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1. Introduction

The essentials of localization of 1-connected spaces —or, more generally, nilpo-
tent spaces— at a set of primes P were solidly established between 1970 and 1975.
Since then, the monograph by Hilton, Mislin and Roitberg [HMR] has been a fun-
damental piece of reference which has made the theory available to a broad public
of potential users. Indeed, many of these became successful users and have been
enriching the theory during two decades.

The insight of Bousfield and Kan [BK], [Bo1], [Bo3] broadened largely the
domain of application of localization techniques. However, it became clear that
dealing with nonnilpotent spaces carried considerable difficulties, and often would
lead to finding mysterious effects of certain functors on the homotopy groups of
spaces.

When, shortly afterwards, Bousfield transferred that machinery to stable ho-
motopy theory [Bo4], the scope of localization increased again. Nowadays, most
attempts to determine the structure of the homotopy groups of spheres require lo-
calization as a basic tool. One of its deepest forms is localization with respect to
Morava K-theories, which plays a key role in the study of periodicity in homotopy
theory [Ra1], [DHS], [HS].

I cannot attempt to present the status of all what is being currently investigated
in connection with localization. My aim in this article is to collect instead a certain
number of new ideas which have arisen more or less since 1988. Although the basic
concepts behind these ideas are not new to specialists, several observations and
applications have been recognized as truly original. Furthermore, they seem to be
far from exhausted as sources of new results.

The first half of the paper contains a summary of our own contribution. The
results in Section 4 are going to appear in more detailed form as a joint paper with
George Peschke [CP]. Indeed, the influence of Peschke’s philosophy is obvious in
many parts of the present survey, as well as the deep input from Markus Pfenniger.
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Before presenting that material, we explain in Section 3 why the näıve attempt
of constructing a reflection onto the class of spaces with P -local homotopy groups
cannot possibly work in the based homotopy category of CW-complexes H (not
necessarily nilpotent). The key point in overcoming this difficulty is to take full
advantage of the topology of (based) mapping spaces map∗(X, Y ), instead of re-
stricting attention to the “purely categorical” device [X, Y ], the set of morphisms
in H from X to Y . Thus, in order to make invertible a prime q in the homotopy
groups of spaces, one should not take as targets for the functor those spaces for
which

q∗ : πn(X)→ πn(X)
is bijective for all n, where q∗ is induced by the degree q map of Sn; instead, one
should consider spaces X for which

q∗ : ΩnX → ΩnX

is a homotopy equivalence for all n (in fact, there is no restriction in imposing this
condition only for n = 1).

This idea was contained in embryonal form in [Pe2] and was pursued further
in [CP], [CPP]; but it only took its full force when Dror Farjoun revived and
developed an old observation of Bousfield [Bo3], by showing that it was possible
to “invert” any map f : A→ B in H in that broader sense, not only q : Sn → Sn.
More precisely, the class of spaces X for which

f∗ : map∗(B, X)→ map∗(A, X)

is a weak homotopy equivalence turns out to be reflective in H for every map f ,
while the class of spaces X for which

f∗ : [B, X ]→ [A, X ]

is a bijection often fails to be reflective. This is good news for people having once
tried to find optimal conditions on certain families of maps in H enabling these
maps to be rendered invertible in a universal way (not by passing to the category
of fractions, but by means of a suitable functor within H). This is very tricky, if
attacked with classical category-theoretical tools; cf. [Ad2], [DH].

In the second half of the present article, a few aspects of that new approach
to localization have been selected, by attempting to sketch the main ideas and
including findings of Dror Farjoun [Fa1], [Fa2], [Fa3], [Fa4], [Fa5], Dror Farjoun–
Smith [FS], Bousfield [Bo5], and Neisendorfer (unpublished). I am indebted to
them for keeping me informed and for many tutorials. I also acknowledge several
ideas from members of our topology seminar in Barcelona, which arose while reading
the above preprints in early 1993, and have been included in my own presentation
of the subject here.

Finally, I take the liberty to repeat under these acknowledgements certain feel-
ings that I already expressed on the occasion of the meeting in Montréal. I belong
to the youngest generation having entered into mathematics by reading the work
of Peter Hilton, which is, as you know, a very pleasant experience. In addition, I
am in big debt with him for teaching me further himself, not only localization, nor
only mathematics. This is an even more pleasant experience. In the exposition
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which follows, the successful parts reflect what I could learn from him. For the
unsuccessful, I apologize to him and to the reader.

2. Reflective Subcategories

Homotopy theorists did not invent localization, but adapted it so as to be useful
in homotopy theory. Therefore, most of the current terminology about localization
originated in commutative algebra or category theory, and many results familiar to
homotopy theorists admit in fact a more abstract formulation, which is often more
enlightening.

Thus, we adopt in this paper the earlier point of view of Adams [Ad2], by
emphasizing that localizations may be viewed as idempotent monads , about which
there is an extensive literature available; see e.g. [DFH] or [BW] and their ref-
erences. A monad or triple E = (E, η, µ) in a category C consists of a functor
E : C → C together with natural transformations η : Id → E (called unit) and
µ : E2 → E (called multiplication) such that

µ · µE = µ ·Eµ and µ · ηE = µ ·Eη = Id.

A monad (E, η, µ) is idempotent if Eη = ηE; this condition is equivalent to µ being
a natural equivalence of functors; see [De].

An idempotent monad E = (E, η, µ) is characterized by either its class S(E)
of E-equivalences (morphisms f such that Ef is invertible) or its class D(E) of
E-local objects (objects in the image of E); see [Ad2] for further details. For every
object X of C, the morphism ηX : X → EX will be called the E-localization of X .
It is an E-equivalence, which is in fact terminal among all E-equivalences going
out of X , and at the same time initial among all morphisms from X to E-local
objects. Thus, if we view E as a functor from C to D(E), then it is left adjoint
to the inclusion of D(E) into C (we will not distinguish between a class of objects
and the full subcategory with those objects). The term “localization” seems to be
appropriate in this general setting, since the effect of E is precisely “inverting” a
certain class of arrows, namely all E-equivalences.

As observed in [CPP], it turns out to be very convenient to distill one further
abstract notion —the notion of orthogonal pair— from the properties of localiza-
tions. If C is any category, an object X and a morphism f : A → B are called
orthogonal (this term has been borrowed from Freyd and Kelly [FK]) if

f∗ : C(B, X) ∼= C(A, X),

that is, if for any morphism g : A→ X there is a unique h : B → X such that hf = g.
For example, the abelianization ϕ : G→ G/[G, G] of a group G is orthogonal to all
abelian groups.

If S is a class of morphisms in C, we denote by S⊥ the class of objects orthogonal
to all morphisms in S. If S consists of a single morphism f —which will often be
the case in this article— we will abbreviate {f}⊥ to f⊥. For a class of objects D,
we use the notation D⊥ in the same way.

Definition 2.1. An orthogonal pair (S,D) in C consists of a class of mor-
phisms S and a class of objects D such that S⊥ = D and D⊥ = S.

If (S,D) is an orthogonal pair, then S and D are saturated , meaning that
D⊥⊥ = D and S⊥⊥ = S. Also, taking three times the orthogonal class is exactly
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the same as doing it once. Hence, for example, (S⊥⊥,S⊥) is an orthogonal pair for
every class of morphisms S, which we call the orthogonal pair generated by S.

A major source of interesting orthogonal pairs is, of course, the theory of idem-
potent monads. Indeed, for every idempotent monad (E, η, µ), the classes S(E)
and D(E) of E-equivalences and E-local objects form an orthogonal pair. At this
point it might be asked if, given a monad E = (E, η, µ), the fact that S(E), D(E)
form an orthogonal pair implies that E is idempotent. This has been answered in
the negative in [CFT].

It is not rare to find researchers looking for a proof of existence of certain local-
ization functors (or, more generally, of left adjoints). Again, there is an extensive
literature about that. We will be interested in those situations where a specific
orthogonal pair (S,D) is given, and the question is to decide whether there is an
idempotent monad (E, η, µ) such that S = S(E) and D = D(E). In fact, we will
even be more restrictive, since all instances of this problem in the sequel will be of
the following kind.

Problem 2.2. Given a category C and a morphism f , is the orthogonal pair
(f⊥⊥, f⊥) associated with an idempotent monad?

Note that, if coproducts exist in the category C, then asking the above question
for a single morphism f is equivalent to asking it for a set of morphisms {fi | i ∈ I},
since the following conditions for an object X are equivalent:

(1) X is orthogonal to each fi.
(2) X is orthogonal to the coproduct f of the set {fi}.
In those cases when the answer to Problem 2.2 is affirmative, it is said that

the subcategory f⊥ is reflective. If (E, η, µ) is a solution, then it is of course
unique up to an isomorphism of monads. For an object X , the E-localization
ηX : X → EX is sometimes called a reflection of X onto the subcategory f⊥. For
example, abelianization is a reflection in the category of groups onto the subcategory
of abelian groups, which is indeed of the form f⊥; see the last paragraph of this
article.

The most general form of Problem 2.2 (involving a possibly proper class of
morphisms S instead of a single f) is called the orthogonal subcategory problem.
It admits a solution in complete or cocomplete categories under rather mild as-
sumptions; see [Bo3], [Ke], [Pf]. However, the situation is more complicated in
categories such as the homotopy category of CW-complexes. In [CPP] we dis-
cuss what can be done in this category, and more generally in categories where
coproducts and weak colimits exist.

3. Spaces with P -Local Homotopy Groups

We next specialize to the realm of homotopy theory and give one fundamental
example. Let us denote byH the based homotopy category of CW-complexes. Thus
a space X and a (based) map f : A→ B are orthogonal if f∗ : [B, X ]→ [A, X ] is a
bijection of (based) homotopy classes of maps. We denote by N the full subcategory
of H of nilpotent spaces.

From now on we fix a set of primes P (which may be empty) and denote, as
usual, by P ′ its complement (which we normally assume not to be empty!). For
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every prime q ∈ P ′, let
ρq,n : Sn → Sn

be the standard map of degree q. Let f be the coproduct of the maps ρq,n for
q ∈ P ′ and n ≥ 1. We will be concerned with the orthogonal subcategory problem
(Problem 2.2) for this particular map f , firstly in the category N , and secondly in
the whole category H.

In any case, a space X belongs to f⊥ if and only if

(ρq,n)∗ : πn(X) ∼= πn(X)

for all q ∈ P ′ and n ≥ 1. But (ρq,n)∗ is just multiplication by q if n ≥ 2, and the
qth power map for n = 1 (we will denote the fundamental group multiplicatively at
all times). Hence, the class f⊥ consists of spaces X whose higher homotopy groups
admit a ZP -module structure (where ZP denotes the ring of integers localized at P ),
and whose fundamental group is uniquely P ′-radicable, i.e., the qth power map
x �→ xq is bijective in π1(X) for all q ∈ P ′. We call such groups P -local , as in
[HMR] or [Ri1], both in the commutative and the noncommutative case. That is,
spaces in f⊥ are spaces with P -local homotopy groups.

It is well known that f⊥ is reflective in N . The associated idempotent monad
is the P -localization described in the early seventies by Hilton–Mislin–Roitberg and
Bousfield–Kan, after the first insight of Sullivan [Su].

However, it may be surprising to discover that

Theorem 3.1. f⊥ fails to be reflective in H.
The argument is related to the following observation of Mislin; cf. [Fa1]: The

class of 1-connected spaces is not reflective in H. For suppose it were; then there
would be a map η : RP 2 → Y universal among all maps from the real projective
plane to 1-connected spaces. In particular, η would be orthogonal to a K(Z, 2), so
that

H2(Y ) ∼= H2(RP 2) ∼= Z/2.

But, since H1(Y ) = 0,
H2(Y ) ∼= Hom(H2(Y ), Z),

and this group can never be isomorphic to Z/2. In summary, it is not possible
to “1-connectify” an arbitrary space X as if we were abelianizing a group (the
universal covering map X̃ → X goes in the opposite direction!).

Using a similar line of argument, in order to prove Theorem 3.1 we may use
the fact that H2(G; A[G]) �= 0 for every noncyclic subgroup G of Q and every
nonzero abelian group A (see [Ca] and the references therein). Here A[G] denotes
the abelian group of formal sums of elements of G with coefficients in A, which is
a Z[G]-module under the multiplication of G.

Suppose that there is a map η : S1 → Y universal among all maps from the circle
to spaces with P -local homotopy groups. Then η is orthogonal to the classifying
space of any P -local discrete group G. But the bijection

η∗ : [Y, K(G, 1)] ∼= [S1, K(G, 1)]

is equivalent to the bijection

η∗ : Hom(π1(Y ), G) ∼= Hom(π1(S1), G),
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and this tells us that η∗ : π1(S1) → π1(Y ) is orthogonal to all P -local groups G.
Hence, π1(Y ) ∼= ZP (see the remarks about P -localization of arbitrary groups in
Section 4).

Now let L be a “twisted Eilenberg–Mac Lane space” with

π1(L) ∼= ZP , π2(L) ∼= ZP [ZP ], πk(L) = 0 if k ≥ 3,

where the action of π1 on π2 is multiplication (this is a special instance of the action
of a group G on A[G]). In our case, the single twisted k-invariant [Hill] of L is
necessarily zero. Spaces of this kind classify cohomology with twisted coefficients,
in a certain precise sense; see Theorem 7.18 in [Gi] or §3 of [DH].

Since L has P -local homotopy groups, there is a bijection

η∗ : [Y, L] ∼= [S1, L].

By restricting this bijection to maps inducing the identity (resp. an inclusion) of
fundamental groups, we infer that

H2(Y ; ZP [ZP ]) ∼= H2(S1; ZP [ZP ]),

which is zero, while the Cartan–Leray spectral sequence for the universal cover Ỹ
shows that H2(Y ; ZP [ZP ]) must contain a subgroup isomorphic to H2(ZP ; ZP [ZP ]).
But this group, as we said at the beginning of this discussion, is nonzero. This yields
the desired contradiction.

Theorem 3.1 might deceive (or relieve) anyone having tried to extend the core
of Hilton–Mislin–Roitberg to arbitrary CW-complexes, not necessarily nilpotent.
It becomes clear that the most obvious approach cannot work.

But it is known, since Bousfield [Bo1], that there are idempotent monads
in H extending P -localization of nilpotent spaces. In fact, as we shall discuss in
Section 5, there are many such monads. Yet, the class of local spaces associated
with any one of these monads must be more restricted than the class of spaces
with P -local homotopy groups. For example, Bousfield gave in Theorem 5.5 of
[Bo1] a purely algebraic description of H∗( ; ZP )-local spaces, which involves a
complicated condition on the fundamental group and an analogous condition on its
action on the higher homotopy groups. These conditions force the homotopy groups
of H∗( ; ZP )-local spaces to be P -local, but much more than that. In the next
section we describe another interesting class of spaces which includes all P -local
nilpotent spaces and is reflective in H.

Before closing this section, we ask a simple question which is related to our
previous discussion.

Question 3.2. Is the class D of 1-connected rational spaces reflective in H?
The plausible answer is, of course, no; but we have been unable to prove it so

far. The less ambitious reader may undertake the easier exercise of finding a map
f such that D = f⊥.

4. Localizing with Respect to Self Maps of the Circle

It has been long known that a connected space X is nilpotent if and only if
the groups [W, ΩX ] are nilpotent for every finite CW-complex W ; see [Ro] and
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Corollary X.3.8 in [Wh]. If we choose as a special case W = Sk−1
+ (where the

subindex denotes a disjoint basepoint) we obtain

(4.1) [Sk−1
+ , ΩX ] ∼= πk(X) � π1(X), k ≥ 1

(see [Pe1]), where the semidirect product is referred to the ordinary action of the
fundamental group on the higher homotopy groups. Of course, the assertion that
πk(X) � π1(X) is nilpotent is equivalent to the assertion that π1(X) is nilpotent
and acts nilpotently on πk(X); cf. §2 in [Hi2]. Hence, the spaces S0 and Sk−1

+ for
k ≥ 2 suffice to “recognize” nilpotent spaces by means of the above criterion. In
fact, we might have equally well written Sk−1

+ for k ≥ 1, since a group is nilpotent
if and only if the conjugation action on itself is nilpotent.

Furthermore, as explained in [Ro], the natural map

[W, ΩX ]→ [W, Ω(XP )]

is a P -localization of groups when X is nilpotent, for every finite CW-complex W .
Hence, [W, ΩY ] is a P -local nilpotent group for every P -local nilpotent space Y .

This suggests another possible approach —less näıve than the one sketched in
Section 3— to extend the main existence results of Hilton–Mislin–Roitberg. Recall
that we are calling P -local those groups G (nilpotent or not) in which the qth power
map x �→ xq is bijective for all q ∈ P ′.

Definition 4.1. A CW-complex X will be called P -local if the group [W, ΩX ]
is P -local for every CW-complex W .

In fact, this definition turns out to be equivalent to imposing that [W, ΩX ] be
P -local for every finite CW-complex W . To understand this, suppose that the latter
holds for a space X . Then, in particular, because of (4.1), the groups πk(X)�π1(X)
are P -local for k ≥ 1. But these groups are the basepoint-free homotopy groups of
ΩX . Thus, the qth power map will be bijective on all these groups if and only if
the qth power map

ρq : ΩX → ΩX,

sending every loop ω to ωq, is a homotopy equivalence —here we are using, of course,
the Whitehead theorem, together with the fact that the connected components of
ΩX are simple. But this condition (for every q ∈ P ′) implies that [W, ΩX ] is indeed
P -local for every CW-complex W , not necessarily finite.

In the course of this argument, we have proved the following, which we label
for later reference.

Theorem 4.2. A CW-complex X is P -local if and only if the qth power map
on the loop space ΩX is a homotopy equivalence for every q ∈ P ′.

In particular, if G is a discrete group, then the classifying space BG is P -local
if and only if G is a P -local group. The next facts also follow from our previous
discussion.

Proposition 4.3. A CW-complex X is P -local if and only if it is orthogonal
to the degree q maps

ρq,k : Σ(Sk−1
+ )→ Σ(Sk−1

+ ), k ≥ 1, q ∈ P ′.
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Here we view Σ(Sk−1
+ ) as S1∧ (Sk−1

+ ), and let ρq,k be the product of the degree
q map on the first factor and the identity on the second factor. Observe that

Σ(Sk−1
+ ) � Sk ∨ S1,

although the obvious co-H-structures on these two homotopy types are different in
general, for [Σ(Sk−1

+ ), X ] is isomorphic to the semidirect product πk(X) � π1(X),
while [Sk ∨ S1, X ] is isomorphic to the direct product πk(X)× π1(X).

Proposition 4.4. A CW-complex X is P -local if and only if π1(X) is a P -local
group and, for every k ≥ 2, the action

ω : Z[π1(X)]→ End(πk(X))

has the property that
ω(1 + x + x2 + · · ·+ xq−1)

is invertible for all x ∈ π1(X) and q ∈ P ′.
To check this, develop (a, x)q for an arbitrary element (a, x) of πk(X)� π1(X).

This is an old trick which goes back at least to [Ba2].
It is now perfectly natural to call P -local a Z[G]-module A (where G is any

group) if 1 + x + x2 + · · · + xq−1 is an automorphism of A for every x ∈ G and
every q ∈ P ′. Thus A � G is P -local if and only if G is a P -local group and A is a
P -local Z[G]-module.

The concept of “P -local module” or “P -local action” has appeared —implicitly
or explicitly— several times in the literature, always in connection with the study of
roots in semidirect products of groups [Ga], [Pe2], [Re]. For an extensive account
of algebraic properties of P -local modules, see [CP].

Let us denote by DP the class of P -local spaces in the above sense. Proposi-
tion 4.3 tells us that DP = f⊥ for a certain map f in H; namely, the wedge of the
maps ρq,k for k ≥ 1 and q ∈ P ′, where we can replace, if we wish, ρq,1 by the degree
q map S1 → S1. Hence, DP is saturated and we may consider the orthogonal pair
(SP ,DP ), where SP = (DP )⊥. We call maps in SP P -equivalences of spaces.

Theorem 4.5. The subcategory DP is reflective in H.
In other words, for every space X there is a map l : X → XP which is initial

among all maps from X to spaces in DP . Thus, we have thrown away from our
class of P -local spaces a bunch of conflictive spaces with “bad” actions of the
fundamental group on the higher homotopy groups, such as the twisted Eilenberg–
Mac Lane space L used in Section 3 to prove the non-reflectivity of the class of all
spaces with P -local homotopy groups. Note that DP is in fact a subclass of that
class (just take x = 1 in Proposition 4.4).

The proof of Theorem 4.5 can be found in [CP]. For every space X , the
P -localization map l : X → XP is constructed as the homotopy direct limit of
a system of P -equivalences

X = X0 → X1 → X2 → · · ·
where Xi+1 is constructed by attaching cells to Xi so as to create P ′-roots in the
semidirect products πk(Xi) � π1(Xi) and make these roots unique. It should be
emphasized that the process stops at the first infinite ordinal, so that there is no
need of resorting to transfinite direct limits.
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The possibility of such a construction was suggested to us by Dror Farjoun; in
fact, as we explain in Section 6, this is a special case of his own general construction.
It is inspired by Bousfield’s work [Bo1], [Bo3] and, ultimately, by the work of
Sullivan [Su], Mimura–Nishida–Toda [MNT], and Adams [Ad1].

It is also clear that the above construction is closely related to the procedure of
P -localizing an arbitrary group, not necessarily nilpotent, by successively adjoining
P ′-roots and making them unique. This is far from being a new idea. It was first
carried out by Baumslag in [Ba1] for free groups, and later generalized by Riben-
boim to arbitrary groups in [Ri1]. It is fascinating that Ribenboim’s construction
of the P -localization l : G → GP of an arbitrary group turns out to be completely
analogous to Bousfield’s construction of the localization with respect to a gener-
alized homology theory. We tried to make clear the common pattern in [CPP],
where we pointed out that the construction used to prove Theorem 4.5 is simply
another instance of that general abstract procedure.

P -localization of groups may be viewed as the idempotent monad associated
with the orthogonal pair (f⊥⊥, f⊥) where f is the free product of the maps

ρq : Z→ Z,

where ρq(1) = q, for all q ∈ P ′ (so that a group G belongs to f⊥ if and only if G is
P -local). Homomorphisms in f⊥⊥ will be called P -equivalences of groups.

Since, for every space X , the P -localization map l : X → XP is orthogonal to
all classifying spaces of P -local discrete groups, we immediately obtain

Theorem 4.6. For every CW-complex X, the homomorphism

l∗ : π1(X)→ π1(XP )

is a P -localization of groups.
However, we warn the reader that, in general, the map

[W, ΩX ]→ [W, Ω(XP )]

is far from being a P -localization of groups, contrary to what happens in the nilpo-
tent case. The reason should be clear after the following discussion.

It is nowadays well known that Ribenboim’s P -localization, which is defined on
all groups, coincides with the classical P -localization when restricted to nilpotent
groups [Ga], [Ri2]. However, this was not obvious in its origins [Ri1]. Similarly,
the functor provided by Theorem 4.5 does extend the classical P -localization of
nilpotent spaces, i.e.,

H̃k(XP ) ∼= ZP ⊗ H̃k(X)
for all k and

πk(XP ) ∼= ZP ⊗ πk(X)
for k ≥ 2 whenever X is nilpotent. Again, this is not obvious from the construction;
for a detailed proof, see [CP].

Thus, it may be asked what H̃∗(XP ) and π∗(XP ) look like when X is nonnilpo-
tent. Unfortunately, very little can be said in general. The right hint is given by
the following result of [CP], which was obtained using arguments of obstruction
theory with twisted coefficients.
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Theorem 4.7. A map f : X → Y between connected CW-complexes is a
P -equivalence if and only if f∗ : π1(X)→ π1(Y ) is a P -equivalence of groups and

(1) f∗ : H∗(X ; A) → H∗(Y ; A) is an isomorphism for all P -local Z[π1(Y )P ]-
modules A, or, equivalently,

(2) f∗ : H∗(Y ; A) → H∗(X ; A) is an isomorphism for all P -local Z[π1(Y )P ]-
modules A.

In particular, for every space X , the homomorphism

l∗ : H∗(X ; ZP )→ H∗(XP ; ZP )

is an isomorphism. However, the groups H̃∗(XP ) (with integer coefficients) may
fail to be P -local in general. An example is obtained by choosing X to be a wedge
of at least two circles, for which H1(XP ) is the abelianized of the P -localization of
a free group. The reason why this contains a huge P ′-torsion summand is explained
in Theorem 37.3 of Baumslag’s thesis [Ba1].

We are indebted to Shen Wenhuai for pointing out the following interesting
duality:

(1) l∗ : H̃∗(X) → H̃∗(XP ) is a P -equivalence for all spaces X , but the groups
H̃k(XP ) need not be P -local.

(2) l∗ : π∗(X)→ π∗(XP ) need not be a P -equivalence, but the groups πk(XP )
are P -local for all spaces X .

Examples in which X is a K(G, 1) but XP has a lot of higher homotopy are
common. As a matter of fact, according to Theorem 4.7, l : X → XP may be
seen as “homology localization with twisted coefficients”. The precise formulation
is given in [CP], where it is pointed out that the construction of ( )P can be
modified so as to obtain homology localizations with “different degrees of twisting”
on the coefficients. Hence, it is not surprising that l : X → XP is closely related to
the H∗( ; ZP )-localization η : X → EP X , which is the “totally untwisted” case.
Indeed, Theorem 4.7 also tells us that there is a natural transformation of functors
( )P → EP , which is a homotopy equivalence in some cases. For example, as
shown in [CP],

Theorem 4.8. Let G be a finite group and p a single prime. Then

(BG)p � Ep(BG) � (BG)p.

Hence, if G is finite and perfect, then (BG)p � (BG+)p, where the superscript
denotes Quillen’s plus-construction. It must be mentioned that this is false for in-
finite groups in general. For example, if G is locally free and perfect (such groups
exist; see Lemma 3.1 in [BDH]), then Gp, the fundamental group of (BG)p, con-
tains a copy of G, while BG+ is 1-connected. Still, P -localization of spaces is in
many cases another instance in homotopy theory of a generic procedure, namely
“doing something to the fundamental group by preserving homology to a certain
extent”, which tends, of course, to change quite drastically the higher homotopy
groups in general.
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5. Extending Localization Functors

The functor ( )P described in the previous section is idempotent, it extends
the classical P -localization of nilpotent spaces to all spaces, and it is distinct from
Bousfield’s H∗( ; ZP )-localization functor, which we keep denoting by EP . As
another example illustrating this last assertion, consider X = S1∨S1; then π1(XP )
is countable (since the P -localization of any countable group is countable), while
π1(EP X) is uncountable, by Proposition 4.4 in [Bo2]. The functor ( )P has been
called the “careful P -localization” by Dror Farjoun, in the sense that its effect
on homotopy types is somehow less drastic than the effect of ZP -completion or
H∗( ; ZP )-localization, while it still creates spaces with P -local homotopy groups.

This terminology suggests the possibility of partially ordering idempotent mon-
ads in H according to “how drastically” they change homotopy types. There is a
simple way to develop this idea, which is again borrowed from [FK].

Definition 5.1. Given two orthogonal pairs in any category C, we write

(S1,D1) ≤ (S2,D2)

if D1 ⊆ D2.
Thus, the bigger orthogonal pair is the one with the bigger class of objects. Of

course, this is equivalent to the condition S2 ⊆ S1.
It is readily checked that, given two idempotent monads E1 = (E1, η1, µ1) and

E2 = (E2, η2, µ2) in the same category C, the following facts are equivalent [CFT].

(1) (S(E2),D(E2)) ≤ (S(E1),D(E1)).
(2) There is a (unique) morphism of monads E1 → E2; i.e., a natural transfor-

mation of functors E1 → E2 rendering commutative the obvious diagrams.

Now let C′ be a full subcategory of C, (S′,D′) an orthogonal pair in C′ and
(S,D) an orthogonal pair in C. We say that (S,D) extends (S′,D′) if both S′ ⊆ S
and D′ ⊆ D. Then the following holds; cf. [CPP].

Proposition 5.2. In the above hypotheses,(
(D′)⊥, (D′)⊥⊥) ≤ (S,D) ≤ (

(S′)⊥⊥, (S′)⊥)
,

where orthogonality is meant in C.
Accordingly, we call

(
(D′)⊥, (D′)⊥⊥)

the minimal extension of (S′,D′), and(
(S′)⊥⊥, (S′)⊥)

the maximal extension. If each of these three orthogonal pairs is
associated with an idempotent monad, then the monad (E′, η′, µ′) associated with
(S′,D′) admits an initial and a terminal extension over C, namely the idempotent
monads associated, respectively, with the maximal orthogonal pair and the minimal
orthogonal pair. Of course, any of these orthogonal pairs might fail to be associated
with an idempotent monad. In that case, the existence of a terminal or an initial
extension of (E′, η′, µ′) would not be guaranteed.

We will discuss two special cases of this situation, one in homotopy theory and
the other one in group theory. Thus let us consider firstly the case C = H, the
based homotopy category of CW-complexes, and C′ = N , the full subcategory of
nilpotent CW-complexes. Let E′ = (E′, η′, µ′) correspond to P -localization in N ,
and (S′,D′) be the associated orthogonal pair. Then we have
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Theorem 5.3.
(
(D′)⊥, (D′)⊥⊥)

is the orthogonal pair associated with homol-
ogy localization with ZP coefficients. That is, EP is terminal among all extensions
of E′ over H.

Conjecture 5.4.
(
(S′)⊥⊥, (S′)⊥)

is the orthogonal pair associated with P -
localization. That is, ( )P is initial among all extensions of E′ over H.

The proof of Theorem 5.3 is elementary. A map f : X → Y in (D′)⊥ is orthogo-
nal to all P -local nilpotent spaces. Since these include all spaces K(ZP , n) for n ≥ 1,
f is an H∗( ; ZP )-equivalence, and hence also an H∗( ; ZP )-equivalence. That is,
(D′)⊥ is contained in S(EP ). But all P -local nilpotent spaces are H∗( ; ZP )-local,
and this implies that all H∗( ; ZP )-equivalences are in (D′)⊥, so that S(EP ) is
contained in (D′)⊥, which completes the argument. (In fact, the second part of
this argument is redundant, in view of Proposition 5.2.)

We have not been able to prove Conjecture 5.4 so far, although there is some
strong evidence in its favour. If it turned out to be true, then we would have
“captured” all instances of idempotent monads in H extending P -localization of
nilpotent spaces. For any such monad (T, η, µ) and every space X , there would be
natural maps

XP → TX → EP X

commuting with the units of the respective monads. This leads to results as the
following one (which can be proved directly, without resorting to Conjecture 5.4).

Theorem 5.5. Let G be a finite group and (T, η, µ) any idempotent monad
in H extending p-localization of nilpotent spaces, for a fixed single prime p. Then
T (BG) � (BG)p.

In other words, there is only one (idempotent) way to “p-localize” the classifying
space of a finite group; this improves Theorem 4.8.

Let us consider now the analogs in group theory of Theorem 5.3 and Conjec-
ture 5.4. While the abstract setting is completely analogous, the conclusion turns
out to be different. Recall from [Bo2] that for every abelian group R there is an
idempotent functor in the category of groups, called HR-localization and denoted
by ER, with the property that

ER(π1(X)) ∼= π1(ERX)

for all spaces X , where ERX denotes the H∗( ; R)-localization of X . In the case
R = ZP , we consistently abbreviate EZP to EP . The orthogonal pair associated
with ER in the category of groups is generated by the HR-maps , i.e., homomor-
phisms ϕ : G → K such that H1(ϕ) is iso and H2(ϕ) is epi. That is, HR-maps
are precisely homomorphisms induced at the fundamental group by H∗( ; R)-
equivalences of spaces; cf. [Bo1].

Take C = Gr, the category of groups, and C′ the full subcategory of nilpotent
groups. Let E′ = (E′, η′, µ′) correspond to P -localization of nilpotent groups, and
let (S′,D′) be the associated orthogonal pair. We have

Theorem 5.6.
(
(D′)⊥, (D′)⊥⊥)

is associated with a certain idempotent monad
LP = (LP , η, µ), which is not isomorphic to HZP -localization.

Theorem 5.7.
(
(S′)⊥⊥, (S′)⊥)

is the orthogonal pair associated with P -local-
ization. That is, ( )P is initial among all extensions of E′ over Gr.
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Now it is Theorem 5.7 the one admitting an elementary proof. A group G in
(S′)⊥ is orthogonal to all P -equivalences of nilpotent groups. Since these include
the maps ρq : Z → Z, q ∈ P ′, we infer that G is a P -local group. That is, (S′)⊥
is contained in the class of P -local groups. The converse inclusion follows from
Proposition 5.2.

Theorem 5.6 was proven, with different methods, in [BT] and [CFT]. The
monad LP turns out to be, in a certain precise sense, “the best idempotent approx-
imation” to nilpotent ZP -completion. The nilpotent ZP -completion of a group G
is defined as

ĜP = lim←−(G/ΓiG)P ,

where ΓiG denotes the lower central series of G. The group ĜP is not nilpotent
in general, but it is “the best approximation of G by means of P -local nilpotent
groups”.

This functor ( )P is part of a monad, which fails to be idempotent. For
example, if F is a free group on a countably infinite set of free generators, then
(F̂P )P is not isomorphic to F̂P ; see §13 of [Bo2] and Proposition IV.5.4 in [BK].
However, in the category of groups (as in any category which is complete and
well-powered), for every given monad T = (T, η, µ) there is an idempotent monad
T′ = (T ′, η′, µ′) with the same class of equivalences as T, i.e., such that for a map
ϕ, the map T ′ϕ is invertible if and only if Tϕ is invertible; see [Fak] and [CFT].
In this situation, we call T′ the idempotentification of T. With this terminology,
the idempotent monad LP in Theorem 5.6 is the idempotentification of nilpotent
ZP -completion.

The orthogonal pair associated with LP is strictly smaller than the one as-
sociated with HZP -localization, since it follows from the construction of LP that
LP G = ĜP if G is finitely generated, while for a free group F on two free generators
the natural map EP F → F̂P is not iso; see Proposition 4.4 in [Bo2]. Thus there
are, for every group G, natural maps

GP → EP G→ LP G→ ĜP ,

which need not be isomorphisms. (Yet, if G is nilpotent, they are.)
Of course, one could investigate the same idea in homotopy theory, where the

analog of nilpotent ZP -completion is Bousfield–Kan ZP -completion (ZP )∞, which
fails to be idempotent on arbitrary spaces. The surprise is that, contrary to what
happens in the category of groups, the idempotentification of (ZP )∞ is nothing else
than H∗( ; ZP )-localization —which we know it is indeed the terminal extension
of P -localization of nilpotent spaces to all spaces (Theorem 5.3). In other words,
there is no gap left between EP and (ZP )∞ which could be occupied by some other
idempotent functor.

In fact, it is true in general that, using the same notation as above, if the right
Kan extension of the inclusion of D′ in C along itself exists, then it is part of a
monad in C, and if the idempotentification of this monad exists, then it provides
the terminal extension of E′ over C; see [CFT]. We are not aware of any analogous
procedure to obtain the initial extension in general.

Note that the efforts to prove Theorem 5.6 would have been superfluous if the
following question had a negative answer:
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Question 5.8. Do there exist orthogonal pairs (S,D) in the category of groups
which are not associated with any idempotent monad?

If (S,D) is generated by either a set of groups or a set of homomorphisms
—where distinction is made between a “set” and a “proper class”— then (S,D) is
associated with an idempotent monad; cf. [Bo3], [Pf], [CPP], [CFT]. Thus the
following question is equally relevant.

Question 5.9. Do there exist orthogonal pairs (S,D) in the category of groups
which are neither generated by a set of groups nor by a set of homomorphisms?

From Section 3 we know counterexamples to Question 5.8 in the based homo-
topy category of CW-complexes H. However, as we shall point out later, Ques-
tion 5.9 is still significant in H.

6. Localizing with Respect to Any Map

We have seen in Section 3 that certain orthogonal pairs of the form (f⊥⊥, f⊥) in
the based homotopy category of CW-complexes are not associated with any idem-
potent monad. However, this is only due to the fact that standard orthogonality
is not the “best” concept to look at in homotopy theory. Indeed, given two spaces
X , Y , the set [X, Y ] is only part of the richer structure of the set map∗(X, Y ) of
based maps from X to Y , endowed with the compact-open topology. Therefore, it
is a good idea to consider the following notion.

Definition 6.1. Let f : A → B be any map. A CW-complex X is f -local or
f -periodic if the induced map

f∗ : map∗(B, X)→ map∗(A, X)

is a weak homotopy equivalence.
Of course, if X is f -local, then X is orthogonal to f in H, since the condition

imposed in the definition implies in particular that f∗ : [B, X ]→ [A, X ] is bijective.
However, being f -local is much more restrictive in general than being orthogonal
to f . For example, if f : S1 → S1 is the degree q map for some prime q, then X is
orthogonal to f if and only if π1(X) is uniquely q-radicable, while X is f -local if
and only if the qth power map ΩX → ΩX is a weak homotopy equivalence (in this
special case, we could delete “weak”), and, as we have explained in Section 4, this
implies certain additional conditions on the higher homotopy groups of X .

Theorem 6.2. For every map f : A→ B, the class of f -local spaces is reflec-
tive in H.

This powerful result has been proved by Dror Farjoun in [Fa1]. An earlier
version was sketched in §7 of [Bo3]; see also [Bo5]. We denote by l : X → LfX
the localization given by Theorem 6.2, and refer to it as f -localization. The corre-
sponding equivalences will be called f -equivalences. The following result is implicit
in the proof of Theorem 6.2.

Theorem 6.3. Let f : A→ B be a map between n-connected spaces. Then the
f -localization map l : X → LfX induces isomorphisms l∗ : πk(X) → πk(LfX) for
k ≤ n.

Note that Theorem 4.5 is just a special case of Theorem 6.2. However, an
important feature of Dror Farjoun’s explicit construction is that it is functorial in
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the topological category. Thus, if we are given a commutative diagram of spaces and
maps, the diagram obtained by applying Lf is again strictly commutative, not just
up to homotopy. Other constructions, such as Sullivan’s [Su], the one in Hilton–
Mislin–Roitberg [HMR], or the one sketched in Section 4, are only functorial in the
homotopy category. Since the class of local objects only determines an idempotent
monad up to isomorphism, for every space X there is a wide variety of choices for
the space XP , all of which, however, are homotopy equivalent. In this context,
Dror Farjoun’s construction provides, as a special case, a functorial model for XP .

It is interesting that the lack of functoriality of the earlier versions of P -local-
ization motivated Anderson’s paper [An], where a certain construction is described
which turns out to be functorial in the topological category and coincides, up to
homotopy, with Sullivan’s P -localization of 1-connected spaces. Now we know that
Anderson’s construction is precisely g-localization, with respect to the following
map g. Take the homotopy cofibre M of the map f giving rise to P -localization
(i.e., the wedge of the degree q maps of S1 for q ∈ P ′) and consider the trivial map
g : M → pt. Hence, Anderson’s work is also a major precedent of Dror Farjoun’s
construction. In the same line of reasoning we find the work of Bendersky [Be],
who constructed a functorial semilocalization, that is, a functor which preserves
the fundamental group of an arbitrary space X and P -localizes its higher homotopy
groups πk(X), k ≥ 2. Again, Bendersky’s functor is a special instance of localization
with respect to a map, which turns out to be in this case Σf , the suspension of the
map f inducing P -localization; see Example 3.6 in [CPP].

Dror Farjoun has asked the following question:

Question 6.4. Is it true that every idempotent monad in H (or in some sub-
category) is f -localization for a certain map f?

All examples which have been checked until now support a positive answer.
However, a solution to this problem might require a deep input from set theory, for
it is related to Question 5.9. First of all, it does not seem easy to decide under which
hypotheses one can ensure that the class of equivalences associated with a given
idempotent monad in H is generated by some set of maps, not even if “generated”
is understood in the sense of Definition 6.1.

In order to construct the E∗-localization functor for a generalized homology
theory E∗, Bousfield had to solve a difficulty of a similar kind. In that case, it is
possible to consider the following map f .

Theorem 6.5. Given a generalized homology theory E∗ (satisfying the limit
axiom), let f be the wedge of a set of representatives of all isomorphism classes of
E∗-equivalences A → B where the cardinality of the set of cells in A and B is not
bigger than the cardinality of E∗(pt). Then the following assertions are equivalent
for a space X:

(1) X is E∗-local.
(2) X is f -local.
(3) X is orthogonal to f .
The key ingredient in the proof of this result is Lemma 11.3 in [Bo1]. Therefore,

homology localizations are also special cases of localization with respect to a map.
If E∗ is ordinary homology with integer coefficients, and we consider the map

g : C → pt, where C is the homotopy cofibre of the map f defined in Theo-
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rem 6.5, then the g-localization l : X → LgX turns out to be precisely Quillen’s
plus-construction relative to the maximal perfect subgroup of π1(X). Observe that
this fact suggests a way to define a “plus-construction” associated with any gener-
alized homology theory E∗, by considering the homotopy cofibre C of the map f
inducing E∗-localization, and localizing with respect to g : C → pt. The properties
of this functor are being currently studied by José Luis Rodŕıguez.

Localizations with respect to maps of the form f : W → pt occur so often and
have such pleasant properties that deserve some comments. If f : W → pt, then
a space X is f -local if and only if map∗(W, X) is weakly contractible, which is
equivalent to the condition

πk(map∗(W, X)) = 0 for all k ≥ 0.

But [Sk, map∗(W, X)] ∼= [Sk ∧W, X ]. Therefore, we have

Proposition 6.6. If f : W → pt, then a space X is f -local if and only if
[ΣkW,X] = 0 for k ≥ 0.

That is, X is f -local if and only if X is orthogonal to the maps ΣkW → pt
for k ≥ 0. It might be asked if it is possible to write down a similar description of
f -local spaces in the case of a general map f : A→ B, i.e., in terms of orthogonality
in the usual sense. Note that, if A and B are suspensions, then X is f -local if and
only if X is orthogonal to f : A→ B and to

f ∧ id : A ∧ Sk
+ → B ∧ Sk

+ for k ≥ 1;

(of course, Proposition 4.3 is a special case). Indeed, under the assumption that
A and B are suspensions, the spaces map∗(A, X) and map∗(B, X) are H-spaces,
and hence basepoint-free homotopy groups suffice to recognize a weak homotopy
equivalence map∗(B, X) → map∗(A, X). The space A ∧ Sk

+ is sometimes denoted
by A � Sk; cf. [Fa1].

If f is of the form W → pt, then it is appropriate to write PW instead of Lf ,
where the letter P stands for “Postnikov” (!). This was suggested by Bousfield and
Dror Farjoun after observing that a space X is local with respect to f : Sn → pt if
and only if πk(X) = 0 for k ≥ n; combining this fact with Theorem 6.3, one obtains

Theorem 6.7. For any connected space X and n ≥ 1, PSnX has the homotopy
type of the (n− 1)th term in the Postnikov tower of X. Thus

πk(PSnX) ∼=
{

πk(X) if k ≤ n− 1,
0 otherwise.

Therefore, the homotopy fibre of l : X → PSnX is the (n− 1)-connected cover
X〈n − 1〉, which can be built out of copies of Sn−1 via cofibrations, i.e., starting
from one point and attaching cells of dimension ≥ n.

In general, we can regard PW X as the result of reducing X “modulo all of its
W -information”; moreover, the above example suggests that the homotopy fibre of
the map l : X → PΣW X might be “the best approximation to X built out of copies
of W via cofibrations” —possibly under additional hypotheses. This idea can indeed
be made rigorous and turns out to be a rich source of interesting results [Fa3], [Fa4],
[Fa5]. Among other things, if W is E∗-acyclic for a generalized homology theory
E∗, so are all spaces obtained from W via (pointed) homotopy colimits of any kind.
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Hence, the study of PW (and PΣkW for k ≥ 1), together with the homotopy fibres
of the maps X → PΣkW X , should lead to a better understanding of the class of
E∗-acyclic spaces.

The use of the term f -periodic, which has been introduced in Definition 6.1
with the same meaning as f -local, is motivated by the following special situation.
Let

vn : ΣdM →M

be a vn-self map of a finite p-local CW-complex M of type n (see chapter 1 of
[Ra2]); that is, vn induces an isomorphism in K(n)∗ and is zero in K(m)∗ for
m �= n. The existence of such maps for every n is ensured by [HS]. Then for every
space X and every k ≥ 0 we have maps

(6.1) (vn)∗ : [ΣkM, X ]→ [Σk+dM, X ],

which are isomorphisms if X is vn-local. But [ΣkM, X ] is usually denoted by
πk(X ; M). Hence, vn-local —or, so to say, vn-periodic— spaces satisfy

πk(X ; M) ∼= πk+d(X ; M)

for all k, that is, they have indeed periodic homotopy groups. However, a vn-per-
iodic space may have a lot more of algebraic structure in its homotopy groups than
mere periodicity, unless vn has been chosen to be a suspension. The situation is
completely analogous to the phenomenon which we described in Section 4 in the
case of P -local spaces (which can actually be viewed as the case n = 0). This has
been studied in [Fa1] for n = 1.

In fact, the analogy goes further. We may think of localization with respect to
p : S2 → S2, which is a “v0-map”, as a geometric construction inducing a certain
algebraic construction on homotopy, namely

πk(LpX) = Z [1/p]⊗ πk(X) for k ≥ 2

(while π1(X) remains unchanged), where p “acts” on πk(X) via the appropriate
suspension p : Sk → Sk. More generally, for any vn-map

vn : ΣdM →M,

we may view vn as an operator of degree d on the homotopy groups π∗(X ; M),
by (6.1). In this situation, it is common practice to invert algebraically the operator
vn by considering the groups

v−1
n πk(X ; M) = Z

[
vn, v−1

n

]⊗Z[vn] πk(X ; M).

Now one could look for a geometric construction Lvn inducing this algebraic con-
struction on homotopy, that is, such that

πk(LvnX ; M) ∼= v−1
n πk(X ; M) for k ≥ 2.

This has been done by Bousfield in [Bo5]. The functor Lvn is essentially localization
with respect to a vn-map, desuspended as many times as possible (but one!). How-
ever, for technical reasons, Bousfield considered instead localization with respect
to a certain map of the form f : ΣW → pt, since these tend to preserve fibrations
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to a larger extent. Indeed, for any space W , if E → X is a fibration with fibre F ,
then the homotopy fibre of the natural map from PΣW F to the homotopy fibre of

PΣW E → PΣW X

is a product of Eilenberg–Mac Lane spaces [FS]. Furthermore, under suitable as-
sumptions on W , this “error term” can be reduced to a single Eilenberg–Mac Lane
space [Bo5].

If suitably defined, the functor Lvn does not depend on the choice of a vn-map.
Hence, this construction allows to define for every space X a natural tower [Bo5]

Lv0X ← Lv1X ← Lv2X ← · · ·

which deserves to be called the unstable chromatic tower of X , in view of the
fact that it provides successive approximations to X by spaces showing higher and
higher sorts of periodicity.

We conclude this section with a few additional remarks on the effect of Lf on
fibrations. There are plenty of examples showing how far is Lf from preserving
fibrations in general. However, the following holds.

Theorem 6.8. Let f : A → B be any map, and p : E → X a fibration with
fibre F . If LfF is contractible, then Lf(p) is a homotopy equivalence.

The idea here is to use fibrewise localization [Fa3], [Br]. This is a map E → Ē
over X which is an f -equivalence and such that Ē → X is a fibration with fibre LfF .
After ensuring the existence of such a functor, Theorem 6.8 follows immediately.

In the special case when f is of the form W → pt, more can be said. In this
case, we have, among other results [Fa3], [Bo5]:

Theorem 6.9. Let f : W → pt be given, and F → E → X be a fibration with
X connected.

(1) If F is f -local, then LΣf preserves the fibration.
(2) If X is f -local (or, more generally, if LΣfX � LfX), then Lf preserves the

fibration.
(3) There is a fibration of the form

LfF → Ē → LΣfX,

together with an f -equivalence E → Ē. Moreover, the space Ē is Σf -local.
If E is f -local, F is a group and the fibration F → E → X is principal,
then Ē � E.

The machinery presented in this section has been the starting point of a fruitful
research by Dror Farjoun, Bousfield, Nofech [No], Blanc–Thompson [BTh], and
others. We will be content to close this article with one illuminating application.
Although the main result in the next section —Neisendorfer’s theorem— dates from
1991 and has already become folklore, it has not been published by its author so
far. The only written references are contained in [Fa3] and [ABN].
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7. Neisendorfer Localization

One of the most appealing possibilities offered by Theorem 6.2 is to play the
following game. Choose a nicely looking map f : A → B and study the properties
of the functor Lf , in the hope that they are relevant.

An interesting choice is f : B(Z/p)→ pt for a fixed prime p. In this section we
discuss the properties of the corresponding functor Lf , which we will abbreviate to
L for simplicity.

Since f is an f -equivalence, LB(Z/p) is contractible. By recalling that finite
p-groups are solvable and repeatedly using Theorem 6.8, we find that LBG is
contractible for every finite p-group G.

Also, if X = hocolimXi, then

map∗(X, Y ) � holim map∗(Xi, Y )

for every space Y . It follows that LBG is actually contractible for every locally
finite p-torsion group G, not necessarily finite. But much more is true. Let G be
any (discrete) abelian group such that LBG � pt. Then LK(G, n) � pt for n ≥ 1.
To prove this, use the universal fibrations

K(G, n− 1)→ pt→ K(G, n)

and an obvious induction, again relying on Theorem 6.8.
Hence, the functor L is quite destructive, for it annihilates all Eilenberg–Mac

Lane spaces whose single homotopy group is p-torsion. However, as we next show,
L is not harmful at all to p′-torsion. Note that BG is f -local if and only if
map∗(B(Z/p), BG) is weakly contractible, which is equivalent to [B(Z/p), BG] = 0,
or Hom(Z/p, G) = 0. Hence, BG is f -local if and only if G is p-torsionfree. Simi-
larly, observe that the map f : B(Z/p)→ pt is a p′-equivalence, and therefore

Proposition 7.1. Every p′-local space is f -local.
Next, the group extension

0→ Z→ Z [1/p]→ Z/p∞ → 0,

which gives rise to a fibration

K(Z/p∞, n− 1)→ K(Z, n)→ K (Z [1/p] , n) ,

tells us that
LK(Z, n) � K (Z [1/p] , n) if n ≥ 2.

Hence, L does not easily “digest” free abelian groups. But p-completion helps
digestion, for if a simple space X is p′-local, then H̃∗(X ; Z/p) = 0, and hence
X̂p � pt. Therefore, if G is any abelian group, then

(LK(G, n))p � pt for n ≥ 2.

This might seem implausible, but note that we have omitted so far the study
of the case n = 1, where the deepest input actually occurs. Indeed, K(Z, 1) = S1

is a finite CW-complex, and Miller’s theorem [Mill], stating that map∗(BG, X)
is weakly contractible for every locally finite group G and every finite-dimensional
CW-complex X , tells us that all finite-dimensional CW-complexes are f -local.
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In particular, LK(Z, 1) = K(Z, 1). Hence, there is something escaping from
the devastating effect of the composition of L followed by p-completion. This leads
to the following result of Neisendorfer. It is interesting to observe the analogy with
work of Mislin [Mis].

Theorem 7.2. Let X be a finite-dimensional 1-connected CW-complex. Sup-
pose further that π2(X) is torsion. Then, for n ≥ 2,

(LX〈n〉)p � X̂p,

where X〈n〉 denotes the n-connected cover of X, and L is localization with respect
to f : B(Z/p)→ pt.

The proof uses our previous remarks, together with part (2) of Theorem 6.9
applied to the fibration

F → X〈n〉 → X.

Since X is f -local by assumption, we have a fibration

LF → LX〈n〉 → X

of simple spaces. Thus
(LF )p → (LX〈n〉)p → X̂p

is again a fibration. Now it suffices to check that (LF )p is contractible. Let Y
be the homotopy fibre of the p′-localization map F → Fp′ . The assumption that
π2(X) is torsion ensures that Y will be connected, for π1(F ) ∼= π2(X). Since Y has
finitely many homotopy groups, and these are p-torsion groups, LY is contractible.
Hence, LF � L(Fp′) � Fp′ , by Proposition 7.1, and the result follows.

As a consequence of Theorem 7.2, one obtains an easy proof of the following
well known fact (cf. [Se], [MN]). All finite-dimensional 1-connected CW-complexes
which are not contractible must have infinitely many nontrivial homotopy groups.

Theorem 7.2 has found another significant application in [ABN]. It also pro-
vides a counterexample to the following question. Given a map f : A → B, one
may consider the induced homomorphism f∗ : π1(A) → π1(B). The orthogonal
pair generated by f∗ is reflective in the category of groups. In fact, the correspond-
ing localization functor, which we denote by Lf∗ , can be constructed exactly in the
same way as Theorem 6.2 was proved. Then one could ask

Question 7.3. For which maps f is it true that the groups π1(LfX) and
Lf∗π1(X) are isomorphic for all spaces X?

This turns out to be the case for most examples of f -localization which have
been mentioned in this article, but not for f : B(Z/p) → pt. Indeed, there exist
finite CW-complexes X whose fundamental group contains nontrivial p-torsion, so
that π1(LfX) is not f∗-local in general.

Many results about f -localization can be transferred to the category of groups,
where they have different descriptions and sometimes much more elementary proofs.
For example, the group-theoretical analog of Theorem 6.8 is a triviality. Fibre-
wise P -localization of group extensions has been developed in [CC], after the first
approach by Hilton [Hi1] in the nilpotent case. Its generalization to fibrewise
ϕ-localization of group extensions for an arbitrary homomorphism ϕ : π → ν does
not offer major difficulties.
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If ϕ is of the form ϕ : π → {1}, then the effect of the functor Lϕ can be easily
described: For a given group G, the localization LϕG is the largest quotient of G
on which all homomorphic images of π are trivial. For example, in the case when
π = Z/p, this amounts to killing the p-torsion of G. In general, if ϕ : π → {1}, the
kernel of l : G→ LϕG can be constructed as a direct limit, in a manner analogous
to the construction of the p-isolator subgroup [Ri1] of an arbitrary group G (also
called p-radical). However, for a more general homomorphism ϕ : π → ν, the kernel
of l : G→ LϕG seems to be extremely difficult to characterize; see [Ga], [BC].

It might also be asked, as in Question 6.4, if every idempotent monad in the
category of groups is ϕ-localization for some homomorphism ϕ. We do not know
the answer, which is again related to the questions posed at the end of Section 5.
One of the first idempotent monads which comes to mind in the category of groups
is abelianization. We leave it to the reader to find a homomorphism ϕ for which
the ϕ-local groups are precisely the abelian groups (the answer should make it clear
how ϕ is to be chosen in the case of the reflection onto any variety of groups).
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[ABN] J. Aguadé, C. Broto, and D. Notbohm, Homotopy classification of some spaces with
interesting cohomology and a conjecture of Cooke, part I, Topology (to appear).

[An] D. W. Anderson, Localizing CW-complexes, Illinois J. Math. 16 (1972), 519–525.
[BW] M. Barr and C. Wells, Toposes, triples and theories, Grund. math. Wiss., vol. 278,

Springer-Verlag, Berlin, Heidelberg, New York, 1985.

[Ba1] G. Baumslag, Some aspects of groups with unique roots, Acta Math. 194 (1960), 217–303.
[Ba2] , Roots and wreath products, Proc. Cambridge Philos. Soc. 56 (1960), 109–117.
[BDH] G. Baumslag, E. Dyer, and A. Heller, The topology of discrete groups, J. Pure Appl.

Algebra 16 (1980), 1–47.
[Be] M. Bendersky, A functor which localizes the higher homotopy groups of an arbitrary CW-

complex, Lecture Notes in Math., vol. 418, Springer-Verlag, Berlin, Heidelberg, New York,
1974, pp. 13–21.

[BC] A. J. Berrick and C. Casacuberta, Groups and spaces with all localizations trivial, Lecture
Notes in Math., vol. 1509, Springer-Verlag, Berlin, Heidelberg, New York, 1992, pp. 20–29.

[BT] A. J. Berrick and G. C. Tan, The minimal extension of P -localization on groups (to
appear).

[BTh] D. Blanc and R. D. Thompson, A suspension spectral sequence for vn-periodic homotopy
groups (to appear).

[Bo1] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975),
133–150.

[Bo2] , Homological localization towers for groups and π-modules, Mem. Amer. Math. Soc.,
vol. 10, no. 186, 1977.

[Bo3] , Constructions of factorization systems in categories, J. Pure Appl. Algebra 9
(1977), 207–220.

[Bo4] , The localization of spectra with respect to homology, Topology 18 (1979), 257–281.
[Bo5] , Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. (to

appear).
[BK] A. K. Bousfield and D. M. Kan, Homotopy limits, localizations and completions, Lecture

Notes in Math., vol. 304, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[Br] C. Broto, Fibrewise localization, in preparation.
[Ca] C. Casacuberta, On the rationalization of the circle, Proc. Amer. Math. Soc. 118 (1993),

995–1000.



22 RECENT ADVANCES IN UNSTABLE LOCALIZATION

[CC] C. Casacuberta and M. Castellet, Localization methods in the study of the homology of
virtually nilpotent groups, Math. Proc. Cambridge Philos. Soc. 112 (1992), 551–564.

[CFT] C. Casacuberta, A. Frei, and G. C. Tan, Extending localization functors, J. Pure Appl.
Algebra (to appear).

[CP] C. Casacuberta and G. Peschke, Localizing with respect to self-maps of the circle, Trans.
Amer. Math. Soc. 339 (1993), 117–140.

[CPP] C. Casacuberta, G. Peschke, and M. Pfenniger, On orthogonal pairs in categories and
localisation, London Math. Soc. Lecture Note Ser., vol. 175, Cambridge University Press,
Cambridge, 1992, pp. 211–223.

[De] A. Deleanu, Idempotent codensity monads and the profinite completion of topological
groups, London Math. Soc. Lecture Note Ser., vol. 86, Cambridge University Press, Cam-
bridge, 1983, pp. 154–163.

[DFH] A. Deleanu, A. Frei, and P. Hilton, Idempotent triples and completion, Math. Z. 143
(1975), 91–104.

[DH] A. Deleanu and P. Hilton, On Postnikov-true families of complexes and the Adams com-
pletion, Fund. Math. 106 (1980), 53–65.

[DHS] E. S. Devinatz, M. J. Hopkins, and J. H. Smith, Nilpotence and stable homotopy theory I,
Ann. of Math. 128 (1988), 207–241.

[Fa1] E. Dror Farjoun, Homotopy localization and v1-periodic spaces, Lecture Notes in Math.,
vol. 1509, Springer-Verlag, Berlin, Heidelberg, New York, 1992, pp. 104–113.

[Fa2] , Higher homotopies of natural constructions (to appear).

[Fa3] , Localizations, fibrations and conic structures (to appear).

[Fa4] , Cellular spaces (to appear).

[Fa5] , Cellular inequalities (to appear).

[FS] E. Dror Farjoun and J. H. Smith, Homotopy localization nearly preserves fibrations (to
appear).
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