
On the rationalization of the circle
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Abstract. We give an example showing that, for a nilpotent group G and

a set of primes P , the P -localization homomorphism l : G → GP need not

induce an isomorphism in cohomology with arbitrary (twisted) ZP -module coef-

ficients. From this fact we infer that, in the pointed homotopy category of con-

nected CW-complexes, the inclusion of the subcategory of spaces whose higher

homotopy groups are ZP -modules and whose fundamental group is uniquely

P ′-radicable does not admit a left adjoint.
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0 Introduction

The purpose of this note is to give the details and discuss the implications of a

counterexample which was mentioned in [3]. Let G be a nilpotent group, P a set

of primes (different from the set of all primes), and l: G→ GP the P -localization

homomorphism ([12]). It is well-known that, given a nilpotent action of GP on

a ZP -module A,

G
l→ GP

ω→ Aut(A), (0.1)

the induced homomorphisms in cohomology (with twisted coefficients via (0.1))

l∗ : Hk(GP ;A)→ Hk(G;A) (0.2)

are isomorphisms for all k (see Theorem I.4.14 in [12]). If one removes the

assumption that the action ω be nilpotent, then this needs no longer be true.

We supply a counterexample in Section 1: The group G is chosen to be the

group of integers (multiplicatively written); then its P -localization (i.e., the
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group ZP of P -local integers, multiplicatively written) acts by multiplication on

the rational group algebra Q[ZP ], and it turns out that

H2(ZP ; Q[ZP ]) 6= 0, (0.3)

while, of course, H2(Z; Q[ZP ]) = 0 because Z has cohomological dimension one.

Thus (0.2) fails to be an isomorphism for k = 2 in this case.

On the other hand, we know that (0.2) turns out to be an isomorphism, for

all k, for a certain broad class of not necessarily nilpotent actions (see Theo-

rem 1.1), including all those in which imω is a torsion group of finite exponent

(see [3], [16]).

Our interest in this question arose in the following context: Let H denote the

pointed homotopy category of connected CW-complexes. For a set of primes P ,

let DP be the full subcategory of H of spaces X whose higher homotopy groups

πi(X), i ≥ 2, are ZP -modules, and whose fundamental group π1(X) is uniquely

P ′-radicable (i.e., each of its elements has a unique pth root for every prime

p 6∈ P ; cf. [12], [17]). In Example 7.3 of [2] the class DP was erroneously

described as the class of targets (or “local objects”) associated to a certain

idempotent monad in H. We pointed out the difficulty in [3] and [4], where we

described the class of spaces truly arising in that example of [2]. In the present

note, we go further by showing that, in fact, the class DP cannot be the class of

local objects associated to any idempotent monad in H.

Our argument is the following. It is well-known that the map

S1 → K(ZP , 1) (0.4)

induced by the embedding of Z in ZP is universal among maps from S1 to

nilpotent spaces in DP ; cf. [12]. However, the observation (0.3) together with

a standard obstruction theory argument (see Section 2) show that (0.4) is not

universal in H among maps from S1 to arbitrary spaces in DP . Moreover, we

show that no map f : S1 → X with X in DP can induce a bijection of pointed

homotopy classes of maps f ∗ : [X, Y ] ∼= [S1, Y ] for all spaces Y in DP , so that

the inclusion of DP in H does not admit a left adjoint.

When this paper was first written, it was based on the observation that

H2(Q; Q[Q]) 6= 0, which had been obtained by hand calculation. This fact had

2



implications on the properties of the rationalization map S1 → K(Q, 1), as a

special case of the results in Section 2 below. This is the origin of the title of the

paper. Later, Warren Dicks and Peter Kropholler indicated us how to check, by

other methods, that H2(G;A[G]) is indeed different from 0 for every non-cyclic

subgroup G of Q and every non-zero abelian group A. Thus the paper was

rewritten —without changing the title— so as to apply, more generally, to an

arbitrary set of primes P .

Acknowledgements. This note is an appendix to joint work of the author

with Georg Peschke and Markus Pfenniger. It arose from discussions with

Craig Squier, and was completed while the author was visiting the SFB 170

in Göttingen.

1 Algebraic remarks

We recall the following result from [3]. It is an improvement of an earlier obser-

vation of Reynol ([16]).

Theorem 1.1 Let G be a nilpotent group, P a set of primes, and l : G → GP

the P -localization homomorphism. Let GP act on a ZP -module A in such a way

that the semidirect product A×|GP is uniquely P ′-radicable. Then the induced

homomorphisms l∗ : Hk(GP ;A)→ Hk(G;A) are isomorphisms for all k. 2

All nilpotent ZP [GP ]-modules A, as well as many others, satisfy the assump-

tion that the semidirect product A×|GP is uniquely P ′-radicable; cf. [3]. Our

goal in this section is to supply a counterexample to Theorem 1.1 when this

assumption on the action is removed.

Since we are going to deal with group algebras of the form Q[G], with G a

subgroup of Q, it is convenient to use additive notation for the elements of Q

when they occur as coefficients, but multiplicative notation when Q is viewed

as an abstract group. Thus we fix a symbol ξ and consider the group algebra

Q[Q] of formal sums ∑
q∈Q

aqξ
q, aq ∈ Q,
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where almost all coefficients aq are zero, and the multiplication is given by

ξrξs = ξr+s. In particular, the cyclic group generated by ξ is identified with the

group of integers Z. Of course, Q[Q] comes with a canonical action of Q by

multiplication, which restricts to any subgroup of Q and will be implicit in the

coefficients of the cohomology groups in all of what follows.

As we said in the Introduction, the fact that H2(G; Q[G]) 6= 0 if G is a

non-cyclic subgroup of Q is essentially known. It can be proved by combining

techniques from [11] and [13], or also using [6], [7]. The argument that we give

here was suggested by the referee; it is interesting because it is comparatively

simple and self-contained.

Proposition 1.2 Let G be any non-cyclic subgroup of Q containing Z. Denote

by ϕn : Z→ Z the nth power map ϕn(ξ) = ξn, and by

(ϕn)∗ : H1(Z; Q[G])→ H1(Z; Q[G])

the homomorphism induced by ϕn. Then:

(a) (ϕn)∗ is not surjective if n ≥ 2.

(b) Given two integers n ≥ 2, m ≥ 1, not necessarily distinct, the image of

(ϕnm)∗ is properly contained in the image of (ϕm)∗.

(c) H2(G; Q[G]) is uncountable.

Proof. Note that (a) follows from (b) by taking m = 1. We next prove (b), in

a slightly more general form: Assume given a diagram

Z
ϕm−→ Z

ϕn−→ Z
τ−→ Aut(Q[G]) (1.1)

where the action τ is defined by sending the generator ξ to multiplication by a

fixed element τ = ξq ∈ G, q 6= 0 (the statement of (b) refers to the special case

τ = ξ). Thus (1.1) gives rise to a commutative diagram

H1(Z; Q[G])
(ϕn)∗−→ H1(Z; Q[G])

(ϕm)∗−→ H1(Z; Q[G])

↓ ∼= ↓ ∼= ↓ ∼=

Q[G]/(τ − 1)Q[G]
ᾱ→ Q[G]/(τn − 1)Q[G]

β̄→ Q[G]/(τnm − 1)Q[G],
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in which the bottom arrows are projections of the endomorphisms of Q[G] de-

fined, respectively, as multiplication by

α = 1 + τ + τ 2 + · · ·+ τn−1,

β = 1 + τn + τ 2n + · · ·+ τ (m−1)n.

Now the class of β in Q[G]/(τnm−1)Q[G] belongs to the image of β̄, but not to

the image of the composition β̄ᾱ. Indeed, suppose that β = βαµ+ (τnm − 1)ν

in Q[G], for some elements µ, ν. Then, since τnm − 1 = βα(τ − 1), we have

β [1− α(µ+ (τ − 1)ν)] = 0. Since Q[G] has no zero divisors ([15]), this tells us

that α is a unit in Q[G], which is absurd unless τ = 1. This completes the proof

of part (b). To prove (c), observe that the group G is isomorphic to the direct

limit of a certain system

Z
ϕn1−→ Z

ϕn2−→ Z
ϕn3−→ · · · (1.2)

in which each ni is an integer bigger than or equal to 2. The (k + 1)th copy of

Z in this system acts on Q[G] as multiplication by ξ1/n1···nk . Now consider the

associated Milnor exact sequence ([18, p. 273])

0→ lim
←

1H1(Z; Q[G])→ H2(G; Q[G])→ lim
←

H2(Z; Q[G])→ 0, (1.3)

and look at the inverse system

H1(Z; Q[G])
(ϕn1 )∗

←− H1(Z; Q[G])
(ϕn2 )∗

←− H1(Z; Q[G])
(ϕn3 )∗

←− · · · (1.4)

associated to (1.2). Since (ϕn1)
∗(ϕn2)

∗ · · · (ϕnk
)∗ = (ϕn1n2···nk

)∗, part (b) ensures

that (1.4) is not Mittag-Leffler. Since the groups in (1.4) are countable, Theo-

rem 2 in [14] (see also [10]) tells us that lim
←

1H1(Z; Q[G]) is uncountable, which

gives the desired result. 2

Part (a) of Proposition 1.2 is significant in the context of [3], since it shows

that the standard map ϕn : S1 → S1 of degree n ≥ 2 need not induce an iso-

morphism in cohomology with arbitrary (twisted) coefficients whose underlying

abelian group is a Q-vector space.

In the next section we explain another consequence of Proposition 1.2.
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2 Implications in homotopy theory

In what follows, all spaces are assumed to be based connected CW-complexes.

We fix a set of primes P , different from the set of all primes. The multiplication

action of ZP on Q[ZP ] can be realized by an action by basepoint-preserving

homeomorphisms of ZP on an Eilenberg-MacLane space K(Q[ZP ], 2). Consider

the space

L = E(ZP )×ZP
K(Q[ZP ], 2) (2.1)

obtained by dividing out the diagonal action of ZP on E(ZP ) × K(Q[ZP ], 2),

where E(ZP ) is the universal cover of a K(ZP , 1). This space L has fundamental

group isomorphic to ZP and a single non-vanishing higher homotopy group,

namely π2, which is isomorphic to Q[ZP ]. Thus it belongs to the class DP of

spaces whose higher homotopy groups are ZP -modules and whose fundamental

group is uniquely P ′-radicable.

Recall from [5], [9] that, given a space X and a group homomorphism

ϕ: π1(X)→ ZP , there is a one-to-one correspondence between the second co-

homology group H2(X; Q[ZP ]) with twisted coefficients via ϕ and the set of

pointed homotopy classes of maps f : X → L inducing ϕ on the fundamental

group.

Now suppose that the map l : K(Z, 1) → K(ZP , 1) is universal (initial) in

H among maps from K(Z, 1) to spaces in DP . Then, in particular, we have a

bijection of pointed homotopy classes of maps

l∗ : [K(ZP , 1), L] ∼= [K(Z, 1), L], (2.2)

which restricts to a bijection of classes of maps inducing, respectively, the iden-

tity of ZP and the inclusion Z→ ZP on the fundamental group. This provides

a cohomology isomorphism

l∗ : H2(ZP ; Q[ZP ]) ∼= H2(Z; Q[ZP ]) (2.3)

contradicting Proposition 1.2 and hence proving that l fails to be universal in

H. Moreover, we next show that this difficulty cannot be solved by replacing

K(ZP , 1) by any other space.

Proposition 2.1 The inclusion of DP in H does not admit a left adjoint.

6



Proof. Assume that some map f : S1 → X is universal in H among maps from

S1 to spaces in DP . Then for every uniquely P ′-radicable group G we have a

bijection

f ∗ : [X,K(G, 1)] ∼= [S1, K(G, 1)],

which is equivalent to

f ∗ : Hom(π1(X), G) ∼= Hom(Z, G),

and this tells us that f∗ : Z → π1(X) is a P -equivalence of groups. Since X

is in DP , it follows that π1(X) ∼= ZP . Note that we are using here the easily

checked fact that the inclusion Z → ZP is universal among homomorphisms

from Z to uniquely P ′-radicable groups, not only in the category of nilpotent

groups ([12]), but also in the category of all groups (contrary to what happens

in the homotopy-theoretical analogue under discussion!).

Now let π1(X) act by multiplication on Q[ZP ] and obtain, by the same

argument used in (2.2) and (2.3), a bijection f ∗ : [X,L] ∼= [S1, L] restricting to

an isomorphism

f ∗ : H2(X; Q[ZP ]) ∼= H2(S1; Q[ZP ]). (2.4)

But for every space X the Serre spectral sequence associated to the universal

covering X̃ → X → K(π1(X), 1) tells us that H2(π1(X);A) embeds as a sub-

group in H2(X;A) for every coefficient module A. Thus, by Proposition 1.2,

H2(X; Q[ZP ]) 6= 0, which contradicts (2.4). 2

In [3] we study certain subcategories of DP whose inclusion in H does admit

a left adjoint. The main examples are the class of H∗( ; ZP )-local spaces in

the sense of Bousfield ([1]), and the class of spaces X for which the pth power

map σ 7→ σp on the loop space ΩX is a self homotopy equivalence for all primes

p 6∈ P . It is interesting that these two classes of spaces seem to be respectively

minimal and maximal within DP with the property that a left adjoint of their

inclusion into H exists and sends S1 to a K(ZP , 1). Note that the space L that

we used above, as well as many others, must have been left out of the latter two

classes of spaces.

We finally observe that, in the context of the recent work of Dror Farjoun

([8]), Proposition 2.1 implies that there is no map f : A→ B in H such that the
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class of f -local spaces (i.e. spaces X such that f ∗ : map∗(B,X) ' map∗(A,X))

coincides with DP .
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