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Abstract

We give a necessary and sufficient condition for the existence of
liftings of enriched localizations and colocalizations on a bicomplete
closed symmetric monoidal category V to models of algebraic theories
enriched in V with arbitrary arities. This condition is automatically
fulfilled for single-sorted finite-product theories if V is additive and
generated by multiples of the monoidal unit.

Introduction

It is well known that augmented or coaugmented idempotent functors pre-
serve many kinds of algebraic structures. This phenomenon was first ob-
served in algebraic topology when Bousfield found in [8] that homological
localizations preserve products of Eilenberg–Mac Lane spaces, which are pre-
cisely the spaces homotopy equivalent to commutative topological groups.
It was later proved that arbitrary homotopical localizations and cellulariza-
tions have the same property, and they also preserve loop spaces, i.e., spaces
homotopy equivalent to topological groups [4, 9, 15]. In stable homotopy, lo-
calizations and cellularizations also preserve products of Eilenberg–Mac Lane
spectra, and, more generally, spectra homotopy equivalent to modules over
connective ring spectra [10, 12, 17].

Purely algebraic instances of the same phenomenon were studied in the
category of groups, where abelian groups and nilpotent groups of class 2
are preserved by localizations [11] while nilpotent groups of any class are
preserved by colocalizations [16]. As discussed in [13, 14], localizations and
colocalizations of abelian groups lift to R-modules for any ring R; this means
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that they not only preserve the class of groups underlying R-modules for
every given R (for example, uniquely divisible abelian groups when R = Q),
but they give rise to functors on the category of R-modules.

In Section 1 we generalize the latter fact to models of algebraic theories.
It turns out that all localizations and colocalizations lift to models of Law-
vere theories (i.e., single-sorted finite-product theories) enriched in abelian
groups. This is due to the fact that localizations and colocalizations on ad-
ditive categories commute with finite products. The same idea was used
in [4] with models of Lawvere theories in simplicial sets, thanks to the fact
that homotopical localizations and cellularizations also commute with finite
products. A similar argument was used in [30, Proposition 5.1].

In fact we show that localizations and colocalizations lift to models of
Lawvere theories enriched in any additive bicomplete closed symmetric mo-
noidal category in which ℵ0 is dense, meaning that the full subcategory with
objects nI for n ≥ 1 is a dense generator of V , where nI denotes the coproduct
of n copies of the monoidal unit of V (thus, nI = Zn in abelian groups).

Since Lawvere theories are precisely the algebraic theories with arities ℵ0,
it is natural to ask for the validity of the same result for algebraic theories
with arbitrary arities. We discuss this problem in Section 2, where we state
a necessary and sufficient condition under which localizations and colocal-
izations lift to models of enriched algebraic theories with given arities A.
Specifically, a localization E lifts if and only if the functor V(A,−) preserves
E-equivalences for every A ∈ A, and a colocalization C lifts if and only if
V(A,−) preserves C-colocal objects for every A ∈ A. When A = ℵ0 we have
that V(nI,X) ∼= Xn, so the condition holds automatically if V is additive.

The formalism of algebraic theories as a categorical version of universal
algebra goes back to Lawvere [22, 23] and Linton [25]. Although it is not
equivalent to the formalism of operads (for instance, the category of groups
is not a category of algebras over any operad), it is more convenient in some
situations, as in [4, 19]. A common feature of operads and algebraic theories
is that they are associated with monads. It has long been known that models
of Lawvere theories are equivalent to algebras over finitary monads, not only
in sets (which is not a useful category for our purposes), but also with a suit-
able enrichment. Detailed accounts of the correspondence between algebraic
theories with arities and monads with arities can be found in [5, 7, 29]. Lift-
ings of localizations and colocalizations to categories of algebras over monads
were discussed in [13], from which we translate a central result to the enriched
context (Lemma 1.7 below).

Acknowledgements We appreciate enlightening conversations with Javier
Gutiérrez and Tom Leinster on the topic of this article.
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1 Additive Lawvere theories

1.1 Lawvere theories

We denote by ℵ0 the full subcategory of the category of sets whose objects
are the finite ordinals. Thus ℵ0 has an initial object and a strictly associative
coproduct given by ordinal sum. Consequently, its opposite category ℵop

0 has
a strictly associative product and a terminal object.

A Lawvere theory is a small category L with finite products and with the
same objects as ℵ0, equipped with a functor (ℵ0)op → L which is the identity
on objects and strictly preserves finite products. For each finite ordinal n,
the morphism set L(n, 1) is called the set of n-ary operations.

A model of a Lawvere theory L with values in a category C with finite
products is a functor M : L → C preserving finite products (here and in what
follows, preservation is meant up to a unique isomorphism commuting with
projections). The category of such models —with natural transformations
as morphisms— will be denoted by Mod(L, C).

Each M in Mod(L, C) is determined by its underlying object X = M1
together with a function Xn → Xm for each morphism f ∈ L(n,m), subject
to the restrictions imposed by the composition and product structure of L.
There is a forgetful functor U : Mod(L, C) → C (also called evaluation) de-
fined as UM = M1. If C is locally presentable, then this functor has a left
adjoint F and hence there is a monad TL on C defined as TL = UF .

If C = Set (the category of sets), then the functor F : Set→ Mod(L, Set)
is the left Kan extension of the functor ℵ0 → Mod(L, Set) sending each finite
ordinal n to the model Fn given on objects by (Fn)k = L(n, k) for all finite
ordinals k, and on morphisms by composition in L.

Since filtered colimits in Set commute with finite products, the evaluation
functor U : Mod(L, Set)→ Set creates filtered colimits. Therefore the monad
TL preserves filtered colimits and its values can be computed as coends:

TLX ∼=
∫ n∈ℵ0

TL(n)× Set(n,X) ∼=
∫ n∈ℵ0

L(n, 1)×Xn. (1.1)

For each Lawvere theory L, the category Mod(L, Set) is equivalent to the
category of algebras over TL, and the theory L is recovered as the opposite
of the Kleisli category of TL, that is,

L(n,m) ∼= Mod(L, Set)(Fm,Fn) ∼= Set(m,TL(n)) ∼= TL(n)m.

In fact there is an equivalence of categories between Lawvere theories and
finitary monads on Set, where a monad is called finitary if it preserves filtered
colimits. For details and more general versions, see [5, 18, 22, 23, 25].
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1.2 Enriched Lawvere theories

A small full subcategory A of a category C is called dense [2, § 1.23] if every
object of C is a canonical colimit of objects from A; that is, every object X
of C is a colimit of the forgetful functor (A ↓ X)→ C sending each morphism
A → X to A, where (A ↓ X) denotes the slice category over X. In other
words, A is dense in C if the A-cocones in C are colimit cocones. Every dense
subcategory A ⊆ C is a generator, meaning that two morphisms f, g : X → Y
in C are distinct if and only if there is an object A in A and a morphism
h : A→ X such that h ◦ f 6= h ◦ g.

A category is called preadditive if it is enriched in abelian groups. In a
preadditive category, finite products are coproducts and finite coproducts are
products. A preadditive category with finite products is additive.

In this section, we let V be a closed symmetric monoidal category, which
we assume complete, cocomplete and additive (including the assumption that
the tensor product is additive in each variable). Such a category V is called
an additive cosmos —this term is due to Bénabou [32]. The main example
is the category Ab of abelian groups or, more generally, the category R-Mod
of modules over a unitary commutative ring R. We view V as enriched in
itself, and assume endofunctors on V and natural transformations between
them to be enriched.

We will also impose that ℵ0 be dense in V , in the following sense. For a
finite ordinal n ∈ ℵ0, we denote by nI ∈ V a coproduct of n copies of the
monoidal unit I of V , and keep denoting by ℵ0 the full subcategory of V with
these objects (compare with [26, Example 3.7] or [6, Definition 2.1.1]).

We will consider Lawvere theories enriched in an additive cosmos V in
which ℵ0 is dense. This is a small category L enriched in V with finite
cotensors together with an identity-on-objects functor (ℵ0)op → L strictly
preserving finite cotensors [18, 29].

As a special case of [7], the category of V-enriched Lawvere theories is
equivalent to the category of ℵ0-finitary V-monads, where a monad T on V
is called ℵ0-finitary if it sends ℵ0-cocones to colimit cocones. An ℵ0-finitary
V-monad T on V yields a Lawvere theory enriched in V with morphisms

LT (n,m) = V(mI, T (nI)) ∼= T (nI)m,

and the category of T -algebras is equivalent to the category of models of LT

with values in V . Conversely, a Lawvere theory L enriched in V yields an
ℵ0-finitary V-monad TL whose value on an object X of V is

TLX ∼=
∫ n∈ℵ0

TL(nI)⊗ V(nI,X) ∼=
∫ n∈ℵ0

L(n, 1)⊗Xn. (1.2)
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This coend formula comes from the fact that Mod(L,V) is tensored over V
objectwise, so the forgetful functor Mod(L,V) → V sends the tensoring to
the monoidal product in V . Hence (1.2) results from the assumption that ℵ0

is dense in V , by evaluating at 1 the left Kan extension formula for the free
functor FL given by FL(nI)k = L(n, k) for all finite ordinals k.

1.3 Lifting localizations and colocalizations

A monad (E, µ, η) on a category C, where µ : EE → E denotes the multipli-
cation and η : IdC → E the unit, is called idempotent if µ is an isomorphism.
Idempotent monads are also called localizations. Thus, a localization on a
category C consists of a functor E : C → C equipped with a natural transfor-
mation η : IdC → E such that, for all X, the morphisms ηEX : EX → EEX
and EηX : EX → EEX are equal and they are isomorphisms (in fact, they
are then inverses of µX , since µX ◦ ηEX = µX ◦ EηX = idEX).

Objects in the essential image of E are called E-local. An E-equivalence
is a morphism f : X → Y in C such that Ef : EX → EY is an isomorphism.
The classes of E-local objects and E-equivalences determine each other by
orthogonality, i.e., a morphism f : X → Y is an E-equivalence if and only if

C(f, Z) : C(Y, Z) −→ C(X,Z) (1.3)

is a bijection for every E-local object Z, and an object Z is E-local if and
only if (1.3) is a bijection for every E-equivalence f : X → Y . Consequently,
the class of E-equivalences is closed under those colimits that exist in C,
while the class of E-local objects is closed under limits.

Dually, a colocalization on a category C is an idempotent comonad, that
is, a functor C : C → C with a natural transformation ε : C → IdC such
that, for all X, the morphisms εCX : CCX → CX and CεX : CCX → CX
are equal and they are isomorphisms. Objects in the essential image of C
are called C-colocal. A C-equivalence is a morphism f : X → Y in C such
that Cf : CX → CY is an isomorphism. The classes of C-colocal objects
and C-equivalences determine each other by coorthogonality, meaning that a
morphism f : X → Y is a C-equivalence if and only if

C(A, f) : C(A,X) −→ C(A, Y ) (1.4)

is a bijection for every C-colocal object A, and an object A is C-colocal if and
only if (1.4) is a bijection for every C-equivalence f : X → Y . Accordingly,
the class of C-equivalences is closed under limits and the class of C-colocal
objects is closed under colimits.
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Localizations and colocalizations on a preadditive category are automat-
ically additive, since left adjoints and right adjoints of additive functors are
additive [27, Ch. IV, Theorem 3].

In what follows we consider V-localizations and V-colocalizations on an
additive cosmos V . These are, respectively, idempotent V-monads and idem-
potent V-comonads. Thus, for a V-localization E : V → V , the E-equivalences
and the E-local objects are related by enriched orthogonality, that is,

V(f, Z) : V(Y, Z) −→ V(X,Z) (1.5)

is an isomorphism in V whenever f is an E-equivalence and Z is E-local,
and similarly for colocalizations.

Our motivating example is the following. For a unitary ring R (not nec-
essarily commutative), consider the additive Lawvere theory with

L(m,n) = HomR(Rn, Rm) ∼= Ab(Zn, Rm),

whose models are precisely the left R-modules, both in sets and in abelian
groups. The associated monad on Set sends each set X to the underlying set
of the free R-module on X, and the associated additive monad on Ab sends
each abelian group A to R⊗ A.

A localization E : Ab→ Ab is said to lift to R-modules [13, § 4] if there is
a localization Ẽ on R-modules such that EU ∼= UẼ, where U is the forgetful
functor sending each R-module to the underlying abelian group —in other
words, the underlying abelian group of ẼM is naturally isomorphic to EUM
for every R-module M . It was shown in [14] that every localization on abelian
groups lifts uniquely to R-modules for every unitary ring R. What follows is
a generalization of this fact.

Lemma 1.1. Localizations and colocalizations on additive categories preserve
finite products.

Proof. For a localization E : C → C with unit η on an additive category C and
a finite collection of objects X1, . . . , Xn in C, the product of the morphisms
ηXi

: Xi → EXi is an E-equivalence because it is a coproduct of E-equiv-
alences, and its codomain is E-local because it is a product of E-local objects.
Hence E(X1 × · · · ×Xn) ∼= EX1 × · · · × EXn naturally.

Similarly, every colocalization C preserves finite products as every prod-
uct of C-equivalences is a C-equivalence and every coproduct of C-colocal
objects is C-colocal.

For a Lawvere theory L enriched in V and a V-endofunctor E : V → V , we
say that a V-endofunctor Ẽ on Mod(L,V) is a lifting of E if there is a natural
isomorphism EU ∼= UẼ, where U : Mod(L,V)→ V is evaluation at 1.
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Proposition 1.2. Let V be an additive cosmos in which ℵ0 is dense. Then
every V-localization on V lifts uniquely to a V-localization on the category of
models of any Lawvere theory enriched in V.

Proof. Suppose given a V-localization E : V → V with unit η and a Lawvere
theory L enriched in V . We are going to prove that the V-functor

Ẽ : Mod(L,V) −→ Mod(L,V)

defined as ẼM = EM is a lifting of E. This functor is well defined since,
for every M : L → V preserving finite products, EM also preserves finite
products because E preserves them by Lemma 1.1.

From the fact that E is idempotent with unit η it follows that Ẽ is
idempotent with unit η̃ given by

(η̃M)n = ηMn : Mn −→ EMn

for all n ∈ ℵ0 and M ∈ Mod(L,V). The localization Ẽ is a lifting of E since

EUM = EM1 = UẼM

for all M . Uniqueness of Ẽ up to isomorphism follows from the fact that
if EU ∼= UE ′ naturally then EM1 = EUM ∼= UE ′M = E ′M1 and there-
fore EMn ∼= E ′Mn naturally for all n, since M preserves finite products.
Naturality ensures that E ′ ∼= Ẽ as functors.

Note that, in the proof of Proposition 1.2, the localization Ẽ happens to
be a strict lifting of E, since EUM = UẼM for all M ∈ Mod(L,V). This is
consistent with [13, Theorem 4.2], where it was shown that if there is a lifting
of a localization E to a category of algebras over a monad then there is also
a strict lifting of E. For a monad T on V , a V-endofunctor Ẽ on T -algebras
is a lifting of a V-endofunctor E if there is a natural isomorphism EU ∼= UẼ,
where U is the forgetful functor from T -algebras to V .

Example 1.3. If a monad T is idempotent (that is, T is itself a localization),
then lifting a V-endofunctor E to T -algebras is equivalent to restricting E to
the essential image of T , that is, to the full subcategory of T -local objects.
For example, rationalization restricts to torsion-free abelian groups.

Proposition 1.4. Let V be an additive cosmos in which ℵ0 is dense. Then
every V-colocalization on V lifts uniquely to a V-colocalization on the category
of models of any Lawvere theory enriched in V.

Proof. The proof is analogous to the proof of Proposition 1.2.
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Example 1.5. If C is any variety of groups (i.e., a class of groups closed under
subgroups, quotients and products), then localizations and colocalizations on
Ab preserve C ∩ Ab. This follows from Proposition 1.2 and Proposition 1.4,
since C ∩ Ab is equivalent to the category of models of an additive Law-
vere theory, namely the one determined by the abelianized free objects in C.
Lifting an endofunctor to this category of models amounts to restricting it
to C. However, the only nontrivial examples are the classes of abelian groups
of exponent m for some m > 1, and these are precisely the abelian groups
underlying Z/m-modules.

The question of which varieties are preserved by localizations or colocal-
izations on the category of groups is more substantial. Positive examples
include the variety of abelian groups itself, the variety of nilpotent groups of
class 2, and the variety of groups with a fixed exponent [11]. Nilpotent groups
of any class are preserved by colocalizations [16]. On the other hand, it was
proved in [28] that localization at primes does not restrict to the variety of
metabelian groups.

Example 1.6. Proposition 1.2 and Proposition 1.4 apply to the category of
R-modules if R is any unitary commutative ring. Hence every localization
and every colocalization on R-modules lifts to models of any Lawvere theory
enriched in R-modules. As a special case, if R→ R′ is a central ring homo-
morphism where R′ is any unitary ring (not necessarily commutative), then
every localization and every colocalization on R-modules lifts to left R′-mod-
ules. This appeared in [13, Examples 4.3 and 4.8]. Note that, as shown in
[3, Corollary B8], if a category of models of a Lawvere theory L is abelian,
then it is equivalent to the category of left R′-modules for a unitary ring R′,
namely R′ = L(1, 1).

Every multiplicatively closed set S of elements of R yields a ring homo-
morphism R→ S−1R sending the elements of S to units, and hence an exact
localization on R-modules by S−1M = S−1R⊗RM . If α : R→ R′ is a central
ring homomorphism and S is a multiplicatively closed set of elements of R,
then αS is an Ore set [31] in R′ and hence (αS)−1N = (αS)−1R′ ⊗R′ N is
a well-defined extension of the former from R-modules to left R′-modules.
Rationalization of abelian groups is an instance thereof.

The next two results (Proposition 1.8 and Proposition 1.9) are equivalent
to Proposition 1.2 and Proposition 1.4, since the category of algebras over
an ℵ0-finitary V-monad T is equivalent to the category of models in V of the
associated Lawvere theory LT . However, the proofs are of a different nature
and independent interest. They are based on the following fact.
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Lemma 1.7. For a V-localization E and a V-monad T on a category C
enriched in a closed symmetric monoidal category V, the following facts are
equivalent:

(a) E lifts to a V-localization on T -algebras.

(b) T preserves E-equivalences.

Similarly, for a V-colocalization C and a V-monad T , the following facts are
equivalent:

(a) C lifts to a V-colocalization on T -algebras.

(b) T preserves C-colocal objects.

Moreover, liftings are unique up to isomorphism in both cases.

Proof. If T preserves E-equivalences for a V-localization E, then a lifting Ẽ
of E to the category CT of T -algebras can be constructed as in the proof of
[13, Theorem 4.2]. In order to prove that Ẽ is a V-functor, it is necessary to
use that E is itself a V-functor and that a morphism object CT ((A, a), (B, b))
is defined as the equalizer in V of the morphisms from C(A,B) to C(TA,B)
given by f 7→ f ◦a and f 7→ b◦Tf . A similar argument is used for the lifting
C̃ of a V-colocalization C, by means of [13, Theorem 4.4].

For the converse, if a lifting Ẽ of E exists, then one has to use the fact
that the free-forgetful decomposition T = UF is a V-enriched adjunction to
infer that F preserves E-equivalences. Since U also preserves E-equivalences
because UẼ ∼= EU , we may conclude that T preserves them. The same
argument works for colocalizations.

Proposition 1.8. Let V be an additive cosmos in which ℵ0 is dense. Then
every V-localization on V lifts uniquely to a V-localization on the category of
T -algebras for every ℵ0-finitary V-monad T on V.

Proof. Let T be an ℵ0-finitary V-monad on V and let LT be the associated
Lawvere theory enriched in V . In view of Lemma 1.7, we need to prove that
T preserves E-equivalences.

For every object X in V , it follows from (1.2) that TX is a colimit of a
diagram with values in LT (n, 1) ⊗ Xn over all finite ordinals n. Since the
class of E-equivalences is closed under colimits, it suffices to prove that

LT (n, 1)⊗Xn −→ LT (n, 1)⊗ Y n

is an E-equivalence whenever X → Y is an E-equivalence. Now Lemma 1.1
tells us that Xn → Y n is an E-equivalence for all n, and we can then infer
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that W ⊗Xn → W ⊗ Y n is an E-equivalence for every W ∈ V , since if Z is
any E-local object we have

V(W ⊗ Y n, Z) ∼= V(W,V(Y n, Z)) ∼= V(W,V(Xn, Z)) ∼= V(W ⊗Xn, Z),

using the fact that V is closed monoidal and enriched over itself.

Proposition 1.9. Let V be an additive cosmos in which ℵ0 is dense. Then
every V-colocalization on V lifts uniquely to a V-colocalization on the category
of T -algebras for every ℵ0-finitary V-monad T on V.

Proof. The proof is analogous to the proof of Proposition 1.8. Here we need
to prove that T preserves C-colocal objects for a given colocalization C. For
this, we use again the fact that, for every C-colocal object X ∈ V , it follows
from (1.2) that TX is a colimit of a diagram with values in LT (n, 1) ⊗ Xn

over all finite ordinals n. Hence TX is C-colocal since Xn is a finite product
and therefore a finite coproduct of copies of X, and consequently W ⊗Xn is
C-colocal for all W ∈ V .

We end this section with examples showing that the conclusions of Propo-
sitions 1.8 and 1.9 need not hold for arbitrary monads; see also Examples 2.7
and 1.12 at the end of the next section.

Example 1.10. The Ext-p-completion monad for a prime p sends every
abelian group A to Ext(Z/p∞, A) with the natural unit map

A −→ Ext(Z/p∞, A)

coming from the short exact sequence

0 −→ Z −→ Z[1/p] −→ Z/p∞ −→ 0.

This monad is not ℵ0-finitary, since the underlying abelian group in Q is
a filtered colimit of a diagram with values Z, and applying Ext(Z/p∞,−)
yields a diagram with values Z∧p (the p-adic integers) whose colimit is the
p-adic field Q∧p . However, Ext(Z/p∞,Q) = 0. If E is the rationalization
functor EA = Q ⊗ A, then the Ext-p-completion monad does not preserve
E-equivalences, since the inclusion Z ↪→ Q is an E-equivalence, yet Z∧p → 0
is not.

Example 1.11. The double dual monad, sending every abelian group A to

A∗∗ = Hom(Hom(A,Z),Z),
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is the codensity monad associated with the full subcategory of finitely gener-
ated free abelian groups, as in [1] or [24]. This monad is not ℵ0-finitary either.
Similarly as in the previous example, if E is the rationalization functor in the
category of abelian groups, then the inclusion Z ↪→ Q is an E-equivalence;
however, Z∗∗ ∼= Z while Q∗∗ = 0.

Example 1.12. It is not true that colocalizations on Ab lift to colocalizations
on the category of unitary rings, since in general the colocalization of the
abelian group underlying a unitary ring need not admit a compatible unit.
There is a monad on Ab whose algebras are the unitary rings, namely the free
monoid monad. However, this monad is not additive, as f + g need not be
a ring homomorphism if f and g are ring homomorphisms. Hence, unitary
rings are not models of any additive Lawvere theory.

2 Theories with arities

Although in this section we focus on a (not necessarily additive) cosmos V
enriched in itself, the preliminaries are stated, more generally, for a category
E enriched in V .

If E is a V-category, the nerve functor [5, § 1.6] (also called canonical
functor [2, § 1.25]) relative to a full V-subcategory A ⊆ E is the functor

NA : E −→ VAop

sending each object X to the V-functor A 7→ E(A,X), which we also denote
by E(−, X)|A. As shown in [2, Proposition 1.26] or in [5, Lemma 1.7], the
subcategory A is dense if and only if NA is fully faithful. By the argument
given in [2, Proposition 1.26], if λ is a regular cardinal and every object in A
is λ-presentable, then NA preserves λ-filtered colimits if such colimits exist
in E .

A V-monad T on a V-category E (not necessarily cocomplete) with a
dense generator A is called a monad with arities A if the composite functor

E T // E NA // VAop

takes A-cocones in E to colimit cocones in VAop
. In other words, T is a

monad with arities A if and only if the functor

(A ↓ X) // E T // E NA // VAop

sending A → X to E(−, TA)|A has colimit E(−, TX)|A for every object X
in E .
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Lemma 2.1. For a regular cardinal λ, let E be a locally λ-presentable V-cat-
egory and let A be a skeleton of the full subcategory of the λ-presentable
objects in E. Let T be a V-monad on E. Then T is a monad with arities A
if and only if T takes A-cocones to colimit cocones.

Proof. According to [2, Proposition 1.22], the full subcategory A is dense
and λ-filtered. Since NA preserves λ-filtered colimits, every V-monad that
takes A-cocones to colimit cocones is a monad with arities A. The converse
implication holds since NA is fully faithful and therefore it reflects isomor-
phisms.

If ℵ0 is dense in V , then a V-monad T on V is ℵ0-finitary if and only if it
is a monad with arities ℵ0.

To every V-monad T : E → E we may associate the Eilenberg–Moore
V-category ET of T -algebras and the Kleisli V-category ET , which is given
by factoring the free functor E → ET into a functor that is the identity on
objects and a fully faithful functor

E −→ ET −→ ET .

Thus, there are natural isomorphisms ET (X, Y ) ∼= E(X,TY ) in V .
According to the nerve theorem [5, Theorem 1.10] (enhanced in [7] to

cover the enriched case), if E is a V-category with a dense generator A, then,
for every monad T with arities A, the full subcategory ΘT spanned by the
free T -algebras on the arities is a dense generator of the Eilenberg–Moore
category ET .

As a special case, let T be any finitary monad on sets and let LT be
the associated Lawvere theory. Then ℵ0 is dense in Mod(LT , Set) by the
nerve theorem. Hence, for example, {Zn}n∈ℵ0 is dense in Ab and, more
generally, {Rn}n∈ℵ0 is dense in R-Mod for any unitary ring R. However, these
collections are not filtered, since parallel arrows need not have coequalizers.

Let E be a V-category with a dense generator A. A theory with arities
A on E is a small V-category Θ equipped with a V-functor J : A → Θ which
is bijective on objects and such that the monad J∗J! on VAop

obtained by
composing the restriction functor with its left adjoint

VAop J! // VΘop J∗ // VAop

preserves the essential image of the nerve functor NA : E → VAop
(which

consists of filtered colimits of representable presheaves). If A ∈ A then the
value of J! on a representable presheaf E(−, A)|A = A(−, A) is its left Kan
extension along J , namely the functor Θ(−, A).
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A model of Θ is a V-functor M : Θop → V whose restriction along J
belongs to the essential image of NA. We denote by Mod(Θ,V) the full
subcategory of VΘop

whose objects are models of Θ and whose morphisms
are natural transformations.

For a V-monad T on a locally presentable V-category E with arities A,
the functor JT : A → ΘT sending each arity A to the free T -algebra on A is
a theory with arities with the property that the category ET of T -algebras
is equivalent to the category Mod(ΘT ,V) of models of ΘT ; see [5, Propo-
sition 3.2]. The theory ΘT embeds into the Eilenberg–Moore category ET
through the Kleisli category ET , and this implies functoriality of the assign-
ment T 7→ ΘT . Furthermore, as shown in [5, Theorem 3.4] and [7, Theo-
rem 17], the assignment T 7→ ΘT sets up an adjoint equivalence between the
category of V-monads with arities A and the category of theories enriched in
V with arities A.

For a V-monad T with arities A, the associated theory ΘT is the Kleisli
category of T ; thus, ΘT (B,A) = E(B, TA) for all A,B in A. For a theory Θ,
the associated monad TΘ is recovered as follows. By definition, the monad
J∗J! restricts to the essential image of NA. The choice of a right adjoint
ρA : EssIm(NA) → E to the equivalence NA : E → EssIm(NA) induces a
monad TΘ = ρAJ

∗J!NA on E , which has arities A. In particular, for each
A ∈ A we have that NATΘA ∼= J∗J!NAA, that is,

E(−, TΘA)|A ∼= J∗J! E(−, A)|A ∼= Θ(−, A)|A

as functors on Aop. Moreover, since TΘ takes A-cocones to colimit cocones,
if E is V-tensored then for every object X ∈ E we have

TΘX ∼=
∫ A∈A

TΘA⊗ E(A,X). (2.1)

As explained in [5, § 3.5], a theory Θ with arities ℵ0 can be viewed as a
functor ℵ0 → Θ that preserves coproducts. Hence Θop is a Lawvere theory.

2.1 Lifting localizations and colocalizations

We next aim to generalize Propositions 1.2, 1.4, 1.8 and 1.9 to theories with
arities. Let V be a cosmos, not necessarily additive, which we view as enriched
over itself, and let A be a dense full subcategory of V , for instance a skeleton
of the full subcategory of λ-presentable objects if V is locally λ-presentable.
All functors (including localizations and colocalizations) will be enriched in V .
For local presentability in the enriched sense, see [21]. A V-category is locally
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λ-presentable if it is cocomplete as a V-category and its underlying category
is locally λ-presentable.

Let Θ be a theory enriched in V with arities A and let J : A → Θ be the
associated bijective-on-objects functor. A V-endofunctor Ẽ on Mod(Θ,V)
is called a lifting of a V-endofunctor E on V if J∗(ẼM) ∼= EMJop for all
M ∈ Mod(Θ,V).

Theorem 2.2. Let E be a V-localization on a cosmos V and let A be a dense
full subcategory of V. Then (a) implies both (b) and (c):

(a) The functor V(A,−) preserves E-equivalences for every A ∈ A.

(b) E lifts to a V-localization on the category of models of any theory en-
riched in V with arities A.

(c) E lifts to a V-localization on the category of T -algebras for any V-mon-
ad T on V with arities A.

Moreover, if A contains the unit of the monoidal structure, then (a), (b) and
(c) are equivalent. If these statements hold, then the lifting of E is unique
up to isomorphism.

Proof. Suppose that (a) holds. Let J : A → Θ be a theory with arities A,
and define

Ẽ : Mod(Θ,V) −→ Mod(Θ,V)

by sending each M : Θop → V to the composite EM , as in Proposition 1.2.
We need to check that if M restricts to the essential image of NA then EM
also does. Thus suppose that J∗M ∼= NAX = V(−, X)|A for some X ∈ V .
It follows from (a) that the morphism

V(A,X) −→ V(A,EX)

induced by the unit map ηX : X → EX is an E-equivalence. The adjunction
between V(A,−) and −⊗A is used to infer that V(A,EX) is E-local. Hence
we obtain a natural isomorphism

EV(A,X) ∼= V(A,EX)

for all X ∈ V and all A ∈ A. Consequently,

J∗(EM) = EMJop = EJ∗M ∼= EV(−, X)|A ∼= V(−, EX)|A = NA(EX),

as needed. Hence (a) implies (b).
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The equivalence of (b) and (c) follows from the general fact that the cate-
gory of algebras over a V-monad T with aritiesA is equivalent to the category
of models of the associated theory ΘT . Nevertheless, a direct argument for
the implication (a) ⇒ (c) can be given as in the proof of Proposition 1.8, as
follows. Let T be a V-monad on V with arities A. Let f : X → Y be a mor-
phism in V such that Ef is an isomorphism, and consider Tf : TX → TY .
We need to prove that ETf is also an isomorphism. For this, use the fact
that, since T is a monad with arities A, we have

TX ∼=
∫ A∈A

TA⊗ V(A,X), (2.2)

as in (2.1). Since the class of E-equivalences is closed under arbitrary colim-
its, we need to look at the morphisms

TA⊗ V(A,X) −→ TA⊗ V(A, Y )

induced by f . It suffices to prove that

V(A,X) −→ V(A, Y )

is an E-equivalence, which is guaranteed by (a). Hence (a) implies (c).
Conversely, if the unit I of the monoidal structure belongs to A, assuming

(b) we may choose Θ = A with the identity functor, and the fact that E lifts
to models of Θ implies that for every X ∈ V there is a natural isomorphism
EV(A,X) ∼= V(A, Y ) for some Y ∈ V . By choosing A = I we infer that
Y ∼= EX, and if V(A,X) → V(A,EX) is an E-equivalence for all X then
V(A,−) preserves all E-equivalences, so (a) holds.

Uniqueness of liftings is a consequence of the fact thatA is dense in V .

Condition (a) in Theorem 2.2 is fulfilled for every localization E on any
additive cosmos V in which ℵ0 is dense, since V(nI,X) ∼= Xn for all n and
every object X of V . By the nerve theorem [5, 7], this includes all cases in
which V is itself a category of models of an additive Lawvere theory, such as
R-Mod for any unitary commutative ring R. Hence Proposition 1.2 is implied
by Theorem 2.2.

Corollary 2.3. For a regular cardinal λ, let V be a locally λ-presentable
closed symmetric monoidal category and let A be a skeleton of the full sub-
category of λ-presentable objects in V. Let E be a V-localization on V. Then
the following statements are equivalent:

(a) The functor V(A,−) preserves E-equivalences for every A ∈ A.
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(b) E lifts to a V-localization on the category of models of any theory en-
riched in V with arities A.

(c) E lifts to a V-localization on the category of T -algebras for any V-mon-
ad T on V with arities A.

Moreover, if any of these conditions hold, then the lifting of E is unique up
to isomorphism.

Proof. Theorem 2.2 applies under these assumptions. The unit I of the
monoidal structure is finitely presentable since

V(I, colimD) ∼= colimD ∼= colimV(I,D)

for every diagram D in V , as V is closed monoidal.

The version of Theorem 2.2 and Corollary 2.3 for colocalizations reads as
follows. Proofs are omitted.

Theorem 2.4. Let C be a V-colocalization on a cosmos V and let A be a
dense full subcategory of V. Then (a) implies both (b) and (c):

(a) The functor V(A,−) preserves C-colocal objects for every A ∈ A.

(b) C lifts to a V-colocalization on the category of models of any theory
enriched in V with arities A.

(c) C lifts to a V-colocalization on the category of T -algebras for any V-mon-
ad T on V with arities A.

Moreover, if A contains the unit of the monoidal structure, then (a), (b) and
(c) are equivalent. If these statements hold, then the lifting of C is unique
up to isomorphism.

Corollary 2.5. For a regular cardinal λ, let V be a locally λ-presentable
closed symmetric monoidal category and let A be a skeleton of the full sub-
category of λ-presentable objects in V. Let C be a V-colocalization on V.
Then the following statements are equivalent:

(a) The functor V(A,−) preserves C-colocal objects for every A ∈ A.

(b) C lifts to a V-colocalization on the category of models of any theory
enriched in V with arities A.

(c) C lifts to a V-colocalization on the category of T -algebras for any V-mon-
ad T on V with arities A.
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Moreover, if any of these conditions hold, then the lifting of C is unique up
to isomorphism.

Example 2.6. For a unitary commutative ring R, consider the category
Ch(R) of unbounded chain complexes of R-modules with its standard closed
symmetric monoidal structure:

(X ⊗ Y )n =
⊕
i∈Z

Xi ⊗R Yn−i; Hom(X, Y )n =
∏
i∈Z

HomR(Xi, Yn+i).

Limits and colimits are computed degreewise, and every localization E on
R-modules can be extended to an enriched localization Ẽ on Ch(R) degree-
wise. If so done, then Ẽ lifts to the category of models of any theory enriched
in Ch(R) with arities

A = {ΣkRn | k ∈ Z, n ≥ 1}.

Such theories include change of rings from Ch(R) to Ch(R′) for every cen-
tral ring homomorphism R → R′, as in Example 1.6. Condition (a) from
Theorem 2.2 holds because

Hom(ΣkRn, X) ∼= Σ−kXn

for all k and n and every chain complex X, where Xn denotes n-fold direct
sum of X with itself. The same fact is true for degreewise colocalizations, by
Theorem 2.4.

Example 2.7. If we choose A to be a skeleton of the full subcategory
of finitely generated abelian groups, then condition (a) in Theorem 2.2 or
Corollary 2.3 is no longer fulfilled for all localizations. An explicit counter-
example follows. Let EG = G/mG where m > 1. This is a localization
on Ab and Hom(Z/m,−) does not preserve E-equivalences, since the pro-
jection Z → Z/m is an E-equivalence while the induced homomorphism
Hom(Z/m,Z) → Hom(Z/m,Z/m) is not. Accordingly, E does not lift to
T -algebras if T sends each abelian group to its maximal torsion-free quotient,
since the T -algebras are the torsion-free abelian groups. This monad T is
not associated with any additive Lawvere theory, although it is associated
with an additive theory with arities the finitely generated abelian groups.
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