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Anderson Localization from a Modern Point of View

Carles Casacuberta

Abstract. Anderson localization at a set of primes P is a functor which is
defined on arbitrary CW-complexes and is naturally equivalent to Sullivan’s
P -localization when restricted to the homotopy category of simply-connected
spaces. However, its properties have never been described beyond the class of
simple spaces. In the present note, we use recent developments in homotopy
theory (mainly Dror Farjoun’s localization with respect to a map) in order to
discuss the effect of Anderson localization on the homotopy groups of arbitrary
spaces. In particular, we point out its close connection with both Quillen’s
plus-construction and localization with respect to self-maps of the circle.

1. Introduction

Our main purpose is to update and supplement an old paper of Anderson [2],
by using the machinery presented by Dror Farjoun in [12], together with the special
case discussed by Peschke and the author in [10].

Anderson’s paper was published shortly after the work of Sullivan on localiza-
tion of simply-connected spaces at a set of primes [18]. While Sullivan’s construc-
tion suffered from the fact that it was only functorial up to homotopy, Anderson’s
construction was functorial on the topological category; moreover, it did not require
any restriction whatsoever on the homotopy groups of the spaces on which it could
be applied. However, most of its basic properties, as described in [2], only hold
under the assumption that the spaces be simple, and its behaviour on more general
spaces has not been discussed so far.

In the present note, we show that for every connected space X , the 1-connected
cover of the Anderson localization of X at a set of primes P is homotopy equivalent
to the Bousfield–Kan ZP -completion [9]

(ZP )∞X̂

(where ZP denotes the ring of integers localized at P ) of a regular cover X̂ of X .
This cover X̂ is classified by a certain subgroup of π1(X), which we call the P ′-
radical (the precise definition is given in Section 3). Hence, the effect of Anderson
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localization on the higher homotopy groups of non-simple spaces can be as drastic
as the effect of homology localization with ZP coefficients [6].

There is another well-known construction in homotopy theory for which some-
thing very similar to the above holds. Namely, if X is any connected space and we
denote by X̂ the regular cover of X classified by the perfect radical [4] of π1(X),
then Z∞X̂ is homotopy equivalent to the 1-connected cover of Quillen’s plus-cons-
truction X+. Moreover, by replacing Z by any ring R ⊆ Q, one obtains the same
result, but involving an analog with R coefficients of the plus-construction, which
was called partial R-completion in §6 of ch. VII in [9].

The common pattern in the two situations considered is better understood if
formulated in the following language. Given any map g : W → V between CW-
complexes, the g-localization functor Lg (in the sense of [12]) is to be compared
with the Σg-localization functor, which we call the semilocalization relative to g, and
if M is the mapping cone of g, then the M -periodization functor (i.e., localization
with respect to M → pt) is an intermediate device between Lg and LΣg. We call it
the Anderson localization or generalized plus-construction relative to g. The usual
plus-construction occurs when g is any map for which Lg is homology localization
with Z coefficients, and Anderson’s original construction arises when Lg is the
“localization with respect to self-maps of the circle” developed in [10].

One case of major interest, in view of the results of [8] and [12], is Anderson
localization relative to a vn self-map of a finite p-local CW-complex. In fact, the
present paper may be viewed as the discussion of the case n = 0. Analysis of the
case n = 1 might give relevant information on K-acyclic spaces.

I am indebted to Joe Neisendorfer for several illuminating comments, and to
my colleagues in Barcelona for the joint work done on this topic during our 1993
seminar.

2. Homotopy localization with respect to a map

Overall, by “space” we mean a CW-complex with basepoint. Let f : W → V
be any (based) map. As in [12], we call a space X f -local if the map of based
function spaces

f∗ : map∗(V,X) → map∗(W,X)
is a homotopy equivalence. This terminology is motivated by the existence of an
f -localization functor, turning f into a homotopy equivalence in a universal way.
More precisely, as shown in [12],

Theorem 2.1. For every map f : W → V there is a functor Lf on the pointed
category of spaces, together with a natural transformation Id → Lf , such that, for
every space X, the map l : X → LfX is homotopy initial among all maps from X
to f -local spaces.

We emphasize the fact that Lf preserves commutativity of diagrams of spaces
and maps, not only up to homotopy. On the other hand, Lf also defines a functor on
the pointed homotopy category H, and, if so viewed, then it is part of an idempotent
monad on H. Thus, Lf is left adjoint to the inclusion of the full subcategory of
f -local spaces in H.

Accordingly, a map X → Y is said to be an f -equivalence if the induced
map LfX → LfY is a homotopy equivalence. This is the same as imposing that
[Y, L] → [X,L] be bijective for all f -local spaces L; see [1].
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Particular instances of Lf are well-known; see [12] for an extensive list. In the
special case when f is of the form f : W → pt, the functor Lf has also been called
W -localization or W -periodization [8], [13], [16]. An interesting source of examples
of this kind can be obtained as follows; cf. [2]. Let A be any abelian group. Choose
a free abelian presentation

0 → F0 → F1 → A→ 0

and a map w : W0 → W1 between suitable wedges of circles inducing the inclusion
F0 → F1 on homology. Let M be the mapping cone of w. We consider localization
with respect to the map

(2.1) f : M → pt.

Then a space X is f -local if and only if Hom(π1(M), π1(X)) is trivial, and

(2.2) Hom(A, πk(X)) = Ext(A, πk(X)) = 0 for k ≥ 2,

as one can check by applying [ , X ] to the cofibre sequence associated with w.
Since A is the abelianization of π1(M), this shows that the class of f -local

spaces whose fundamental group is abelian does not depend on the choices made,
but it only depends on A.

Example 2.2. Let A = Z/p, where p is a prime. Choose w to be the degree p
self-map of S1. Thus, M is a Moore space of type (Z/p, 1). A space X is f -local if
and only if π1(X) does not contain any p-torsion elements, and πk(X) is a Z[1/p]-
module for k ≥ 2 (this follows from (2.2)). These are precisely the target spaces of
Anderson localization away from the prime p; cf. [2]. But two idempotent monads
on the same category with the same class of targets are necessarily isomorphic [1].

More generally, let P be any set of primes, and

(2.3) A =
⊕
q �∈P

Z/q.

Let W be a wedge of circles, one for each prime q �∈ P ; define w to be the self-map
of W which maps the circle labelled by q to itself by a map of degree q. Then a
space X is f -local if and only if π1(X) does not contain any P ′-torsion elements (P ′

denotes the complement of P ), and πk(X) is a ZP -module for k ≥ 2, where ZP is
the ring of integers localized at P . Thus, Lf is equivalent to Anderson localization
at P .

Note that, if π1(X) is trivial, then LfX is homotopy equivalent to XP , the
P -localization of X in the sense of Sullivan [18], [9], [14] (again, because two
idempotent monads on the same category with the same class of local objects have
to be isomorphic).

On the other hand, Lf is not P -localization in general on spaces outside the
category of simply-connected spaces; not even on simple spaces, since, for example,
LfS

1 = S1. In the next two sections, we analyze the effect of Lf on spaces which
are not simply-connected.

Example 2.3. This example was pointed out to us by Neisendorfer. If we
pick A = Z[1/p] and choose a map f as above, then a simply-connected space X
is f -local if and only if πk(X) is Ext-p-complete for k ≥ 2, in the sense of [9].
Therefore, if we restrict ourselves to the homotopy category of simply-connected
spaces, then Lf coincides with the p-completion functor (Fp)∞, since (Fp)∞ is
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homotopy idempotent on simply-connected spaces. Again, however, LfS
1 = S1,

since Hom (Z[1/p],Z) = 0, and therefore Lf is distinct from (Fp)∞ on more general
spaces.

3. Localizing with respect to a group homomorphism

In this section we introduce an auxiliary algebraic tool whose usefulness in our
context will be clear; a detailed study of its properties will be undertaken elsewhere.
Namely, we consider localization with respect to a given homomorphism ϕ : G→ K
of (discrete) groups. A group π will be called ϕ-local if the induced map of sets

ϕ∗ : Hom(K,π) → Hom(G, π)

is bijective.

Theorem 3.1. For every group homomorphism ϕ : G → K there is a functor
Lϕ on the category of groups, together with a natural transformation Id → Lϕ, such
that, for every group π, the map l : π → Lϕπ is initial among all homomorphisms
from π to ϕ-local groups.

This can be proved by paralleling the arguments of [12], or, alternatively, by
resorting to [7] or [11], where more general results are given ensuring the exis-
tence of certain left adjoints in complete or cocomplete categories. We call Lϕ

ϕ-localization of groups. In the special case when ϕ is of the form ϕ : G→ {1}, we
also use the terms G-localization or G-reduction (the latter is borrowed from [8]).
A homomorphism π → ν is a ϕ-equivalence if Lϕπ → Lϕν is an isomorphism.

Theorem 3.2. Let G be any group, and ϕ : G→ {1}. Then, for any group π,
the G-reduction map l : π → Lϕπ is surjective.

(In fact, for a more general homomorphism ϕ : G → K, the ϕ-localization map
l : π → Lϕπ is surjective whenever ϕ is surjective, but we will not prove this here.
Instead, we give an explicit description of Lϕπ in the case when ϕ is of the form
G→ {1}; this description will be useful in the sequel.)

Proof. Set T0 = {1}, and define a (possibly transfinite) sequence {Tα} as
follows. If α is a successor ordinal and Tα−1 is normal in π, take Tα/Tα−1 to be the
subgroup of π/Tα−1 generated by all the images of homomorphisms G → π/Tα−1

(then Tα is normal in π). For a limit ordinal λ, set Tλ = lim−→Tα, where the direct
limit ranges over all ordinals α < λ. Since each Tα is a subset of π, the system {Tα}
will eventually stabilize. We denote by TG(π) the direct limit, and call it the G-
radical of π. It has the property that π/TG(π) is the largest quotient of π admitting
no nontrivial homomorphism from G. Observe also that every homomorphism
G→ π maps in fact into TG(π), and therefore

(3.1) TG(TG(π)) = TG(π).

(Bousfield has used the notation π//G for π/TG(π) in the case when both π and G
are commutative [8].)

We now claim that the projection π � π/TG(π) is the G-reduction of π. By
construction, the group π/TG(π) is G-reduced (i.e., ϕ-local). Moreover, given any
homomorphism ψ : π → L where L is G-reduced, one proves by transfinite in-
duction that ψ(Tα) = {1} for all ordinals α, and hence ψ factors uniquely to a
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homomorphism ψ : π/TG(π) → L. This property characterizes the G-reduction up
to a unique isomorphism. Hence, the proof of Theorem 3.2 is complete.

The terminology “G-radical” comes from the fact that, ifG = Z/p for a prime p,
then TG(π) —which we abbreviate to Tp(π)— has been called elsewhere the p-
radical of π, or also the p-isolator . This notion is generalized in an obvious way to
an arbitrary set of primes P . Of course, if π is nilpotent, then TP (π) is just the
P -torsion subgroup of π.

Another instance is the perfect radical [4], i.e., the maximal perfect subgroup,
which is the G-radical if G is chosen to be the free product of a set of representatives
of all isomorphism classes of countable perfect groups [5].

Proposition 3.3. Let f : W → V be any map between connected spaces, and
let f∗ : π1(W ) → π1(V ) be the induced homomorphism of fundamental groups. Then

(1) A discrete group π is f∗-local if and only if its classifying space Bπ is f -local.
(2) If g : X → Y is any f -equivalence of connected spaces, then the homomor-

phism g∗ : π1(X) → π1(Y ) is an f∗-equivalence of groups.

Proof. If π is f∗-local, then f induces a bijection [V,Bπ] ∼= [W,Bπ]. This
ensures that map∗(V,Bπ) � map∗(W,Bπ), since all connected components of these
function spaces are contractible. The converse is obvious.

To prove (2), let L be any f∗-local group. Then, by part (1), BL is f -local,
and hence g∗ : [Y,BL] → [X,BL] is bijective. This tells us precisely that the map
Hom(π1(Y ), L) → Hom(π1(X), L) is bijective, as required.

Now, for any space X and every map f : W → V , the f -localization map
l : X → LfX is an f -equivalence. Therefore, if X , W , V are connected, then the
homomorphism

l∗ : π1(X) → π1(LfX)
is an f∗-equivalence of groups. This implies that there is a natural homomorphism

(3.2) π1(LfX) → Lf∗π1(X),

which is an epimorphism if V = pt, by Theorem 3.2. However, π1(LfX) need
not be f∗-local in general. Thus, (3.2) may fail to be an isomorphism. Here is an
explicit counterexample:

Example 3.4. Let W = B(Z/p) and f : W → pt; then, by Miller’s main
theorem in [15], all finite-dimensional spaces are f -local. Therefore, if X is any
finite space for which π1(X) contains p-torsion, then π1(LfX) fails to be f∗-local.

The moral in the above example is that the fundamental group of a space X
may contain p-torsion elements not detectable by any map B(Z/p) → X . In the
light of this observation, the following result should be obvious:

Theorem 3.5. Suppose given a map f : W → pt where W is a connected
space. Then, for a space X, we have

π1(LfX) ∼= Lf∗π1(X)

if and only if every homomorphism π1(W ) → π1(LfX) is induced by some map
W → LfX (and hence is trivial).

Note that, if W is a CW-complex of dimension 1 or 2, then the condition stated
in Theorem 3.5 is automatically satisfied.
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4. Homotopy groups of Anderson localization

In this section, we restrict attention to Anderson localization Lf with respect
to a set of primes P . Thus, we consider a self-map w : W →W of a wedge of circles,
as in Example 2.2, and f : M → pt, where M is the mapping cone of w.

Since M is two-dimensional, Theorem 3.5 yields

Theorem 4.1. Let Lf be Anderson localization. Then, for every space X,

π1(LfX) ∼= Lf∗π1(X) ∼= π1(X)/TP ′(π1(X)),

where TP ′ denotes the P ′-radical.

This is the way in which Theorem 2.2 of [2] is to be understood in the case
when the fundamental group π1(X) is not commutative.

The effect of Lf on the higher homotopy groups of arbitrary spaces can be better
analyzed if compared with the w-localization functor Lw, which has been extensively
studied in [10]. Among other things, it was shown that LwX is homotopy equivalent
to the P -localization XP when X is nilpotent. For this reason, Lw was called P -
localization in [10]. The Anderson localization functor Lf is “weaker” than Lw, in
the sense that every w-local space is also f -local, but not conversely (the space S1

provides the easiest counterexample).
The functor LΣw is also significant. It was first considered by Bendersky [3],

who called it semilocalization at the set P . Its effect on arbitrary spaces is the
following. The map l : X → LΣwX induces isomorphisms

π1(X) ∼= π1(LΣwX)

and
ZP ⊗ πk(X) ∼= πk(LΣwX) for k ≥ 2.

In other words, the 1-connected cover of LΣwX is the P -localization of the 1-connected
cover of X . Every f -local space is also Σw-local, but not conversely. Hence, there
are natural transformations of functors

LΣω → Lf → Lw.

Of course, this situation is much more general. Starting from any map g : W →
V one obtains a natural g-tower of localizations for every space X , by resorting to
the cofibre sequence

W → V → Cg → ΣW → ΣV → ΣCg → · · · .
In the special case g : S0 → pt, this produces the Postnikov tower. We plan to
continue the study of g-towers elsewhere.

Theorem 4.2. Let w, f be as defined above. Then the Anderson localization
LfX and the semilocalization LΣwX are homotopy equivalent if and only if π1(X)
does not contain P ′-torsion.

Proof. One implication is clear. To prove the converse, note that both Lf

and LΣw give rise to idempotent monads on the full subcategory of H of spaces
whose fundamental group is P ′-torsion-free. In this category, the classes of local
objects associated to Lf and LΣw coincide. Hence, the two functors are naturally
equivalent.
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Theorem 4.3. Let w, f be as defined above. If TP ′(π1(X)) = π1(X), then
LfX and LwX are homotopy equivalent.

Proof. Consider the full subcategory of H of spaces whose fundamental group
is killed by Lf∗ , and argue as in the previous proof. It is important to observe that,
if a group G satisfies Lf∗G = {1}, then Lw∗G = {1} as well. (The functor Lw∗ is
the usual P -localization of groups [17].)

Now, if X is any connected space, we may consider the homotopy fibration

X̂ → X → Bπ,

where π = π1(X)/TP ′(π1(X)) = Lf∗π1(X). Then Bπ is f -local, and hence, by
Theorem C in [13], the following sequence is again a homotopy fibration

Lf X̂ → LfX → Bπ.

But from (3.1) we obtain

(4.2) TP ′(π1(X̂)) = TP ′(TP ′(π1(X))) = TP ′(π1(X)) = π1(X̂),

and hence, by Theorem 4.3, LfX̂ � LwX̂ . Therefore, determining the groups
πk(LfX) amounts to knowing the groups πk(LwX̂), about which [10] contains some
information; for example, it is shown in §8 that the property Lw∗π1(X̂) = {1}
ensures that the space LwX̂ is homotopy equivalent to the Bousfield–Kan ZP -
completion (ZP )∞X̂, and, moreover, X̂ is ZP -good. Therefore, we have proved the
following:

Theorem 4.4. Let Lf be Anderson localization at a set of primes P . Then,
for every connected space X there is a homotopy fibration

(ZP )∞X̂ → LfX → Bπ,

where π is the quotient of π1(X) by its P ′-radical, and X̂ is the homotopy fibre of
the map X → Bπ. Moreover, the space (ZP )∞X̂ is simply-connected.

5. Anderson localization as a partial homology localization

As commented in the Introduction, Theorem 4.4 suggests that Anderson local-
ization at P is closely related to the plus-construction with ZP coefficients. We
next make more precise the role of homology in our setting.

In this section, w : W → W and f : M → pt have the same meaning as in
Section 4. If X is simply-connected, we know that

(5.1) l∗ : H∗(X ; ZP ) ∼= H∗(LfX ; ZP ),

since LfX is precisely the P -localization of X . Moreover, from the fact that
f : M → pt is an H∗( ; ZP )-equivalence it follows, as already observed in [2],
that l : X → LfX is also an H∗( ; ZP )-equivalence for every space X ; that is, the
isomorphism (5.1) holds for all spaces X , not necessarily simply-connected. But
even more is true:



8 CARLES CASACUBERTA

Theorem 5.1. Let f : M → pt be as defined above. Then, for every space X,
the f -localization map l : X → LfX induces isomorphisms

l∗ : H∗(X ;A) ∼= H∗(LfX ;A)

and
l∗ : H∗(LfX ;A) ∼= H∗(X ;A)

for every ZP [π1(LfX)]-module A.

Proof. This follows from the fact that H̃∗(M ;A) = 0 and H̃∗(M ;A) = 0,
where the action of π1(M) on A is defined via the map f∗ : π1(M) → {1}, and
hence is trivial.

In [10] it was shown that the P -localization functor Lw may be viewed as
homology localization with certain ZP -module twisted coefficients. In order that
such an assertion makes sense, it is necessary to move provisionally outside from
the category H. Thus, an alternative construction of LwX , for a given space X ,
proceeds by considering first another category —which will depend on X—, whose
objects are spaces Y equipped with a group homomorphism from π1(Y ) to L =
Lw∗π1(X) = π1(X)P . In this category, one may localize with respect to homology
with coefficients in a certain Z[L]-module F ; see Theorem 5.1 of [10]. Namely, F
is the localization of the group ring Z[L] at the multiplicative system generated by
the elements 1+x+x2 + · · ·+xn−1 with x ∈ L and n ∈ P ′. After that, one returns
to H by forgetting the group homomorphisms attached to spaces. This procedure
yields an idempotent monad on H, which is said to be spliceable (i.e., obtained by
“splicing” all these twisted homology localization functors from various categories
depending on the spaces considered).

The Anderson localization functor Lf is also spliceable. The proof is analogous
as the one given in [10] for Lw. Namely, one checks that the map l : X → LfX is a
localization in the homotopy category over the group L = Lf∗π1(X), with respect
to homology with coefficients in F = ZP [L]. Thus the functors

Lπ = π/TP ′(π) and FZ[L] = ZP [L]

match in the sense of §6 of [10]. Now, by resorting to Theorem 7.2 of [10], we can
extend Theorem 5.1 as follows (thus characterizing the family of maps which are
rendered invertible by Anderson localization at P ).

Theorem 5.2. Let f : M → pt be as defined above. A map g : X → Y of
connected spaces is an f -equivalence if and only if g∗ : π1(X) → π1(Y ) is an f∗-
equivalence of groups, and g∗ : H∗(X ;A) → H∗(Y ;A) is an isomorphism for every
ZP [Lf∗π1(Y )]-module A.

As already pointed out in [10], Bendersky’s semilocalization LΣw is spliceable
too. The corresponding pair of matching functors is Lπ = π, FZ[L] = ZP [L].
However, LΣ2w is not spliceable; hence, it is not true that the semilocalization
associated to a spliceable functor is again spliceable in general.

Finally, let g be the wedge of a set of representatives of all isomorphism classes
of integral homology equivalences between spaces with countably many cells. Thus,
Lg is the usual homology localization with Z coefficients. This functor is obviously
spliceable, with L = {1} and F = Z. The Anderson localization relative to g is
the usual plus-construction, which is again spliceable: Take Lπ = π/Pπ, where P
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denotes the perfect radical, and FZ[L] = Z[L]. The semilocalization relative to g
is just the identity, since Σg is a homotopy equivalence.
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