fig. 9 An ECG signal function (left) and its approximate reconstruction from a set of
selected landscape levels (right).

Each landscape function A\ was paired with a list of y-values of critical
points of the given signal f as specified in [19, Proposition 3.1]. Hence we
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(a) Normal heartbeat (b) Supraventricular premature beat
08 LWJ( 0.8 J
; ) ; |
. NS E
v I w R

(e) Unclassifiable beat

Fig. 10 Partial reconstruction of ECG graphs using the three most important landscape
levels for each of four types of heartbeats.

obtained a list of y-values of critical points of f associated with the subset of
selected landscape levels. The values in this list were compared with the list
of all critical points of f in order to obtain the matching xz-values, and a new
graph was drawn by joining the resulting critical points of f in the order of their
x-coordinates, as in Fig. 9. The procedure is detailed below in Algorithms 1,
2 and 3. The resulting simplified graphs (Fig. 10) mark the points of interest,
according to the neural network used in our experiment, for the classification
of ECG samples. Thus they encode the most relevant information on which
the network focused for its task.

Table 3 Average accuracy of classification given in percentages and standard
deviation on test sets from five runs of our neural network (Fig. 4). The network
was fed with unprocessed data (first column); processed data with ten landscape
levels (second column); processed data using the most significant three landscape
levels (third column); and data approximately reconstructed by means of the
most significant three landscape levels (fourth column).

Raw data 10 levels 3 levels Reconstructed

Accuracy 98.41 +0.09 94.55£0.16  94.00 £ 0.13 97.04 £0.14
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We subsequently introduced the simplified reconstructions of the wave func-
tions (Fig. 9) into the network in order to check if the data features distilled
by our reconstruction method were sufficient for the network’s classifications
task. The results can be seen in Table 3 and indicate that the simplified signals
gave rise to similar accuracies (97.04%) as the original data (98.41%).

4.3 Invariance under translations

Persistence summaries are not altered by horizontal shifts of signals and hence
the accuracy of a classification task based on landscapes is invariant under
such shifts. However, shifts may cause a loss of classification accuracy by a
neural network fed with the original data. To demonstrate this effect, we used
the same ECG dataset from Subsection 4.2, yet we modified each heartbeat
by adding a number of zeros randomly split between the beginning and the
end of the beat signal. Thus, while in the original dataset each heartbeat was
represented by a vector of length 187, in our experiment we introduced zeros
so that the length was increased to 374.

Table 4 Accuracies (given in percentages) of our neural network fed with
unmodified data versus modified data by inserting zero segments at the beginning
and end of each signal so as to duplicate the length of the signals (second column).

Raw data  Double length

Accuracy 98.41 +0.09 96.77 £+ 0.10

Classification of the shifted ECG graphs by means of the same neural
network as in Subsection 4.2 with five repetitions resulted in lower accuracy
(Table 4) than with the original data. However, shifts do not alter the evo-
lution of connected components of sublevel sets and therefore the landscapes
associated with the shifted graphs are the same as those of the original data.

5 Discussion

Our results contribute to explainability of classification outcomes by neural
networks in the following ways. First, we found that using whole persis-
tence landscapes is not necessary for an accurate classification of signals: once
we have identified the subset of landscape levels that is most important for
the network, running the experiment with only this subset of levels yields a
statistically comparable accuracy (Table 2).

Secondly, our method allows us to partially reconstruct the given signals
using the set of selected landscape levels, thus depicting which features of the
data are most relevant for classification by means of the chosen architecture.
Persistence descriptors are not injective in general and cannot be used to
recover data except in some cases where a collection of directional persistence
diagrams are considered [19, 20, 22, 28]. However, in our case we need not fully
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reconstruct a function with the only knowledge of its persistence diagram, but
our reconstruction task consists of matching points in the persistence landscape
with corresponding parts of the given signals.

A methodological novelty of this study in the framework of topological data
analysis is normalization of landscape level functions so that the area below
their graph is constantly equal to one. This was conceived as an attempt to
feed the neural network with shapes rather than magnitudes. As Table 2 shows,
the accuracies obtained with normalized landscapes were higher than those
obtained prior to normalization. Furthermore, the standard deviation of accu-
racy is lower after normalization in most cases, suggesting that normalization
enhances stability.

Limitations. Since the given signals have been discretized, difficulties regard-
ing numerical precision may arise. Thus, when comparing y-values of critical
points obtained from landscape peaks with those of the original functions,
a zero difference cannot be expected. Instead, a threshold ¢ has to be used,
whose value may depend on the range of functions in the dataset and on the
precision with which landscapes are vectorized.

A feature of our method is that persistence diagrams of sublevel sets of
signals do not capture information about the distribution of data along the
z-axis, but only along the y-axis. This can be a disadvantage for the use of
persistent homology in cases when, for example, the wavelength of periodic or
almost periodic functions is crucial for classification purposes, as illustrated
by the datasets FordA and TwoPatterns in Subsection 4.1.2. However, it can
be an advantage if expansion or contraction along the z-axis produces unde-
sired effects, as in the case of bradycardia and tachycardia in [14] or in the
experiment made in Subsection 4.3.

Computational complexity. The methodology in this article involves three
processes, namely calculating persistence landscapes of sublevel sets, training a
neural network, and partially reconstructing signals using selected landscapes.
Let n be the vector length of the original function to be analyzed, m the num-
ber of critical points of this function, r the length of the discretized landscape
vector, and k the number of landscape levels to be computed. Building a per-
sistence diagram of sublevel sets of a function requires O(n) to determine the
local extrema; O(mlogm) to order the y-values of extrema; O(m) to deter-
mine birth and merging of connected components; and O(kr) to construct a
persistence landscape. As a result, data feed into a neural network requires a
preprocessing cost of O(kr+n+mlogm). Here r < n, and the larger the value
of r the more precise is expected to be the classification outcome. Thus, the
cost is linear in the resolution of the input signal. The training procedure by
feeding a neural network with a matrix of k& landscape levels of each function
increases its processing time by O(k) in comparison with the processing time
required to train with the original data, assuming that » = n. The reconstruc-
tion process requires O(¢r) to explore the selected landscapes and O(¢nm) to
locate the corresponding critical points in the original function, where £ < k is
the amount of selected landscape levels. Hence, the complexity of this step is
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also linear in terms of the resolution of the input signal. In summary, the com-
putational cost of the proposed methodology is linear or sub-linear in terms
of the original signal size.

Future research. Middle layers in architectures of neural networks such as
max pooling or mean pooling layers in a convolutional neural network are
mainly used for two purposes: On one hand, they serve to reduce the size of
the inner representation of the input signal; on the other hand, they introduce
invariance to scale, translation, and rotation. Taking advantage of the invari-
ance inherent to the use of persistent homology, we plan to explore the use of
persistence descriptors —such as landscapes— as middle layers in deep neu-
ral networks with the aim of testing whether such layers could replace pooling
layers and therewith possibly reduce computation time.

From an applied perspective, we plan to explore the use of persistence
summaries in domains in which elastic deformations of signals may hinder
discrimination. This is the case, for example, in behavior recognition, activity
recognition, or action recognition using wearable inertial measurement units,
where the speed of actions does not include discriminative information.

6 Conclusion

This article highlights an instance of the usefulness of topological data analysis
in machine learning, specifically towards interpretability of outcomes of neural
networks. Our procedure enabled us to distill partial information from the
given data sufficiently relevant for classification purposes without a significant
loss of accuracy. We used landscapes as persistence descriptors of sublevel sets
of signals, exploiting the fact that landscapes come with a hierarchy of levels
that enables us to rank the importance of each level by means of weights
assigned by a gating layer in a neural network.

Importance attribution in conjunction with a reconstruction algorithm
uncovers the most relevant features used by a network during training. Addi-
tionally, since topological summaries of data are invariant under affine or
elastic temporal deformations, they are particularly suitable when significant
recognition ingredients rely on shape properties.

Regardless of the effect on performance metrics of the use of persistence
descriptors instead of raw data, we gain insight about key patterns used to
classify the given data, which makes the process more trustworthy. Thus, our
method not only provides information about the focus of the network’s learning
process but it also serves to explore and better understand the dataset.

Data Availability

The datasets used for the study made in this article were retrieved from
the following public databases: The UCR Time Series Classification Archive
https://www.cs.ucr.edu/ eamonn/time_series_data_2018/ and the MIT-
BIH Arrhytmia Database https://doi.org/10.1109/51.932724.
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Appendix A Algorithms

Algorithm 1 Get y-values of critical points

Require: vector of landscape level data level
Ensure: list of y-values of critical points crits
crits < {}
for point € level do
if point is a take-off vertex then
crits < crits U {point,,}
else if point is a local minimum or a local maximum then
point < crits U {point, }
i < length(crits)
crits; < 2(cerits; — 0.5 crits;—1) > Transform suitable x-coordinates
of landscapes into y-coordinates of critical points of original data
9: end if
10: end for
11: return crits

[ B - A A

Algorithm 2 Get z-values of critical points

Require: list of y-values of critical points crits; vector of original data
original; precision €
Ensure: list of z-values of selected critical points of original data xcrits
1: canderits + {} > First, get a-values of original data that have the y-value
equal to some critical point
2. for crity € crits do
3: candcrits < canderits U {x-values of points of original data e-close to
the value crity}
4: end for
xerits <+ {} > Second, keep only the z-values that actually correspond to
critical points
for xpos € candcrits do
if original,,, is a local minimum or a local maximum then
zerits <— zerits U {xpos}
end if
10: end for
11: return zcrits

o
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Algorithm 3 Set of critical points of a univariate function f associated with
a set of landscape levels of f

Require: vector of original data original; list of landscape levels landscapes
Ensure: list of z-values of critical points of the given function zcrits
xerits < {}
for land € landscapes do
canderits <+ {get_y_values(land)}
xerits <— xerits U {get_x_values(candcrits, original) }
end for
xerits «—sort(zerits)
return zcrits

N T R W

Algorithm 3

¢ Original data

¢ Landscape levels
4 Repeat for each landscape level: A N
oo Algorithm 1 \
| [ Repeat for each point in landscape level: R |
[ I ! |
| | « Store point if it is a take-off vertex, a local min | |
| I or a local max | |
| ¢ Transform from landscape x-coordinate to |

I y-value of original data i I
| Yoo _ |
| |
I
| l Algorithm 2 :
| Repeat for each y-value of critical point: |
I e Get x-values of points of the original data whose '
' y-value is equal to the y-value of critical point I
I « Keep only x-values of the points that are actually I
| critical points |
\ /
N e
List of x-values of critical points
of the original data

Fig. A1 Flow diagram of the execution of Algorithms 1-3.
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Appendix B Abbreviations and Notation

ECG Electrocardiogram
MIT-BIH Massachusetts Institute of Technology and Beth Israel Hospital
TDA Topological Data Analysis
UCR University of California, Riverside
Hy zero-dimensional homology
kmax k-th largest value of a given set of real numbers
Ak k-th persistence landscape level (k =1,2,...)
Wi weight of k-th landscape level assigned by a gating layer
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