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Abstract

We show that, for a finite group G and a prime p, the following facts

are equivalent: (i) the p-localization homomorphism l: G → Gp induces

p-localization on integral homology; (ii) the higher homotopy groups of

the Bousfield-Kan Zp-completion of a K(G, 1) vanish; (iii) the group G

is p-nilpotent.

0 Introduction

We deal with P -localization of groups in the sense of [2, 13, 19, 29]. That is,

given a set of primes P , a group G is called P -local if every element x ∈ G has

a unique nth root in G for every P ′-number n (as customary, we denote by P ′

the set of primes not in P and say that n ∈ P ′, or that n is a P ′-number , if all

prime divisors of n belong to P ′). A group homomorphism l: G→ GP is said to

be a P -localization if it is universal (initial) among all group homomorphisms

from G to P -local groups. Every group G admits a P -localization, which is

unique up to isomorphism and functorial; see for example [19].

Since many other notions of localization and completion have been defined

in group theory and homotopy theory, we have supplied an appendix recalling
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the definition of all functors referred to in this paper and detailing how they

are related among themselves.

For a nilpotent group G, the induced homomorphisms

l∗ : Hk(G; ZP )→ Hk(GP ; ZP ) (0.1)

are isomorphisms for all k, where ZP denotes the ring of integers localized at P

(viewed as a trivial coefficient module). This is false in general for nonnilpotent

groups. For example, if Σ3 denotes the symmetric group on three elements,

then (Σ3)3 is trivial, while H3(Σ3; Z3) 6= 0.

We have been interested in finding examples of nonnilpotent groups for which

(0.1) is still an isomorphism for all k and all sets of primes P . Locally nilpotent

and locally free groups have this property [11, 23]. Other (finitely generated)

examples are the infinite dihedral group and the fundamental group of the Klein

bottle [7].

In this note, we point out that no such examples are to be found in the class

of finite groups, for if G is finite and (0.1) is an isomorphism for all k, then

G must be P -nilpotent; cf. Theorem 1.5 below. Recall that a finite group G

is called P -nilpotent if the subgroup of G generated by all P ′-torsion elements

does not contain P -torsion. Thus, a finite group G is nilpotent if and only if it

is p-nilpotent for all primes p.

Our characterization of P -nilpotence is very much in the spirit of [15, 16, 18,

24, 25, 26], where cohomological criteria for the p-nilpotence of a finite group G

(p stands for a single prime) were given in terms of the inclusion of a p-Sylow

subgroup i : S ↪→ G. Recent progress on that topic [12, 17] has provided

generalizations of the results cited to compact Lie groups, using the solution of

the Segal conjecture [6].

In Section 2, we give a homotopy-theoretic interpretation of our previous

result by showing that, for any finite group G and each single prime p, the

higher homotopy groups of the Bousfield-Kan Zp-completion [5] of a K(G, 1)

πk(Zp)∞K(G, 1), k ≥ 2,

can be precisely interpreted as the obstruction to G being p-nilpotent or, equiv-

alently, to l : G → Gp inducing p-localization on the integral homology groups.
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A simple, illustrative example is the symmetric group Σ3, for which

(Z2)∞K(Σ3, 1) ' K(Z/2, 1),

while (Z3)∞K(Σ3, 1) is a simply-connected space with complicated homotopy

[5, VII, 4.4].

As explained in Section 3, our theorem can be extended to an arbitrary set of

primes P , provided we replace Zp-completion by a certain idempotent functor,

developed in [8, 9, 10], which induces P -localization of fundamental groups in

the above sense.

Acknowledgements. This paper has been extracted from a chapter of my Ph. D.

thesis. I am indebted to Manuel Castellet and Peter Hilton for their teaching,

and to Guido Mislin for an appropriate hint. I also wish to thank the hospitality

of the ETH Zürich.

1 Homological localization and P -nilpotence

In what follows, we restrict ourselves to the class of finite groups, in which the

effect of P -localization on homology is particularly easy to analyze. First of all,

the following facts are readily checked.

Proposition 1.1 [20] If G is a finite group and P a set of primes, then the

following assertions are equivalent:

(a) G is P -local;

(b) the order of G is a P -number;

(c) each Hk(G; Z), k ≥ 1, is a ZP -module. 2

Proposition 1.2 [20] Let G be a finite group and P a set of primes. Then the

P -localization homomorphism l: G→ GP is surjective and ker l is the subgroup

generated by all P ′-torsion elements of G. 2

Theorem 1.3 Let G be a finite group and P a set of primes. Then P -local-

ization induces an isomorphism l∗ : H1(G; ZP ) ∼= H1(GP ; ZP ) and an epimor-

phism l∗ : H2(G; ZP )→→ H2(GP ; ZP ).
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Proof. Consider the extension

ker l >→ G
l→→ GP (1.1)

given by Proposition 1.2 and look at the associated five-term exact sequence

[14] tensored with ZP :

H2(G; ZP )→ H2(GP ; ZP )→ ZP⊗(ker l/[G, ker l])→ H1(G; ZP )→ H1(GP ; ZP )→ 0.

Our assertion is a consequence of the vanishing of the middle term, which

follows from Lemma 1.4 below. 2

Lemma 1.4 Let G be a finite group, P a set of primes, and l : G → GP the

P -localization homomorphism. If A is any abelian epimorphic image of ker l,

then ZP ⊗ A = 0.

Proof. Since ker l is generated by P ′-torsion elements, A is necessarily a

P ′-torsion group. 2

If the group G is nilpotent, then l: G→ GP in fact induces isomorphisms

l∗ : Hk(G; ZP ) ∼= Hk(GP ; ZP ) for all k. (1.2)

It is natural to ask for which—possibly larger—class of finite groups (1.2) still

holds. This question has a precise answer:

Theorem 1.5 Let G be a finite group, P a set of primes, and l : G → GP the

P -localization homomorphism. The following statements are equivalent:

(a) G is P -nilpotent;

(b) ker l is P ′-torsion;

(c) l∗ : Hk(G;A) ∼= Hk(GP ;A) for all k and every P -local abelian group A

with an action of GP (here we consider homology with twisted coefficients);

(d) l∗ : Hk(G; ZP ) ∼= Hk(GP ; ZP ) for all k;

(e) l∗ : Hk(G; ZP )→ Hk(GP ; ZP ) is a monomorphism for all k;

(f) l∗ : Hk(G; Z)→ Hk(GP ; Z) is a P -localization for all k ≥ 1.
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Proof. The equivalence of (a) and (b) is immediate from Proposition 1.2.

To prove that (b)⇒(c), assume given an action ω : GP → Aut(A), where A is

abelian and P -local. Then the induced action of ker l onA is trivial. Since we are

assuming that ker l is P ′-torsion and A is a ZP -module, we have Hk(ker l;A) = 0

for k ≥ 1, and H0(ker l;A) ∼= A. Therefore the Lyndon-Hochschild-Serre spec-

tral sequence [14] associated to the extension (1.1) collapses and gives isomor-

phisms l∗ : Hk(G;A) ∼= Hk(GP ;A) for all k, as stated. The implications (c)⇒(d)

and (d)⇒(e) are trivial. We next show that (e)⇒(b). Thus assume that l∗ is

a monomorphism for all k, and assume further that ker l contains an element

x 6= 1 whose order is a P -number. The next argument is essentially contained

in [16]: Let C = 〈x〉 be the cyclic group generated by x and j : C ↪→ G the

corresponding embedding. By Corollary 2 in [28], the homomorphism

j∗ : Hk(C; Z)→ Hk(G; Z)

is nonzero for infinitely many values of k. Choose one such value of k ≥ 1. Since

Hk(C; Z) is a ZP -module, the image of j∗ is contained in the P -torsion part of

Hk(G; Z). Therefore the composition

Hk(C; ZP )
j∗→ Hk(G; ZP )

l∗→ Hk(GP ; ZP )

is nonzero. This is absurd, because C is contained in ker l and hence lj is trivial.

Finally, the equivalence of (f) and (d) is obvious, for Hk(G; Z)P
∼= ZP ⊗

Hk(G; Z) ∼= Hk(G; ZP ) and Hk(GP ; Z) ∼= Hk(GP ; ZP ) by Proposition 1.1. 2

Corollary 1.6 If G is a finite group for which the homomorphisms

l∗ : Hk(G; Z)→ Hk(Gp; Z)

are p-localizations for all k ≥ 1 and each prime p, then G is nilpotent. 2

2 Topological interpretation

If we restrict ourselves to the case when the set P consists of a single prime p,

then Theorem 1.5 can be expanded and partially reproved using the machin-

ery of [5]. Specifically, the failure of l : G → Gp to induce p-localization on
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integral homology is detected by the appearance of higher homotopy in the

Zp-completion of a K(G, 1). We recall from [5] (see also the Appendix be-

low) that Zp-completion, H∗( ; Zp)-localization and p-profinite completion all

coincide on spaces K(G, 1) with G finite.

If the group G is nilpotent, then the result of applying any of these functors

to a K(G, 1) is a K(Gp, 1). We next prove that this still holds if we only assume

G p-nilpotent, and that this property in fact characterizes p-nilpotence.

Lemma 2.1 Let G be a finite group and l : G → Gp its localization at a given

prime p. Then the sequence

(Zp)∞K(ker l, 1)→ (Zp)∞K(G, 1)→ (Zp)∞K(Gp, 1)

induced by the extension (1.1) is a homotopy fibration. Moreover, the fibre is

simply-connected and (Zp)∞K(Gp, 1) ' K(Gp, 1).

Proof. For each k ≥ 1, the induced action of Gp on Hk(ker l; Zp) is nilpotent

because they are both finite p-groups. Thus our first assertion follows from

[5, II, 5.1]; cf. also [4, 14.4]. To prove that π1(Zp)∞K(ker l, 1) is trivial, use

[5, I, 6.1] after observing that H1(ker l; Zp) = 0 by Lemma 1.4. The last asser-

tion is deduced from the fact that Gp is a finite p-group and hence nilpotent

p-local. 2

Theorem 2.2 Let G be a finite group and l: G→ Gp its localization at a given

prime p. The following statements are equivalent:

(a) G is p-nilpotent;

(b) l∗ : Hk(G; Zp) ∼= Hk(Gp; Zp) for all k;

(c) l induces a homotopy equivalence (Zp)∞K(G, 1) ' K(Gp, 1);

(d) πk(Zp)∞K(G, 1) = 0 for all k ≥ 2.

Proof. The equivalence of (a) and (b) has been proved in Section 1 (in fact, we

only use here the easier implication (a)⇒(b)). To check that (b)⇒(c), observe

that from (b) it follows that l induces a homotopy equivalence

(Zp)∞K(G, 1) ' (Zp)∞K(Gp, 1),
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and (Zp)∞K(Gp, 1) ' K(Gp, 1) by Lemma 2.1. The implication (c)⇒(d) is

trivial. To prove that (d)⇒(a), consider the fibration given by Lemma 2.1.

From assumption (d) it follows that the fiber is contractible. Now, since a

K(G, 1) with G finite is always Zp-good [5, VII, 4.3], the homology groups

Hk(ker l; Zp) ∼= Hk((Zp)∞K(ker l, 1); Zp)

vanish for k ≥ 1. This implies, by [28], that p does not divide the order of ker l

and therefore G is p-nilpotent. 2

Although the space (Zp)∞K(G, 1) is far from being a K(Gp, 1) in general,

it is important to point out the following corollary of Lemma 2.1:

Corollary 2.3 For every finite group G and every single prime p, the funda-

mental group of (Zp)∞K(G, 1) is isomorphic to Gp. 2

If we consider a set P containing more than one prime, then Corollary 2.3 is

false and statements (c) and (d) can no longer be included in Theorem 2.2. For

example, let G be a nontrivial perfect finite group and P be the set of all primes

dividing its order. Then G is P -local and P -nilpotent, yet (ZP )∞K(G, 1) is a

simply-connected space (by [5, I, 6.1]) which is not contractible because G is

not ZP -acyclic. A justification of this somehow disappointing feature is given

in the next section.

3 On P -localization of spaces

The techniques developed in [8, 9, 10] actually allow improvement of some of

the above results. These papers contain a proof of the existence of an idem-

potent functor [1] in the pointed homotopy category of CW-complexes extend-

ing P -localization of nilpotent spaces and inducing P -localization on the fun-

damental group; cf. Appendix. We denote this functor by ( )P and call it

P -localization.

The associated P -equivalences can be described as maps f : X → Y inducing

a P -equivalence of fundamental groups and isomorphisms f∗ : Hk(X;A) →
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Hk(Y ;A) for all k, with certain (twisted) coefficients A whose underlying abelian

group is P -local [8, 9], which include trivial ZP coefficients.

Here is an application of the existence of this functor (showing that the

finiteness assumption can be removed from Theorem 1.3):

Theorem 3.1 For each group G and each set of primes P , the P -localization

homomorphism l: G→ GP induces an isomorphism l∗ : H1(G; ZP ) ∼= H1(GP ; ZP )

and an epimorphism l∗ : H2(G; ZP )→→ H2(GP ; ZP ).

Proof. The P -localization map K(G, 1)→ K(G, 1)P is an H∗( ; ZP )-equival-

ence and induces l : G → GP on fundamental groups. Our assertion follows,

as in [3, Lemma 6.1], from the fact that, for every space X, the natural map

X → K(π1X, 1) induces an isomorphism on H1 and an epimorphism on H2

with arbitrary coefficients. 2

If the set P consists of a single prime p, then the effect of p-localization on

a K(G, 1) with G finite turns out to be precisely Zp-completion, i.e.

K(G, 1)p ' (Zp)∞K(G, 1).

The proof, based on Corollary 2.3, is provided in [8]. Thus, the following the-

orem may be viewed as a generalization of Theorem 2.2 to an arbitrary set of

primes P , and this makes it clear that the difficulty in the example at the end of

Section 2 lies in the non-coincidence of the functors ( )P and (ZP )∞ in general.

Theorem 3.2 Let G be a finite group and P a set of primes. Then G is

P -nilpotent if and only if πkK(G, 1)P = 0 for all k ≥ 2.

Proof. If πkK(G, 1)P = 0 for k ≥ 2, then K(G, 1)P ' K(GP , 1) and hence the

homomorphism l: G→ GP is an H∗( ; ZP )-equivalence. Now the P -nilpotence

of G is deduced from Theorem 1.5. Conversely, assume that G is P -nilpotent.

Then, since l : G → GP is certainly a P -equivalence of groups and moreover,

by Theorem 1.5, it is an H∗( ;A)-equivalence for every coefficient module A

whose underlying abelian group is P -local, it follows that the induced map

K(G, 1) → K(GP , 1) is a P -equivalence of spaces and hence a P -localization.

This proves that the higher homotopy groups of K(G, 1)P vanish. 2
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4 Appendix: A roadmap on localization and

completion

A good method to understand the relationship between the various localization

functors existing in the literature is to compare the respective classes of “local

objects” and “equivalences” associated to them. Following [1], if E is an idem-

potent functor in a category C, we call E-local the objects X of C such that

X ∼= EX and E-equivalences the maps f : A → B such that Ef : EA ∼= EB.

These two classes determine each other by means of a simple rule: An object

X is E-local if and only if each E-equivalence f : A → B induces a bijection

f ∗ : Mor(B,X) ∼= Mor(A,X), and a map f : A → B is an E-equivalence if

and only if it induces a bijection f ∗ : Mor(B,X) ∼= Mor(A,X) for each E-local

object X.

If we have two idempotent functors E1, E2 in the same category C, and the

class of E1-local objects is contained in the class of E2-local objects (or, equiva-

lently, the class of E2-equivalences is contained in the class of E1-equivalences),

then there is a natural transformation of functors E2 → E1.

On the other hand, if C ′ is a subcategory of C, and if E, E ′ are idempotent

functors in C, C ′ respectively, then we say that E extends E ′ if both the class

of E ′-local objects is contained in the class of E-local objects, and the class of

E ′-equivalences is contained in the class of E-equivalences. If this is the case,

then for every object X of the subcategory C ′, the objects E ′X and EX are

naturally isomorphic. This approach is the starting point of the more detailed

discussion on localization functors in categories contained in [9, 10].

(Gr 1) P -localization of nilpotent groups. In the category of nilpotent

groups, the local objects associated to the P -localization functor developed by

Bousfield-Kan [5], Hilton-Mislin-Roitberg [13], and Warfield [29] are the nilpo-

tent groups in which P ′-roots exist and are unique, and the equivalences are

the P ′-bijections [13]. These can alternatively be described as being homomor-

phisms ϕ: G→ K such that ϕ∗ : Hk(G; ZP ) ∼= Hk(K; ZP ) for all k.

(Gr 2) P -localization of groups. The localization functor in the category
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of all groups considered by Ribenboim [19], after earlier work of other authors

on radicability in groups (see [2] and the references there), has as local objects

—called P -local groups—the groups in which P ′-roots exist and are unique. As

far as we know, the class of associated P -equivalences has not explicitly been

characterized in any useful form. However, it has been proved [11, 20] that this

functor, which we denote by ( )P , indeed extends P -localization of nilpotent

groups to the category of all groups.

(Gr 3) HR-localization of groups. Let R be a subring of the rationals or a

finite cyclic ring. Bousfield defined in [3, 4] a class of groups called HR-local as

follows (in fact, this definition makes sense for R an arbitrary abelian group).

A group homomorphism ϕ: K → L inducing an isomorphism ϕ∗ : H1(K;R) ∼=
H1(L;R) and an epimorphism ϕ∗ : H2(K;R)→→ H2(L;R) is called an HR-map,

and a group G is said to be HR-local if each HR-map ϕ : K → L induces a

bijection ϕ∗ : Hom(L,G) ∼= Hom(K,G). There is an idempotent functor ER

in the category of groups, called HR-localization, whose local objects are the

HR-local groups. Warning: the class of equivalences associated to ER is strictly

bigger than the class of HR-maps in general.

In the case R = ZP , this functor—which we denote by EP for simplicity—

extends P -localization of nilpotent groups [4]. Since multiplication by a P ′-

number Z
·n→ Z is an HZP -map, it follows that HZP -local groups are P -local.

Hence, there is a natural transformation of functors ( )P → EP in the category

of groups. The homomorphism GP → EPG is an isomorphism in some cases;

for example, whenever GP is nilpotent.

Of course, there are many other functors extending P -localization of nilpo-

tent groups to the category of all groups. The family of all them is partially

ordered by inclusion of the respective classes of local objects. Moreover, it is

easy to see [10] that the functor ( )P is initial in this family. That is, for any

other functor E extending P -localization of nilpotent groups to all groups, there

is a natural transformation of functors ( )P → E.

(Gr 4) R-completion of groups. Let R be a ring with 1. A group N is

called R-nilpotent [5] if it has a finite central series in which the factors admit
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an R-module structure. For example, ZP -nilpotent groups are precisely P -local

nilpotent groups. The R-completion of a group G, denoted by G∧R, is the inverse

limit of a cofinal diagram in the system of all targets of homomorphisms from

G to R-nilpotent groups [4, 5]. In general, G∧R need not be R-nilpotent itself,

but it is always HR-local. Hence, there is a natural transformation of functors

ER → ( )∧R. If the group G is finitely generated, then the homomorphism

ERG→ G∧R is surjective [4].

If R = Z/p and the group G is finitely generated, then G∧R is isomorphic to

the p-profinite completion [22] of G. If R = ZP , then [5]

G∧R
∼= lim
←

(G/ΓkG)P ,

where ΓkG denotes the lower central series of the group G. In particular, if G

is nilpotent, then the ZP -completion of G is isomorphic to GP . However, since

the R-completion functor is not idempotent on arbitrary groups, our previous

considerations used to compare idempotent functors do not apply to it.

(Ho 1) P -localization of nilpotent spaces. In the pointed homotopy cate-

gory of nilpotent CW-complexes, the local objects associated to the P -local-

ization functor described by several authors (Adams [1], Bousfield-Kan [5],

Hilton-Mislin-Roitberg [13], Sullivan [27]), are the nilpotent spaces whose homo-

topy (and integral homology) groups are P -local. Equivalently, P -local nilpo-

tent spaces are those in which the nth power map ΩX → ΩX, ω 7→ ωn, is a

homotopy equivalence for every n ∈ P ′, cf. [8, 21]. P -equivalences are maps

f : X → Y inducing isomorphisms f∗ : Hk(X; ZP ) ∼= Hk(Y ; ZP ) for all k. For

every nilpotent group G, the space K(G, 1)P is a K(GP , 1).

(Ho 2) P -localization of spaces. As proved in [8, 9, 10], there exists an

idempotent functor in the pointed homotopy category of CW-complexes whose

local objects are those spaces in which the nth power map ΩX → ΩX, ω 7→ ωn,

is a homotopy equivalence for every n ∈ P ′. We denote this functor by ( )P

and call it P -localization. It has been shown [8] that it extends P -localization

of nilpotent spaces. Furthermore, it is related to P -localization in the category

of groups by

GP
∼= π1K(G, 1)P .
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The associated class of P -equivalences is properly contained in the class of all

H∗( ; ZP )-equivalences.

(Ho 3) h∗-localization of spaces. For each additive homology theory h∗

in the pointed homotopy category of CW-complexes, Bousfield proved in [3]

the existence of an h∗-localization functor, i.e. an idempotent functor whose

equivalences are maps f : X → Y inducing isomorphisms f∗ : hk(X) ∼= hk(Y ) for

all k. For any abelian group R, HR-localization ER in the category of groups

is related to the H∗( ;R)-localization functor (which we denote by ER as well)

by

ERG ∼= π1ERK(G, 1).

The H∗( ; ZP )-localization functor (written EP to simplify the notation)

extends P -localization of nilpotent spaces to all spaces, and it is not difficult to

see that EP is indeed final in the family of all such extensions [10]. In particular,

if ( )P is the P -localization functor, then there is a natural transformation of

functors ( )P → EP . The map XP → EPX is a homotopy equivalence in some

cases, e.g. when the space XP is nilpotent.

(Ho 4) R-completion of spaces. Given a ring R with 1, a nilpotent space X

is called R-nilpotent [5] if all its homotopy groups πkX, k ≥ 1, are R-nilpotent.

For each space X, Bousfield and Kan constructed a functorial R-completion

φ : X → R∞X by taking the homotopy inverse limit of a cofinal diagram in

the system of all targets of maps from X to R-nilpotent spaces. It has the

property that, if f : X → Y is an H∗( ;R)-equivalence, then the induced map

f∗ : R∞X → R∞Y is a homotopy equivalence. A space X is called R-good if

φ : X → R∞X is an H∗( ;R)-equivalence. For every connected space X, the

space R∞X is H∗( ;R)-local [5, II, 2.8], and hence there is a natural map

ERX → R∞X, which is a homotopy equivalence if and only if X is R-good.

Since nilpotent spaces are R-good for R = ZP [5], the functor (ZP )∞ coin-

cides with P -localization on nilpotent spaces. However, (ZP )∞ is not idempo-

tent on arbitrary spaces, and therefore it cannot be compared to the previous

functors using the methods of this section.
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If X is a space such that Hk(X; Z/p) is finite for all k, then (Z/p)∞X has the

homotopy type of the p-profinite completion X∧p in the sense of Sullivan [27]. If

G is a finite group and P a set of primes, then [5, VII, §4]

EPK(G, 1) ' (ZP )∞K(G, 1) '
∏
p∈P

(Z/p)∞K(G, 1) '
∏
p∈P

K(G, 1)∧p .

For every group G there is an epimorphism [4, p. 66]

π1R∞K(G, 1)→→ G∧R,

which is an isomorphism in many cases, e.g. for G free, G nilpotent or G finite.
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Universitat Autònoma de Barcelona, Departament de Matemàtiques, E - 08193
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