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Abstract This is an expository article about Ohkawa’s theorem stating that acyclic
classes of representable homology theories form a set. We provide background in
stable homotopy theory and an overview of subsequent advances in the study of
Bousfield lattices. As a new result, we prove that there is a proper class of acyclic
classes of nonrepresentable homology theories.

1 Introduction

The main purpose of this article is to present the statement and proof of Ohkawa’s
theorem [25, Theorem 2] without assuming expertise on the reader’s part in homo-
topy theory. Thus in Section 2 and Section 3 we collect basic facts about homology
theories, spectra, Spanier–Whitehead duality, and Adams representability.

Most of Ohkawa’s article [25] was devoted to a discussion of injective hulls
of spaces and spectra with respect to homology theories. After the publication of
that article, it remained generally unnoticed that the proof of the fact that Bousfield
classes of spectra form a set instead of a proper class did not depend on injective
hulls —although it had likely been inspired by the study of those.

In fact, Ohkawa’s theorem did not become widespread until Dwyer and Palmieri
published in [10] another proof of the same result, motivated by earlier thoughts of
Strickland [32], who studied jointly with Hovey and Palmieri [15, 17] the complete
lattice resulting from the fact that Bousfield classes of spectra form a set. Their
work triggered further progress in the understanding of chromatic homotopy theory
[4, 37] and, more generally, tensor triangulated categories [11, 18, 36], including
derived categories of commutative rings.
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We present Ohkawa’s proof of [25, Theorem 2] without changing anything sub-
stantial from the original argument, in order to illustrate both its simplicity and the
far-reaching depth of the idea behind it. Recent generalizations of Ohkawa’s theo-
rem in the context of triangulated categories by Iyengar–Krause [18] and Stevenson
[31] used different methods, but the general form of the same result described in [8]
for non necessarily stable combinatorial model categories was proved using pre-
cisely a version of Ohkawa’s argument.

All the variants of Ohkawa’s theorem published so far include representability
as a crucial ingredient. In its original formulation, it was indeed a statement about
representable homology theories, whose featuring property is that they preserve co-
products and filtered colimits. This property is essential in the proof of Ohkawa’s
theorem given by Dwyer and Palmieri in [10], which is based on the fact that every
CW-spectrum is a filtered union of its finite subspectra. Additivity and exactness
are also fundamental hypotheses in [18, Theorem 2.3] for the validity of Ohkawa’s
theorem in well generated tensor triangulated categories.

The proof of the version of Ohkawa’s theorem presented in [8] no longer requires
additivity nor exactness —not even homotopy invariance— but it is a result about
endofunctors in combinatorial model categories preserving λ -filtered colimits for
some regular cardinal λ ; see [9] in this volume for details.

One could ask if this assumption can be weakened further. In Section 7 we show
that if one considers non necessarily representable homology theories without any
extra assumption, then there is a proper class of distinct Bousfield classes of those.
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2 Homology theories

Generalized homology theories were studied by G. W. Whitehead in [34] after the
discovery of K-theory and other functorial constructions on spaces that satisfied
the Eilenberg–Steenrod axioms [12] except the dimension axiom. In order to state
these axioms in a simple way, we will only consider reduced homology theories
and restrict their scope to CW-complexes, that is, topological spaces constructed by
successively attaching cells of increasing dimensions [35, Section 5].

For n ≥ 0, the n-skeleton X (n) of a CW-complex X is the union of its cells of
dimension lower than or equal to n. A pointed CW-complex is a pair consisting
of a CW-complex X and a distinguished 0-cell x0. Pointed CW-complexes form a
category whose morphisms are continuous maps f : X → Y with f (X (n))⊆ f (Y (n))
for all n and f (x0) = y0.
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A reduced homology theory is a collection of functors {hn}n∈Z from pointed
CW-complexes to abelian groups with the following properties:

• Homotopy invariance: If two maps f ,g : X→Y are homotopic, then the induced
homomorphisms hn( f ) and hn(g) coincide for all n.

• Exactness: Every inclusion i : A ↪→ X of a subcomplex induces, for all n, an exact
sequence of abelian groups

hn(A)−→ hn(X)−→ hn(X/A).

• Suspension isomorphism: There is a natural isomorphism hn(X)∼= hn+1(ΣX) for
all n and all X , where ΣX = S1∧X .

Here and throughout we denote by Sn the n-sphere and by ∧ the smash product,
i.e., the quotient of the cartesian product by the one-point union of pointed spaces.
The space ΣX is called the suspension of X . The exactness axiom and the suspension
isomorphism axiom are usually replaced by long exact sequences for pairs of spaces
and the excision axiom in the case of nonreduced homology theories. Passage from
reduced to nonreduced and conversely can be done as explained in [33, Sections
7.34 and 7.35] or in [34, Section 5]. Generalized cohomology theories are defined
in the same way, but contravariantly.

The graded abelian group h∗(S0) is called the coefficients of h∗. A reduced ho-
mology theory {hn}n∈Z is ordinary if hn(S0) = 0 for n 6= 0. Otherwise it is called
extraordinary or generalized. Examples include the following, among many others:

• Complex K-theory, for which K̃∗(S0) = Z[t, t−1] with t in degree 2.
• Complex cobordism, such that M̃U∗(S0) = Z[x1,x2, . . . ] with xi in degree 2i.
• Morava K-theories, with K̃(n)∗(S

0) = Fp[vn,v−1
n ] and vn in degree 2(pn−1).

It follows from results in [12] that, if a homology theory is ordinary, then there is
an abelian group G such that hn(X)∼= H̃n(X ;G) for all finite CW-complexes X and
all n, where H̃n denotes reduced singular homology. This result was extended by
Milnor in [21] to arbitrary CW-complexes, not necessarily finite, under the follow-
ing additional assumption. A reduced homology theory {hn}n∈Z is called additive if
it satisfies the Milnor axiom about preservation of coproducts:

hn (
∨

i∈I Xi)∼=
⊕

i∈I hn(Xi)

for every set of indices I and all n. This property is a consequence of the previous
axioms if the set of indices I is finite, but it is not if I is infinite. If h∗ is addi-
tive and ordinary, then the natural isomorphism h∗ ∼= H̃∗(−;h0(S0)) can be proved
by comparing the respective cellular chain complexes, as in [13, Theorem 4.5.9].
A similar argument yields the following more general result, whose proof is given
in [29, Proposition II.3.19] and [33, Theorem 7.55].

Proposition 2.1 If a natural transformation h′∗ → h∗ of additive homology theo-
ries induces an isomorphism h′∗(S

0)∼= h∗(S0), then it also induces an isomorphism
h′∗(X)∼= h∗(X) for every CW-complex X.
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3 Spectra and representability

There are several different models for the homotopy category of spectra. Here we
consider CW-spectra for consistency with the rest of the article. A CW-spectrum
is a sequence of pointed CW-complexes E = {En}n∈Z together with subcomplex
inclusions ΣEn ↪→ En+1 for all n. Each CW-complex X yields a CW-spectrum with
Xn = Σ nX if n ≥ 0 and Xn = ∗ (a single point) for n < 0. We will not distinguish
notationally a CW-complex from the corresponding CW-spectrum, and will omit
“CW” from now on for shortness.

Spectra can be suspended and desuspended:

(Σ kE)n = En+k for k ∈ Z.

A stable cell of a spectrum E is a cell c⊂ En for some n, which is identified with
Σ kc ⊂ En+k for k ≥ 1. If c is a d-cell in En then it represents a (d− n)-cell of E.
A spectrum with only a finite number of distinct stable cells is called finite. More
generally, the cardinality of a spectrum is the cardinality of its set of stable cells.

Maps between spectra are defined up to cofinality [3, 33], and homotopies be-
tween maps of spectra are defined similarly as for topological spaces. We denote by
[X ,Y ] the set of homotopy classes of maps X → Y . Suspension induces bijections

[X ,Y ]∼= [Σ kX ,Σ kY ] (1)

for all k and all spectra X and Y . Moreover there is a natural homotopy equivalence
ΣE ' S1∧E for every spectrum E. Consequently, the homotopy category of spec-
tra is additive, since [X ,Y ] ∼= [Σ 2X ,Σ 2Y ] and the latter has a natural abelian group
structure for all X and Y , resulting from the pinch map S2→ S2∨S2 on the domain.

Moreover, the homotopy category of spectra is triangulated. This means that
each map f : X → Y fits into a cofibre sequence X → Y →C that expands into

· · · // X
f
// Y // C // ΣX

Σ f
// ΣY // · · · (2)

in such a way that certain axioms are satisfied [16, 20, 24]. Most notably, (2) yields
long exact sequences of abelian groups by applying [E,−] or [−,E] to it, where E
is any spectrum. Indeed, it is a feature of spectra that there is no distinction between
fibre sequences and cofibre sequences, in contrast with spaces.

The homotopy groups of a spectrum E = {En}n∈Z are defined as

πk(E) = [Σ kS0,E]∼= colimn πk+n(En) for k ∈ Z.

A map of spectra X→Y inducing isomorphisms πk(X)∼= πk(Y ) for all k is a homo-
topy equivalence [3, Corollary III.3.5]. It is also remarkable that

πk(X ∨Y )∼= πk(X)⊕πk(Y ) (3)

for all k, since X → X ∨Y → Y is a split cofibre sequence.
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The stable homotopy groups of the sphere spectrum are of utmost importance.
If k > 0 then πk(S0) is finite [27], while π0(S0) is infinite cyclic, and if k < 0 then
πk(S0) = 0. We state the following consequence for its use in Section 5.

Lemma 3.1 The set of homotopy types of finite spectra is countable, and given any
two finite spectra A and B the abelian group [A,B] is finitely generated.

Proof. For every finite spectrum A there is a finite CW-complex X and an integer k
such that A ' Σ kX , and if two CW-complexes are homotopy equivalent then their
suspension spectra are also homotopy equivalent. Hence our first claim follows from
the fact that every finite CW-complex is homotopy equivalent to a finite polyhedron;
cf. [29, Lemma II.3.16].

To prove the second claim, observe first that, for every finite spectrum B, each
of its homotopy groups πk(B) is finitely generated since it is obtained by means of
finitely many group extensions starting from homotopy groups of spheres and using
cofibre sequences as in (2) corresponding to the cells of B. Arguing in the same way,
if A is another finite spectrum then the abelian group [A,B] is finitely generated since
it is obtained in finitely many steps starting from homotopy groups of B and using
cofibre sequences determined by the cells of A. ut

As shown in [34, Theorem 5.2], every spectrum E defines a homology theory as

En(X) = πn(E ∧X) (4)

and similarly E defines a cohomology theory as

En(X) = [Σ−nX ,E], (5)

where X is any pointed CW-complex. In fact (4) and (5) make perfectly sense if
X is a spectrum, with any version of a smash product for spectra [2]; for instance,
(E ∧X)2n = En∧Xn and (E ∧X)2n+1 = En+1∧Xn.

Thus E∗ defines a homology theory on spectra, meaning that it is a functor from
spectra to graded abelian groups which is homotopy invariant and exact in the sense
that every cofibre sequence X → Y →C of spectra yields an exact sequence

En(X)−→ En(Y )−→ En(C)

for every n, and there is a natural isomorphism En(X)∼= En+1(ΣX) for all X .
Similarly, E∗ is a cohomology theory on spectra. It is clear from (5) that E∗

sends coproducts to products, and it is also true that E∗ preserves coproducts, by the
following argument. Recall that a partially ordered set I is filtered if for every two
elements i and j there is another element k such that i≤ k and j ≤ k.

Lemma 3.2 For every spectrum E, the homology theory E∗ preserves coproducts
and sends filtered unions of subspectra to filtered colimits.

Proof. As shown, for instance, in [33, Lemma 8.34], if a spectrum X is a fil-
tered union of subspectra Xi then the inclusions Xi ↪→ X induce an isomorphism
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colimi [F,Xi]∼= [F,X ] for every finite spectrum F . Moreover, E ∧X is also a filtered
union of its subspectra E ∧Xi. Therefore, since Σ nS0 is a finite spectrum,

En(X) = πn(E ∧X) = [Σ nS0,E ∧X ]∼= colimi [Σ
nS0,E ∧Xi] = colimi En(Xi).

As a special case, En preserves coproducts because every coproduct of spectra is a
filtered union of finite coproducts and En preserves these by (3). ut

The homology theory E∗ and the cohomology theory E∗ given by (4) and (5) are
said to be represented by the spectrum E. Singular (co)homology with coefficients
in G is represented by the Eilenberg–Mac Lane spectrum {K(G,n) | n ≥ 0}, and
complex K-theory is represented by the spectrum consisting of the unitary group
U in odd dimensions and Z×BU in even dimensions (where BU is the classifying
space of U), with structure maps given by Bott periodicity Ω 2BU ' Z×BU .

Brown’s representability theorem [7, Theorem II] for cohomology theories with
countable coefficients was extended by Adams in [2, Theorem 1.6] by showing that
every cohomology theory defined on finite CW-complexes is represented by some
spectrum (not necessarily finite). This leads to the following central result.

Theorem 3.3 (Adams) Every additive homology theory on CW-complexes is rep-
resented by some spectrum.

Proof. As a consequence of Alexander duality, if X is a finite nonempty proper
subcomplex of Sn then there is a finite subcomplex DnX of Sn rX such that

Ek(X)∼= En−k−1(DnX) (6)

for all k and every spectrum E; see [30, p. 199]. Hence each homology theory h∗
defines by means of such duality a cohomology theory on finite CW-complexes,
as shown in [34, Corollary 7.10], which is representable by Adams’ extension of
Brown’s theorem. Then the representing spectrum E defines an additive homology
theory E∗ whose restriction to finite CW-complexes is naturally isomorphic to the
restriction of h∗. Moreover, for every CW-complex X and every n the group En(X)
is the colimit of En(Xi) where {Xi}i∈IX is the filtered set of all finite subcomplexes
of X ; see [33, Corollary 8.35]. Hence there is a natural transformation E∗ → h∗
inducing an isomorphism E∗(S0) ∼= h∗(S0). If h∗ is also additive, this implies that
E∗(X)∼= h∗(X) for all X , by Proposition 2.1. ut

The stable analogue of (6) is as follows; cf. [3, Part III, § 5]. Each finite spectrum
A admits a homotopy unique Spanier–Whitehead dual DA, which is also finite and
is equipped with a map

DA∧A−→ S0

inducing isomorphisms [X ,Y ∧DA]∼= [X ∧A,Y ] and [X ,A∧Y ]∼= [DA∧X ,Y ] for all
spectra X and Y ; cf. [33, Theorem 14.34]. Therefore DDA' A and

E−n(A)∼= En(DA) (7)
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for all spectra E and all n. Using Spanier–Whitehead duality it follows with the
same argument as in the proof of Theorem 3.3 that every additive homology theory
on spectra is represented by some spectrum [20, Chapter 4, Theorem 16].

4 Bousfield equivalence classes of spectra

Given two spectra E and X , the spectrum X is called E∗-acyclic if E∗(X) = 0, where
E∗ denotes the homology theory represented by E as in (4). Two spectra E and F
are called Bousfield equivalent if the classes of E∗-acyclic spectra and F∗-acyclic
spectra coincide. Since the statement that En(X) = 0 for all n is equivalent to the
statement that E ∧X ' 0, where 0 denotes here the one-point spectrum, two spectra
E and F are Bousfield equivalent if and only if

{X | E ∧X ' 0}= {X | F ∧X ' 0}. (8)

It is also true that E and F are Bousfield equivalent if and only if E∗-localization
and F∗-localization are naturally isomorphic. Here E∗-localization is meant in the
sense of [5], where it was proved that for every spectrum X and every representable
homology theory E∗ there is a map l : X → LEX such that En(l) is an isomorphism
for all n and LEX is E∗-local, that is, for every map f : A→ B such that En( f ) is an
isomorphism for all n, the function [B,LEX ]→ [A,LEX ] is bijective. Then LE defines
an exact endofunctor in the homotopy category of spectra such that a map X → Y
induces a homotopy equivalence LEX ' LEY if and only if it induces isomorphisms
En(X) ∼= En(Y ) for all n. Hence LEX ' 0 if and only if X is E∗-acyclic. Therefore,
the collection of E∗-acyclic spectra determines LE up to a natural isomorphism.

Bousfield equivalence classes have been studied since the decade of 1980 in con-
nection with homological localizations [5, 6, 26]. The Bousfield equivalence class
of a spectrum E is usually denoted by 〈E〉, and it is also common to view 〈E〉 as
the collection of all E∗-acyclic spectra. There is a partial order on Bousfield classes,
namely 〈E〉 ≤ 〈F〉 if and only if the class of F∗-acyclics is contained in the class of
E∗-acyclics, or, equivalently, if there is a natural transformation LF → LE of coaug-
mented functors.

Thanks to Ohkawa’s theorem, the collection of Bousfield classes becomes in fact
a complete lattice with least upper bounds (joins) given by the wedge sum, and
greatest lower bounds (meets) obtained as wedges of all lower bounds, which exist
since there is only a set of those. The smash product provides lower bounds, but not
greatest lower bounds in general. This lattice and other related lattices have been
studied by a number of authors [4, 11, 14, 15, 17, 18, 23, 36, 37].

Ohkawa’s injective hulls [25] are closely related to homological localizations.
For a homology theory E∗ on spectra, a spectrum Y is E∗-injective if, for every map
f : A→ B such that En( f ) is a monomorphism for all n, the function [B,Y ]→ [A,Y ]
is surjective. A map h : X→Y is an E∗-injective enveloping map if Y is E∗-injective
and En(h) is a monomorphism for all n, and, moreover, for all g : Y → Z and every n
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the homomorphism En(g) is monic if En(g◦h) is monic. In [25, Theorem 1] it was
shown that if a homology theory E∗ is representable then every spectrum X admits
an E∗-injective enveloping map h : X → Y , which is unique up to homotopy. Then
Y is called an injective hull of X .

5 Okhawa’s argument

Choose a set F of representatives of all homotopy types of finite spectra and a set
M of representatives with domains and codomains in F of all isomorphism classes
of maps between finite spectra in the stable homotopy category. Thus for each map
f : A→ B between finite spectra the set M contains a unique map f0 : A0 → B0
where A0 and B0 are in F and there exist two homotopy equivalences hA : A0→ A
and hB : B0 → B such that f ◦ hA ' hB ◦ f0. By Lemma 3.1, F has cardinality ℵ0
and M also has cardinality ℵ0 since for every two finite spectra A and B the abelian
group [A,B] of homotopy classes of maps A→ B is finitely generated.

Given two maps of spectra g : X → Y and f : X → E, we say that f extends to Y
if there exists a map f̃ : Y → E such that f̃ ◦g' f . For a map f : X → E of spectra
with X ∈F , we denote, as in [25],

t( f ) = {g : X → Y | g ∈M and f extends to Y}. (9)

Hence t( f )∈P(M ), where the latter denotes the set of subsets of M . Next, for
a spectrum E, let tE : F →P(P(M )) be the function defined as

tE(X) = {t( f ) | f : X → E} (10)

for each X ∈F , and call two spectra E and F elementarily equivalent if tE = tF ,
that is, if tE(X) = tF(X) for every X ∈F .

For a spectrum E, we consider the homology theory E∗ on spectra represented
by E, namely En(X) = πn(E ∧X) for n ∈ Z and every spectrum X . If {Xi}i∈IX is
the collection of all finite subspectra of X , then the inclusions Xi ↪→ X induce an
isomorphism

colimi∈IX En(Xi)∼= En(X) (11)

for every n by Lemma 3.2, since IX is filtered.

Theorem 5.1 (Ohkawa) Suppose that two spectra E and F are elementarily equiv-
alent, and let f : X → Y be any map of spectra. For each n ∈ Z, the homomorphism
En( f ) : En(X)→ En(Y ) is monic if and only if Fn( f ) : Fn(X)→ Fn(Y ) is monic.

Proof. Suppose that En( f ) is a monomorphism, and let φ ∈ KerFn( f ). Our aim is
to prove that φ = 0.

Since Fn satisfies (11), there is a finite subspectrum A⊆ X and a class α ∈ Fn(A)
such that Fn(iA,X )(α) = φ , where iA,X : A→ X denotes the inclusion. Therefore
Fn( f ◦ iA,X )(α) = 0 and, using again the fact that Fn commutes with filtered colimits,
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we infer that there is a finite subspectrum B ⊆ Y that contains f (A) and such that
Fn( f ′)(α) = 0 if f ′ : A→ B denotes the restriction of f :

X
f
// Y

A
f ′
//

iA,X

OO

B

iB,Y

OO

Let DA denote a Spanier–Whitehead dual of A. Then, since Fn(A) ∼= F−n(DA),
the class α is represented by a map a : Σ nDA→ F , and the fact that Fn( f ′)(α) = 0
implies that a◦Σ nD f ′ ' 0, where D f ′ : DB→ DA is dual to f ′.

Now replace Σ nDA by a homotopy equivalent finite spectrum belonging to F and
choose a map p : Σ nDA→ P in M such that the following is a cofibre sequence:

Σ nDB
ΣnD f ′

// Σ nDA
p
// P // Σ n+1DB.

Here the map a : Σ nDA → F extends to P since a ◦ Σ nD f ′ ' 0, and this means
precisely that p ∈ t(a) as defined in (9).

Now t(a) ∈ tF(Σ nDA) and, since we are assuming that tE = tF , we infer that
t(a) ∈ tE(Σ nDA). Therefore there is a map b : Σ nDA→ E with t(a) = t(b). Thus
p ∈ t(b) and this implies that b extends to P.

Let β ∈ En(A) be the class represented by b. Since b extends to P, we have
that b ◦Σ nD f ′ ' 0 and consequently En( f ′)(β ) = 0. Since En( f ) is injective and
f ◦ iA,X = iB,Y ◦ f ′, it follows that En(iA,X )(β ) = 0. Since En commutes with filtered
colimits, there is a finite subspectrum C⊆X containing A such that En(iA,C)(β ) = 0.

Hence b ◦ Σ nDiA,C ' 0 and therefore b extends to a homotopy cofibre Q of
Σ nDiA,C, which we may choose so that the map q : Σ nDA→ Q is in M :

Σ nDC
ΣnDiA,C

// Σ nDA
q
// Q // Σ n+1DC.

Thus q ∈ t(b), and using again that t(a) = t(b), we find that q ∈ t(a), and this
means that Fn(iA,C)(α) = 0. Hence φ = Fn(iA,X )(α) = Fn(iC,X )Fn(iA,C)(α) = 0,
from which it follows that Fn( f ) is indeed a monomorphism. Exchanging the roles
of E and F completes the proof. ut
Corollary 5.2 If two spectra E and F are elementarily equivalent, then E and F
are Bousfield equivalent.

Proof. Suppose that E and F are elementarily equivalent, and suppose that a given
spectrum X is E∗-acyclic. Then the map from X to the zero spectrum induces a
monomorphism En(X)→ 0 for all n. According to Theorem 5.1, the homomorphism
Fn(X)→ 0 is also a monomoprhism for all n, which means that X is F∗-acyclic. ut

Hence Bousfield equivalence classes of spectra form a set of cardinality smaller
than or equal to the cardinality of the set of elementary equivalence classes, which
is at most 22ℵ0 .
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6 Other proofs and extensions of Ohkawa’s theorem

The argument given in Section 5 uses Spanier–Whitehead duality and the fact
that representable homology theories commute with filtered colimits. An alterna-
tive proof not requiring the use of duality was published by Dwyer and Palmieri
in [10]. Their argument works in every algebraic stable homotopy category, as
shown in [19]. It can be summarized as follows in the case of spectra.

For a spectrum E and a homology class c ∈ E∗(A), where A is a finite spectrum,
define the annihilator of c as

annE
A(c) = { f : A→ B | B is finite and E∗( f )(c) = 0},

and let the Ohkawa class of E consist of all annihilators of all classes c ∈ E∗(A)
where A is a finite spectrum.

Theorem 6.1 (Dywer–Palmieri) If two spectra E and F give rise to the same
Ohkawa class, then they are in the same Bousfield equivalence class.

Proof. If the Ohkawa class of F is contained into the Ohkawa class of E then the
class of E∗-acyclics is contained in the class of F∗-acyclics. To prove this fact, sup-
pose that E∗(X) = 0 and write X as a union of its finite subspectra. Given any
class c ∈ Fn(X), there is a finite subspectrum A of X and a class a ∈ Fn(A) such
that Fn(i)(a) = c where i : A→ X is the inclusion. By assumption there is a class
a′ ∈ En(A) such that annF

A(a) = annE
A(a
′). Since E∗(X) = 0, there is a finite subspec-

trum B of X containing A such that the homomorphism induced by the inclusion
j : A→ B satisfies En( j)(a′) = 0; therefore j ∈ annE

A(a
′). Hence j also belongs to

annF
A(a) and this implies that Fn( j)(a) = 0, so c = 0 in Fn(X), as claimed. ut

If the definition of Ohkawa classes is restricted after a choice of a set F of
representatives of all homotopy types of finite spectra and a set M of representatives
with domains and codomains in F of all homotopy classes of maps between finite
spectra, as in Section 5 and as in [10], then the cardinality of the set of Ohkawa
classes is bounded by 22ℵ0 , and hence so is the cardinality of the set of Bousfield
equivalence classes of spectra. It is still unknown if this bound can be lowered.

Upper and lower bounds for the cardinality of the set of Bousfield classes in an
arbitrary algebraic stable homotopy category have been given in [19] in terms of a
generating set of small objects.

Dwyer and Palmieri proved in [11] that in the derived category of a truncated
polynomial ring on countably many generators there is also only a set of Bousfield
equivalence classes, and asked whether this was in fact the case in the derived cat-
egory of every commutative ring —Bousfield equivalence of chain complexes of
modules over a ring is defined as in (8) with the smash product replaced by the de-
rived tensor product of chain complexes. This was known to be true for countable
rings as shown in [10] and also for Noetherian rings due to a result of Neeman [22]:
for a Noetherian commutative ring R there is a bijection between the Bousfield lat-
tice in the derived category D(R) and the lattice of subsets of the spectrum of R.
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However, it had already been observed in [23] that something very different hap-
pens for rings that fail to be Noetherian. Further results in this research direction
have been obtained by Wolcott in [36].

Around 2010 Stevenson extended in an unpublished article the Dwyer–Palmieri
argument to compactly generated triangulated categories equipped with a biexact
and coproduct-preserving tensor product, hence proving that, indeed, the Bousfield
lattice of the derived category D(R) is a set for every commutative ring R. Shorty
after, Iyengar and Krause proved in [18] that the same result holds in any well gener-
ated tensor triangulated category. Their argument was based on a restricted Yoneda
embedding of a triangulated category T with a set of α-compact generators for
some cardinal α into the category of abelian presheaves over that set.

Still Okhawa’s theorem remained a result about additive categories. Another step
was made in [8] by showing that it holds in fact in the homotopy category of every
combinatorial model category, not necessarily stable. A proof of this fact is pre-
sented in [9] using Rosický’s result [28, Proposition 5.1] that, for a combinatorial
model category K , the composite

K −→ HoK −→ Set(HoKλ )
op

of the canonical functor from K to its homotopy category followed by a restricted
Yoneda embedding preserves λ -filtered colimits for a sufficiently large regular car-
dinal λ . Here Kλ is a set of representatives of isomorphism classes of λ -presentable
objects in K .

7 Nonrepresentable homology theories

If a homology theory is not representable, then it need not preserve colimits of any
kind. Therefore its value on a spectrum need not be determined by its values on
finite subspectra. For this reason, there is no hope that the argument used in the
proof of Theorem 5.1 can be extended to non necessarily representable homology
theories. In this section we show that, indeed, Ohkawa’s theorem does not hold for
nonrepresentable homology theories.

For an abelian group A and a cardinal α , we denote by Aα the cartesian product of
α copies of A, that is, the abelian group of functions α→A. Moreover, we denote by
SAα the subgroup of Aα consisting of shrinking functions, that is, functions α → A
whose image has cardinality smaller than α .

Note that Fα A = Aα/SAα defines an exact functor from the category of abelian
groups to itself. This fact has the following consequence.

Theorem 7.1 For every uncountable cardinal α there is a reduced homology theory
hα
∗ on pointed CW-complexes such that if X has less than α cells then hα

∗ (X) = 0
but there exists a CW-complex with α cells which is not hα

∗ -acyclic.

Proof. Consider the exact endofunctor Fα A = Aα/SAα on the category of abelian
groups. If the cardinality of A is less than α then the image of every function α→ A
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has cardinality smaller than α . Hence SAα = Aα and Fα A = 0. On the other hand,
there is an injective function α →⊕i<α Z and hence Fα(⊕i<α Z) 6= 0.

Next, define hα
n = Fα ◦ H̃n for all n, where H̃∗ denotes reduced singular homol-

ogy. Since Fα is exact, hα
∗ is a reduced homology theory. If X has less than α cells

then the cardinality of H̃∗(X) is smaller than α and therefore hα
∗ (X) = 0. How-

ever, for a wedge of α circles we have H1(
∨

i<α S1)∼=⊕i<α Z and this implies that
hα

1 (
∨

i<α S1) is nonzero. ut

We say that two homology theories h∗ and h′∗ (defined on spaces or spectra) are
Bousfield equivalent if they have the same acyclics.

Corollary 7.2 There is a proper class of distinct Bousfield equivalence classes of
nonrepresentable homology theories of spaces or spectra.

Proof. In the case of spaces, consider the collection {hα
∗ } given by Theorem 7.1

where α runs through all uncountable cardinals. Then any two of them belong to
distinct Bousfield equivalence classes since if β > α then there is a space X which
is hβ
∗ -acyclic but not hα

∗ -acyclic. The same argument is valid for spectra by defining
similarly hα

∗ = Fα ◦H∗ where H∗ is ordinary homology with Z coefficients. ut

However, if we fix an arbitrary regular cardinal λ then there is only a set of
Bousfield equivalence classes of homology theories that preserve λ -filtered colimits.
For a proof of this claim, see [8, Corollary 3.8].
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9. Casacuberta, C., Rosický, J.: Combinatorial homotopy categories. In this volume.

10. Dwyer, W. G., Palmieri, J. H.: Ohkawa’s theorem: there is a set of Bousfield classes. Proc.
Amer. Math. Soc. 129, 881–886 (2000)

11. Dwyer, W. G., Palmieri, J. H.: The Bousfield lattice for truncated polynomial algebras. Ho-
mology, Homotopy Appl. 10, 413–436 (2008)

12. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton Mathematical Se-
ries, vol. 15. Princeton University Press, Princeton (1952)

13. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
14. Hovey, M.: Cohomological Bousfield classes. J. Pure Appl. Algebra 103, 45–59 (1995)



Depth and simplicity of Ohkawa’s argument 13

15. Hovey, M., Palmieri, J. H.: The structure of the Bousfield lattice. In: Homotopy Invariant
Algebraic Structures (Meyer, J.-P., Morava, J., Wilson, W. S., eds.). Contemp. Math., vol. 239.
American Mathematical Society, Providence (1999)

16. Hovey, M., Palmieri, J. H., Strickland, N. P.: Axiomatic Stable Homotopy Theory. Mem.
Amer. Math. Soc., vol. 128, no. 610. American Mathematical Society, Providence (1997)

17. Hovey, M., Strickland, N. P.: Morava K-theories and localisation. Mem. Amer. Math. Soc.,
vol. 139, no. 666. American Mathematical Society, Providence (1999)

18. Iyengar, S. B., Krause, H.: The Bousfield lattice of a triangulated category and stratification.
Math. Z. 273, 1215–1241 (2013)

19. Kato, R., Okajima, H., Shimomura, K.: Notes on an algebraic stable homotopy category. In
this volume.

20. Margolis, H. R.: Spectra and the Steenrod Algebra. North-Holland Mathematical Library,
vol. 29. Elsevier, New York (1983)

21. Milnor, J.: On axiomatic homology theory. Pacific J. Math. 12, 337–341 (1962)
22. Neeman, A.: The chromatic tower for D(R). Topology 31, 519–532 (1992)
23. Neeman, A.: Oddball Bousfield classes. Topology 39, 931–935 (2000)
24. Neeman, A.: Triangulated Categories. Annals of Math. Studies, vol. 148. Princeton Univer-

sity Press, Princeton (2001)
25. Ohkawa, T.: The injective hull of homotopy types with respect to generalized homology func-

tors. Hiroshima Math. J. 19, 631–639 (1989)
26. Ravenel, D. C.: Localization with respect to certain periodic homology theories. Amer. J.

Math. 106, 351–414 (1984)
27. Ravenel, D. C.: Complex Cobordism and Stable Homotopy Groups of Spheres. Pure and Ap-

plied Mathematics, vol. 121. Academic Press, Orlando (1986)
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