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Abstract

Homotopical localizations with respect to (possibly proper) classes
of maps are known to exist in suitably structured model categories as-
suming the validity of Vopěnka’s principle from set theory. In this arti-
cle we prove that the existence of localization with respect to arbitrary
classes of maps in the homotopy category of simplicial sets or in the
homotopy category of spectra is equivalent to the weak Vopěnka prin-
ciple. This result is inferred using the equivalence between the latter
and the semi-weak Vopěnka principle, a long-standing open problem
which was solved in 2020. Implications within triangulated categories
and about Bousfield localizations of model categories are provided.

Introduction

One way to state the Vopěnka principle (VP) is that the ordered set Ord of all
the ordinals cannot be fully embedded into any locally presentable category.
In other words, there is no sequence of objects ⟨Xi | i ∈ Ord⟩ indexed by
all the ordinals in a locally presentable category C such that C(Xi, Xj) is a
singleton if i ≤ j and the empty set if i > j. This statement is a large-
cardinal principle that cannot be proved in ZFC. As explained in [2], it has
many important consequences in category theory.

For example, the Vopěnka principle implies that full subcategories of lo-
cally presentable categories are reflective if they are closed under limits, and
they are coreflective if they are closed under colimits. However, as shown
in [2, § 6.D], the reflectivity of limit-closed full subcategories is equivalent
to the statement that there is no full embedding of Ordop into any locally
presentable category, which is a weaker condition than Vopěnka’s principle.
This is called weak Vopěnka principle (WVP). It can be rephrased by saying
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that there is no sequence of objects ⟨Xi | i ∈ Ord⟩ indexed by all the ordinals
in a locally presentable category C such that C(Xi, Xj) is a singleton if i ≥ j
and the empty set if i < j.

In [1, Definition I.11], Adámek and Rosický considered another varia-
tion with the name of semi-weak Vopěnka principle (SWVP), by replacing
the condition that C(Xi, Xj) be a singleton if i ≥ j by the condition that
C(Xi, Xj) be nonempty if i ≥ j. As shown in [1], SWVP is equivalent to
the statement that every injectivity class in a locally presentable category is
weakly reflective.

While it is easy to see that there are implications VP⇒ SWVP⇒WVP,
whether the reverse implications are true or not remained as an open problem
until Wilson proved in [33] that WVP is equivalent to SWVP but not to
VP. In fact the weak Vopěnka principle turned out to be equivalent to the
statement that the class of all ordinals is Woodin —or, equivalently, that for
every class C there exists a C-strong cardinal; see [34]. This determines the
precise place of the weak Vopěnka principle in the large-cardinal hierarchy,
and shows that it is very far below Vopěnka’s principle, even far below the
existence of supercompact cardinals.

It was shown in [15] that the statement that all homotopical localizations
of simplicial sets are f -localizations for some map f is implied by Vopěnka’s
principle, and Przeździecki proved in [26] that the converse is true, that
is, the statement that every homotopical localization of simplicial sets is
an f -localization for a single map f is equivalent to Vopěnka’s principle.
Przeździecki also proved in [26] that the weak Vopěnka principle is equivalent
to the statement that every orthogonality class in the category of groups is
reflective, and he later proved in [27] that the same claim is true for the
category of abelian groups.

Using arguments from [14], we prove in this article that SWVP implies
that localization with respect to any class of maps exists in the homotopy
category of (pointed or unpointed) simplicial sets, and next we infer from
Przeździecki’s results that the latter claim implies WVP. Therefore, since
SWVP and WVP are known to be equivalent by [33], the claim that every
(simplicially enriched) orthogonality class in simplicial sets or in spectra is as-
sociated with a homotopical localization turns out to be equivalent to WVP.

We also show that WVP is equivalent to the claim that every full sub-
category closed under products and fibres in any triangulated category with
locally presentable models is reflective.

As a consequence of our results, the existence of cohomological localiza-
tions of simplicial sets or spectra is implied by the weak Vopěnka principle.
This improves substantially a conclusion from [3], where a similar result was
obtained assuming the existence of a proper class of supercompact cardinals.

2



One could ask if the weak Vopěnka principle is also sufficient to infer the
existence of left Bousfield localizations of left proper combinatorial model
categories with respect to arbitrary classes of maps. This is known to be
true assuming Vopěnka’s principle, by [30, Theorem 2.3] or [12, Lemma 1.4].
In the last section of the article we prove that WVP implies indeed the
existence of left Bousfield localizations with respect to every class of maps S
in a combinatorial model categoryM, assuming that idempotents split in the
homotopy category Ho(M) but with two necessary shortcomings; namely, in
general we can only guarantee the existence of a (right) semi-model category
structure on the localized categoryMS , and moreover factorizations in this
semi-model category structure need not be functorial. Although Quillen’s
small object argument normally produces functors on model categories, our
existence results in this article —based on SWVP— make no use of the small
object argument and therefore yield only functors up to homotopy.

Acknowledgements. We are indebted to Jǐŕı Rosický for explaining to us
the majority of the arguments used in Section 2, and to Giulio Lo Monaco
for useful remarks and suggestions on an earlier draft of this article.

1 Preliminaries

In this article, a graph is a pair (X,R) where X is a set and R is a binary
relation R ⊆ X×X. Thus, elements of X are vertices and there is a directed
edge from x1 to x2 if and only if (x1, x2) ∈ R. We denote by Gra the category
of graphs with relation-preserving functions, and we let Ord be the class of
all ordinals, viewed as a category with a unique morphism λ→ µ if and only
if λ ≤ µ.

A category C is locally presentable if it is cocomplete (i.e., it has all set-
indexed colimits) and there is a regular cardinal λ and a setA of λ-presentable
objects such that every object of C is a λ-filtered colimit of objects from A.
An object X is λ-presentable if the functor C(X,−) preserves λ-filtered col-
imits; see [19, §6.1] for further information about presentability. By [2, Corol-
lary 1.28], locally presentable categories are also complete. Every category
of structures is locally presentable [2, 5.1(5)], and the forgetful functor from
structures into sets creates limits and colimits.
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1.1 Higher orthogonality

A morphism f : A→ B and an object X in a category C are called orthogonal
if the function C(B,X) → C(A,X) sending every g : B → X to g ◦ f is a
bijection of sets. The corresponding higher-categorical notion is as follows:
A morphism f : A→ B and an objectX in an∞-category C are orthogonal if
the induced map of∞-groupoids map(B,X)→ map(A,X) is an equivalence.

To state this definition more accurately, we let C be any simplicially en-
riched category such that the hom simplicial set map(X, Y ) is a Kan complex
for allX and Y . The underlying category of C, which we denote with the same
letter for simplicity of notation, has the same objects as C and the set of mor-
phisms C(X, Y ) is the set of vertices of map(X, Y ), i.e., morphisms X → Y
are represented by simplicial maps ∆[0] → map(X, Y ), where ∆[n] denotes
the standard n-simplex for n ≥ 0. The homotopy category hC has the same
objects as C and the set of morphisms hC(X, Y ) is the set π0(map(X, Y )),
which we denote by [X, Y ]. A morphism f : A → B and an object X in C
are called orthogonal if the composite

map(B,X)×∆[0]
id×f

// map(B,X)×map(A,B) ◦ // map(A,X),

which we abbreviate as

f ∗ : map(B,X) −→ map(A,X),

is a weak equivalence of simplicial sets. We denote this fact by writing f ⊥ X.
For a class S of morphisms in C, its orthogonal class of objects is

S⊥ = {X ∈ C | f ⊥ X for all f : A→ B in S},

and, similarly, given a class D of objects, we denote

D⊥ = {f : A→ B | f ⊥ X for all X in D}.

For a class of morphisms S in C, an S-localization of an object X in C
is a morphism ℓX : X → LX in S⊥⊥ with LX ∈ S⊥. The objects in S⊥ are
called S-local and the morphisms in S⊥⊥ are called S-equivalences.

Higher orthogonality in C yields orthogonality in hC, since a weak equiva-
lence map(B,X) ≃ map(A,X) yields a bijection [B,X] ∼= [A,X]. Although
the converse is not true, S-localizations in C are paired with reflections in hC,
as we next show. For the validity of this result, we need to assume that C is
not only simplicially enriched but also cotensored over simplicial sets. A mor-
phism r : X → D in a category H is a reflection onto a class L of objects if
D ∈ L and r induces a bijection H(D,E) ∼= H(X,E) for every E ∈ L.
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Proposition 1.1. Let S be a class of morphisms in a category C enriched in
Kan complexes and cotensored over simplicial sets, and let X be any object
of C. A morphism r : X → D is an S-localization of X if and only if r is a
reflection onto S⊥ in the homotopy category hC.

Proof. Suppose first that r : X → D is an S-localization. Then for every
E ∈ S⊥ the morphism r induces a weak equivalence

map(D,E) ≃ map(X,E),

which yields a bijection [D,E] ∼= [X,E] on π0. This means precisely that r is
a reflection onto S⊥ in hC. For the converse, we let r : X → D be a reflection
onto S⊥ and need to prove that r ∈ S⊥⊥. Hence we need to prove that for
every E ∈ S⊥ the induced map

r∗ : map(D,E) −→ map(X,E) (1.1)

is a weak equivalence. For this, we prove that (1.1) induces bijections

[W,map(D,E)] ∼= [W,map(X,E)]

for every simplicial set W . Using the cotensoring of C, we have

[W,map(D,E)] ∼= π0

(
map(D,E)W

) ∼= π0

(
map

(
D,EW

)) ∼= [
D,EW

]
. (1.2)

Next we show that EW ∈ S⊥. If f : A→ B is in S, then, since E ∈ S⊥, the
morphism f induces a weak equivalence map(B,E) ≃ map(A,E). Therefore,
for every simplicial set V we have[

V,map
(
B,EW

)] ∼= π0

(
map(B,EW

)V ) ∼= π0

(
map

(
B,EV×W

))
∼=

[
B,EV×W

] ∼= [V ×W,map(B,E)]

∼= [V ×W,map(A,E)] ∼=
[
V,map

(
A,EW

)]
.

Hence f induces a weak equivalence map
(
B,EW

)
≃ map

(
A,EW

)
, as needed.

Now, going back to (1.2), we conclude that r induces

[W,map(D,E)] ∼=
[
D,EW

] ∼= [
X,EW

] ∼= [W,map(X,E)],

which completes the argument.

We emphasize, however, that it is not true that every reflection (onto an
arbitrary class L) on a homotopy category hC is an S-localization for some
class S of morphisms in C. A counterexample is shown in Example 4.3 below.
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IfM is a simplicial model category [20, 21, 28], then the full subcategory
C spanned by the fibrant-cofibrant objects of M is enriched in Kan com-
plexes. Therefore, the concepts of orthogonality and localization apply to C,
and can be extended over M by closing the orthogonality relation under
weak equivalences. The homotopy category hC coincides with the homotopy
category Ho(M) in the usual sense, and Proposition 1.1 also holds in M.
We state this fact for later reference.

Proposition 1.2. Let S be a class of morphisms in a simplicial model cat-
egory M, and let X be an object of M. A morphism r : X → D is an
S-localization of X if and only if r is a reflection onto S⊥ on the homotopy
category Ho(M).

Proof. The argument is the same as for Proposition 1.1, by replacing X and
D by weakly equivalent fibrant-cofibrant objects. When considering E ∈ S⊥,
pick it fibrant and use the fact that cotensoring with a simplicial set is a right
Quillen endofunctor ofM and therefore it preserves fibrant objects.

By a spectrum we mean an object of any simplicial model category Sp
whose underlying category is locally presentable and whose homotopy cate-
gory is equivalent to the classical stable homotopy category —for example,
the Bousfield–Friedlander category [9] or the category of symmetric spectra
over simplicial sets [22].

Given spectra X and Y , the homotopy groups of the hom simplicial set
map(X, Y ) coincide in nonnegative degrees with those the internal hom in Sp.
Therefore, if we consider the derived function spectrum F (X, Y ) —that is,
the internal hom in Sp composed with a cofibrant replacement of the domain
and a fibrant replacement of the codomain— and denote by F c(X, Y ) its
connective cover, then orthogonality of spectra in the sense of this section
can be alternatively formulated as follows: a map f : A→ B and a spectrum
X are orthogonal if and only if the map

F c(B,X) −→ F c(A,X)

induced by f is a weak equivalence of spectra, i.e., it induces isomorphisms
of all homotopy groups; see [8, 13] for additional information.

If a simplicial model category M is stable, then every class of the form
S⊥ is semicolocalizing, that is, S⊥ is closed under fibres, products, and ex-
tensions, hence also under retracts and desuspension [14, § 1.2]. Moreover, if
S is closed under desuspension (or, equivalently, S⊥ is closed under suspen-
sion), then S⊥ is colocalizing, i.e., triangulated and closed under products.
For an arbitrary simplicial model categoryM, each class of the form S⊥ is
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closed under homotopy limits and each class of the form S⊥⊥ is closed under
homotopy colimits; see [20] for a detailed proof. Moreover, both S⊥ and S⊥⊥

are closed under homotopy retracts.

2 From weak reflections to reflections

A subcategory D of a category M is weakly reflective if for every object
X ∈ M there is a morphism f : X → X∗ with X∗ ∈ D such that, for every
morphism g : X → D with D ∈ D there is a morphism h : X∗ → D (not
necessarily unique) such that h ◦ f = g. If a weakly reflective subcategory is
closed under retracts, then it is closed under products [2, Remark 4.5(3)].

The following result was proved in [1, Theorem I.9] for classes closed under
products and retracts assuming Vopěnka’s principle, and it was pointed out
in [1, Remark I.10] that the semi-weak Vopěnka principle was sufficient for
the validity of the proof. In the next proposition, We repeat the argument
from [1] with minor changes and without assuming closedness under retracts,
similarly as in [14, Theorem 2.1].

Proposition 2.1. Suppose that the semi-weak Vopěnka principle holds. If
M is any locally presentable category, then every full subcategory ofM closed
under products is weakly reflective.

Proof. Suppose given a full subcategory D of M closed under products.
Hence, in particular, D contains the terminal object ofM, and we implicitly
assume that D is closed under isomorphisms.

Let V = ∪i∈Ord Vi denote the cumulative hierarchy of sets in ZFC; see
[23] for a precise definition. For each ordinal i, let Di = D ∩ Vi be the set of
all objects in D whose rank is smaller than i, and let Di be the closure of Di

under products and isomorphisms. Hence Di ⊆ Dj if i ≤ j, and

D =
⋃

i∈Ord

Di =
⋃

i∈Ord

Di.

For each object X ofM and every ordinal i, let FX
i = (X ↓ Di) denote

the comma category of X over Di, whose objects are morphisms X → D with
D ∈ Di and whose morphisms are commutative triangles. Let fi : X → Xi

be the product of all the objects of FX
i (in case that FX

i = ∅, we let Xi be
the terminal object ofM).

Every object Y ∈ Di is isomorphic to a product
∏

λ∈ΛDλ with Dλ ∈ Di

(not necessarily distinct), and each morphism g : X → Y is determined by a
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collection of morphisms ⟨δλ : X → Dλ | λ ∈ Λ⟩. Here each δλ is in FX
i and

therefore it can be factored as

X
fi−→ Xi

pλ−→ Dλ,

where the second arrow is a projection. The morphisms pλ (possibly re-
peated) jointly yield a morphism gi : Xi → Y such that gi ◦ fi = g. Hence fi
is a weak reflection of X onto Di.

Moreover, since FX
i is a subcategory of FX

j if i ≤ j, there is a projection
pji : Xj → Xi such that pji ◦ fj = fi whenever i ≤ j. Therefore, the class
⟨fi : X → Xi | i ∈ Ord⟩ can be viewed as a sequence of objects in the comma
category (X ↓ M) equipped with morphisms pji : fj → fi if i ≤ j.

In order to obtain a weak reflection of X onto D, it suffices to find an
ordinal i such that, for all j ≥ i, the map fj can be factorized as fj = qij ◦ fi
for some qij : Xi → Xj. Suppose the contrary. Then there are ordinals
i0 < i1 < · · · < is < · · · , where s ranges over all the ordinals, such that, if
s < t, then

(X ↓ M)(fis , fit) = ∅. (2.1)

Since M is locally presentable, (X ↓ M) is also locally presentable by [2,
Proposition 1.57], and therefore (2.1) is incompatible with the semi-weak
Vopěnka principle, as (X ↓ M)(fis , fit) ̸= ∅ if s ≥ t.

Remark 2.2. It will be useful towards the content of Section 5 to observe
here that the weak reflection onto D constructed in the proof of Proposi-
tion 2.1 is in fact functorial, and moreover it is coaugmented, i.e., it comes
equipped with a natural transformation from the identity functor. To prove
this, for each ordinal i, let us now denote by fX

i : X → Xi the product of all
the objects of the comma category (X ↓ Di) where Di = D ∩ Vi. Suppose
given any map h : X → Y . For every ordinal i there is a map hi : Xi → Yi

such that hi ◦ fX
i = fY

i ◦ h, which is obtained by projecting X → Xi onto
the product of all the objects X → D of (X ↓ Di) that factor through h.

Choose an ordinal x such that for all j ≥ x there is a map qXxj : Xx → Xj

such that fX
j = qXxj ◦ fX

x , and choose an ordinal y with the same property
for Y . Thus, fX

x : X → Xx is a weak reflection of X onto D and fY
y : Y → Yy

is a weak reflection of Y .
If y ≤ x then let h̃ : Xx → Yy be defined as h̃ = pYxy ◦ hx, where pYxy is the

projection of Yx onto Yy. Then

h̃ ◦ fX
x = pYxy ◦ hx ◦ fX

x = pYxy ◦ fY
x ◦ h = fY

y ◦ h.

On the other hand, if y > x then let h̃ = hy ◦ qXxy. Hence,

h̃ ◦ fX
x = hy ◦ qXxy ◦ fX

x = hy ◦ fX
y = fY

y ◦ h.
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In conclusion, for every h : X → Y there is a map h̃ : Xx → Yy such that
h̃ ◦ fX

x = fY
y ◦ h.

Moreover, given two composable maps h : X → Y and g : Y → Z, we
find that for every ordinal i the composite of the maps hi : Xi → Yi and
gi : Yi → Zi is equal to (g ◦ h)i : Xi → Zi, and it follows that the composite
of the maps h̃ : Xx → Yy and g̃ : Yy → Zz is equal to the map Xx → Zz

induced by g ◦ h. Therefore, the assignment X 7→ Xx is indeed functorial,
and coaugmented by fX

x .

From a weak reflection onto a full subcategory C it is possible to con-
struct a reflection onto C under suitable assumptions —our reference is [14,
Theorem 2.2]. First of all, we need that idempotents split in the category
under study, that is, for every morphism e : X → X such that e ◦ e = e there
are morphisms f : X → Y and g : Y → X for some Y such that e = g ◦ f
and f ◦ g = id. Second, C should be closed under retracts. Third, most
fundamentally, the class C should have the following closure property: every
pair of parallel arrows between two objects in C admits a weak equalizer
in C. This happens in homotopy categories of model categories for classes of
objects C closed under homotopy limits. Hence we formulate the following
result in terms of model categories. We omit the assumption thatM be sim-
plicial since every model category admits a simplicial enrichment by means of
homotopy function complexes [20, 21], which suffices to define orthogonality.

Proposition 2.3. LetM be a model category such that idempotents split in
the homotopy category Ho(M). For a class of maps S, if the class of objects
S⊥ is weakly reflective on Ho(M), then S⊥ is reflective on Ho(M).

Proof. Every model category is complete and cocomplete, soM has products
and these are also products in Ho(M). The class S⊥ is closed under retracts
inM and also in Ho(M), since homotopy function complexes are homotopy
invariant and every retract of a weak equivalence of simplicial sets is a weak
equivalence. Moreover, homotopy equalizers in M are weak equalizers in
Ho(M), and a homotopy equalizer of two maps between objects in S⊥ is an
object of S⊥, since S⊥ is closed under homotopy limits inM.

For completeness, we indicate how the reflection is constructed. Since
the class D = S⊥ is closed under products, Proposition 2.1 implies that
D is weakly reflective in M. Let X be any object of M and suppose that
fX
x : X → Xx is a weak reflection of X onto D. Let Xx → D be a (functorial)
trivial cofibration into a fibrant object, which is also in D since D is closed
under weak equivalences. Then the composite f : X → D is a weak reflection
in the homotopy category Ho(M) since for every map g : X → W with W
fibrant in D there is map h : D → W with h ◦ f = g.
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Consider the set K of all pairs (αk, βk) of maps from D to itself such that
αk ◦ f ≃ βk ◦ f . Let u : E → D be a homotopy equalizer in M of the two
maps D →

∏
k D given by

∏
k αk and

∏
k βk respectively, with Y fibrant.

Then E ∈ D since D is closed under homotopy limits.
Since u : E → D is a homotopy equalizer, there is a map s : X → E such

that u ◦ s = f . As E ∈ D and f is a weak reflection of X onto D, there
is a map t : D → E such that t ◦ f ≃ s. Then the pair (u ◦ t, id) is in K.
Consequently, u ◦ t ◦ u ≃ u, and this implies that t ◦ u is idempotent in
Ho(M). Hence t◦u splits, so there are maps t′ : E → Z and u′ : Z → E with
Z fibrant such that u′ ◦ t′ ≃ t ◦ u and t′ ◦ u′ ≃ id. It then follows that Z ∈ D
since Z is a homotopy retract of E. Then the map r = t′ ◦ s from X to Z
is a reflection of X onto D in Ho(M), as shown in detail within the proof of
[14, Theorem 2.2].

Corollary 2.4. Suppose that the semi-weak Vopěnka principle holds. LetM
be a simplicial model category whose underlying category is locally presentable
and such that idempotents split in the homotopy category Ho(M). Then
S-localization exists inM for every class of maps S.
Proof. If r : X → Z is a reflection of X onto S⊥ on Ho(M) as given by
Proposition 2.3, then Proposition 1.2 implies that r is in S⊥⊥. Hence for
every X in C there is a map r : X → Z in S⊥⊥ with Z ∈ S⊥.

For the validity of Corollary 2.4, it is not necessary to assume thatM be
cofibrantly generated nor left proper —these are standard assumptions on
a model category for the purpose of constructing S-localizations by means
of the small object argument when S is a set. Instead of the small ob-
ject argument, our proof is based on the assumption that idempotents split.
Since idempotents split in the category of sets, they do in Ho(M) if Brown
representability holds in Ho(M).

The assumptions thatM be cofibrantly generated and left proper would
however serve to remove the condition thatM be simplicial in Corollary 2.4,
since every left proper combinatorial model category is Quillen equivalent to
a simplicial model category; see [16, 29]. Likewise, every proper cofibrantly
generated stable model category is Quillen equivalent to a simplicial model
category, according to [29, Proposition 1.3].

Corollary 2.5. If the semi-weak Vopěnka principle holds, then S-localization
exists for every class S of maps between spectra.

Proof. Corollary 2.4 applies to the category of Bousfield–Friedlander spec-
tra [9] or to the category of symmetric spectra [22], since they are locally
presentable and idempotents split in their homotopy category. In fact, idem-
potents split in any triangulated category with countable products [25].
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As for simplicial sets, it is neither true that idempotents split in the ho-
motopy category Ho(sSet) nor in the pointed homotopy category Ho(sSet∗),
but they do for pointed connected simplicial sets [18]. The proof of Proposi-
tion 2.3 can be amended to deal with this circumstance. We provide details
in order to highlight the necessary changes.

As shown in [31], if some map in S is not bijective on π0 then S-local
spaces are contractible. Hence we may assume that all maps in S induce
bijections of connected components. If f : A → B is any such map and
we denote by {fα : Aα → Bα} the collection of its restrictions to connected
components of A and B, then a space X is f -local if and only if X is fα-local
for all α. Therefore we may also assume that the class S consists of maps
between connected simplicial sets (by replacing each map in the given class
by the collection of its restrictions to connected components).

We also use the fact that, if we choose basepoints so that each map in
S is basepoint-preserving, then the class of connected S-local spaces in the
pointed category Ho(sSet∗) is the same as the corresponding class in the
unpointed category Ho(sSet) by forgetting the basepoints. This follows, as
observed in [17, A.1], from the fact that for all pointed connected simplicial
sets A and Y there is a fibration

map∗(A, Y ) −→ map(A, Y ) −→ Y

where map∗(A, Y ) is the hom simplicial set in sSet∗ and the right-hand arrow
is evaluation at the basepoint of A.

Consequently, for the proof of the next result we choose to work in the
pointed category sSet∗, and there is no loss of generality if we restrict our-
selves to connected spaces, since an S-localization of an arbitrary space is
the disjoint union of the S-localizations of its connected components after
choosing arbitrary basepoints in them.

Theorem 2.6. If the semi-weak Vopěnka principle holds, then S-localization
exists for every class S of maps between pointed or unpointed simplicial sets.

Proof. By our previous remarks, it suffices to construct an S-localization in
the pointed category sSet∗ for every pointed connected simplicial set X, by
assuming that maps in S are basepoint-preserving maps between connected
simplicial sets. The proof of this result proceeds in the same way as the
proof of Proposition 2.3. Let D = S⊥. By Proposition 2.1, there is a weak
reflection f : X → D of X onto D, since sSet∗ is locally presentable. We may
assume that D is fibrant and view f as a weak reflection in the homotopy
category Ho(sSet∗). Since X is connected, the image of f is contained in the
basepoint component D0 of D, and the codomain restriction f0 : X → D0 is
still a weak reflection of X onto D in Ho(sSet∗).
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Consider the set K of all pairs (αk, βk) of maps from D0 to itself such that
αk ◦f0 ≃ βk ◦f0. Let u : E → D0 be a homotopy equalizer in sSet∗ of the two
maps D0 →

∏
k D0 given by

∏
k αk and

∏
k βk respectively, with E fibrant.

Then E ∈ D since D is closed under homotopy limits. Pick the basepoint
component E0 of E, which is also in D because it is a retract of E.

Since u : E → D0 is a homotopy equalizer, there is a map s : X → E
such that u ◦ s = f0, and s factors through a map s0 : X → E0 since X is
connected; that is, s = i ◦ s0, where i : E0 → E is the inclusion. As E0 ∈ D
and f0 is a weak reflection of X onto D, there is a map t : D0 → E0 such that
t◦f0 ≃ s0. Then the pair (u◦i◦t, id) is in K and, consequently, u◦i◦t◦u ≃ u.
This implies that t ◦ u ◦ i is idempotent in Ho(sSet∗).

Now we use the fact that, according to [18], idempotents split for pointed
connected simplicial sets. Thus, since E0 is connected, t◦u◦ i splits, so there
are maps t′ : E0 → Z and u′ : Z → E0 with Z fibrant such that u′◦t′ ≃ t◦u◦i
and t′ ◦ u′ ≃ id. It then follows that Z ∈ D (and Z is connected) since Z is
a retract of E0. The argument showing that the map r = t′ ◦ s0 from X to
Z is a reflection of X onto D in Ho(sSet∗) is the same as in the proof of [14,
Theorem 2.2].

We emphasize the following special case.

Corollary 2.7. Cohomological localizations of simplicial sets or spectra exist
under the semi-weak Vopěnka principle.

Proof. For a generalized cohomology theory E∗ defined on simplicial sets or
on spectra, let S be the class of E∗-equivalences, that is, maps X → Y such
that the induced homomorphisms En(Y ) → En(X) are isomorphisms for
all n ∈ Z. Then the reflectivity of S⊥ follows from Corollary 2.5 in the case
of spectra and from Theorem 2.6 in the case of simplicial sets.

This result is a substantial improvement with respect to the state of
the art about the existence of cohomological localizations, which is an open
problem in ZFC and it was shown to be implied by the existence of a proper
class of supercompact cardinals in [3].

3 Reverse implications

In this section, we address the converse of Corollary 2.5 and Theorem 2.6
using results by Przeździecki, who proved that, if the weak Vopěnka principle
is false, then there exist non-reflective orthogonality classes of groups [26] and
non-reflective orthogonality classes of abelian groups [27].
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In the argument that follows, we use, as in [26], the fact that that sending
every group G to an Eilenberg–Mac Lane space K(G, 1) is a full embedding
of the category of groups into the homotopy category of pointed simplicial
sets, since for all groups G and H there is a natural bijective correspondence
between the set of pointed homotopy classes of maps [K(G, 1), K(H, 1)] and
the set of group homomorphisms Hom(G,H).

Moreover, a homomorphism φ : P → Q is orthogonal to a group G if and
only if the map K(P, 1)→ K(Q, 1) induced by φ is orthogonal to a K(G, 1),
since the space map∗(K(P, 1), K(G, 1)) is discrete and its set of connected
components is in bijective correspondence with Hom(P,G), and similarly
with Q.

Theorem 3.1. If S-localization exists in the homotopy category of pointed
simplicial sets for every class of maps S, then the weak Vopěnka principle
holds.

Proof. Suppose that the weak Vopěnka principle is false. Then, according
to [26, Proposition 8.7], there exists a non-reflective orthogonality class G of
groups. The fact that G is an orthogonality class implies that G = G⊥⊥.

Let K be the class of Eilenberg–MacLane spaces K(G, 1) with G ∈ G.
By assumption, the class K⊥⊥ is reflective in Ho(sSet∗). Let L be a reflector.
We next show that every connected simplicial set X ∈ K⊥⊥ is in K. First
of all, the map S2 → ∗ is in K⊥, since map∗(S

2, K(G, 1)) = Ω2K(G, 1) is
contractible for every group G. If X is a connected simplicial set in K⊥⊥,
then X is orthogonal to S2 → ∗ and hence map∗(S

2, X) is contractible. This
implies that πn(X) = 0 for n ≥ 2, so X is indeed an Eilenberg–Mac Lane
space. There remains to show that π1(X) ∈ G, which is equivalent to the
statement that π1(X) ∈ G⊥⊥. Let φ : P → Q be any homomorphism in G⊥.
Then the induced map K(P, 1) → K(Q, 1) is in K⊥. Since X ∈ K⊥⊥, the
map K(P, 1) → K(Q, 1) is orthogonal to X, and this implies that π1(X) is
orthogonal to φ, as needed.

Now letG be any group. Consider the localization ℓ : K(G, 1)→ LK(G, 1).
Here LK(G, 1) is connected since every localization of a connected space is
connected [31]. Let us consider the induced group homomorphism ℓ∗ : G→ H
where H = π1(LK(G, 1)). Thus, LK(G, 1) = K(H, 1) with H ∈ G since
LK(G, 1) ∈ K⊥⊥ and it is connected.

If J is any group in G, then the corresponding K(J, 1) is in K and hence
it is orthogonal to ℓ. This means precisely that J is orthogonal to ℓ∗ and
therefore ℓ∗ is a reflection of G onto G. Hence the class G is reflective, which
is a contradiction.
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Corollary 3.2. The statement that S-localization exists in the homotopy
category of pointed simplicial sets for every class of maps S is equivalent to
the weak Vopěnka principle.

Proof. We have proved that the semi-weak Vopěnka principle implies the
existence of arbitrary S-localizations of pointed simplicial sets in Section 2,
and Theorem 3.1 says that the latter implies the weak Vopěnka principle.
Hence our result follows from the fact that the weak Vopěnka principle is
equivalent to the semi-weak Vopěnka principle, as proved in [33].

The stable analogue is similar. In the next result, we use the fact that
that sending every abelian group A to an Eilenberg–Mac Lane spectrum HA
with a single nonzero homotopy group isomorphic to A in dimension 0 is a full
embedding of the category of abelian groups into the homotopy category of
spectra. Indeed, the derived function spectrum F (HA,HB) has two nonzero
homotopy groups in general, namely

π0(F (HA,HB)) ∼= Hom(A,B)

π−1(F (HA,HB)) ∼= [HA,ΣHB] ∼= Ext(A,B).

Therefore the connective cover F c(HA,HB) is an Eilenberg–Mac Lane spec-
trum whose π0 is isomorphic to Hom(A,B), and this implies that a homo-
morphism of abelian groups φ : A→ B is orthogonal to an abelian group C
if and only if the induced map HA→ HB is orthogonal to HC.

Theorem 3.3. If S-localization exists in the homotopy category of spectra
for every class of maps S, then the weak Vopěnka principle holds.

Proof. Under the negation of the weak Vopěnka principle, there is a non-
reflective orthogonality class A of abelian groups by [27, Proposition 6.8].
Thus, A = A⊥⊥.

Let H be the class of Eilenberg–MacLane spectra HA with A ∈ A.
By assumption, the class H⊥⊥ is associated with a localization L on the
homotopy category of spectra. Similarly as in the proof of Proposition 3.1,
we next show that every connective spectrum X ∈ H⊥⊥ is in H. If S denotes
the sphere spectrum, then the map ΣS → 0 is in H⊥, since F c(ΣS,HA) = 0
for every A. Since X is in H⊥⊥, we have that X is orthogonal to ΣS → 0 and
hence F c(ΣS,X) = 0. This implies that πn(X) = 0 for n ≥ 1, so X ≃ HE
since X is connective. There remains to show that E ∈ A, that is, E ∈ A⊥⊥.
For this, let φ : P → Q be any homomorphism in A⊥. Then the induced
map HP → HQ is in H⊥. It follows that the map HP → HQ is orthogonal
to X, and this implies that E is orthogonal to φ, as needed.
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Let A be any abelian group. Consider the localization ℓ : HA → LHA
and the induced group homomorphism ℓ∗ : A → B where B = π1(LHA).
Since ℓ is also a localization of HA with respect to the set {ℓ}, it follows
from [13, Theorem 5.6] that

LHA ≃ HB × ΣHC

for some abelian group C. Therefore, LHA is connective. Since LHA ∈ H⊥⊥,
we may infer from the above argument that LHA ∈ H, and consequently
C = 0 and B ∈ A.

We finally show that ℓ∗ : A→ B is a reflection of A onto A and hence the
classA is reflective, which is a contradiction. If E is any group inA, thenHE
is in H and hence it is orthogonal to ℓ. If φ : P → Q is any homomorphism
in A⊥, then the induced map HP → HQ is in H⊥, and it follows that the
map HP → HQ is orthogonal to HE, which implies that E is orthogonal
to φ, as needed.

Corollary 3.4. The statement that S-localization exists in the homotopy
category of spectra for every class of maps S is equivalent to the weak Vopěnka
principle.

Proof. One implication is given by Corollary 2.5, and the converse follows
from Theorem 3.3.

It was shown in [14, Theorem 2.4] that, if Vopěnka’s principle holds, then
every full subcategory closed under products and fibres of the homotopy
category of a stable locally presentable model category is reflective. Here we
improve this result as follows.

Corollary 3.5. The statement that every full subcategory closed under prod-
ucts and fibres of the homotopy category of a stable locally presentable model
category is reflective is equivalent to the weak Vopěnka principle.

Proof. Assuming the weak Vopěnka principle, Proposition 2.3 tells us that
every full subcategory closed under products and fibres of the homotopy cat-
egory of a stable locally presentable model category is reflective, since every
model category is cocomplete and hence, assuming it stable, idempotents
split in its homotopy category. Moreover, a fibre of the difference f − g of
two parallel maps f and g is a weak equalizer.

To prove the converse, suppose that the weak Vopěnka principle does not
hold. Then, as in the proof of Theorem 3.3, there exists a non-reflective
orthogonality class A of abelian groups. If H denotes the class of Eilenberg–
Mac Lane spectra HA with A ∈ A, thenH⊥⊥ is closed under fibres (although
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H need not be). Therefore a localization ℓ : HA → LHA onto H⊥⊥ exists
for every abelian group A and this implies that A is reflective, which is a
contradiction.

Recall that a full triangulated subcategory of a triangulated category is
called colocalizing if it is closed under products. We do not know if the
statement that every colocalizing subcategory of the homotopy category of
a stable locally presentable model category is reflective implies the weak
Vopěnka principle (or any other large-cardinal principle). The class H⊥⊥

used in the proof of Corollary 3.5 is not closed under suspensions (nor cofibres
in general), hence not colocalizing.

4 Examples and counterexamples

Example 4.1. This example shows that the statement that every full sub-
category closed under products in a locally presentable category is weakly re-
flective —which was proved under the semi-weak Vopěnka principle in Propo-
sition 2.1— cannot be proved in ZFC. In [14, Corollary 2.7], a class of spectra
closed under products and retracts but not weakly reflective was exhibited
assuming the nonexistence of measurable cardinals. That class consists of
Eilenberg–Mac Lane spectra HA where A belongs to the closure of the class
of groups Zκ/Z<κ under products and retracts, where κ runs over all cardi-
nals and Zκ denotes a product of copies of Z indexed by κ while Z<κ is the
subgroup of those sequences whose support has cardinality smaller than κ.

Example 4.2. It is not true that every full subcategory closed under prod-
ucts an retracts in a locally presentable category is reflective, not even as-
suming large-cardinal principles. To illustrate this fact, we recall that the
class C of 1-connected simplicial sets is closed under products and retracts
but it is not reflective in Ho(sSet∗). The following argument is due to Mislin
[17, A.1.3]. Suppose that a map ℓ : RP 2 → X is a reflection onto C, where
RP 2 denotes the real projective plane. Then ℓ induces an isomorphism

[X,K(Z, 2)] ∼= [RP 2, K(Z, 2)].

However, [X,K(Z, 2)] ∼= H2(RP 2;Z) ∼= Z/2 while

[RP 2, K(Z, 2)] ∼= H2(X;Z) ∼= Hom(H2(X;Z),Z)

is torsion-free for every 1-connected space X. This does not contradict The-
orem 2.6 because C is not of the form S⊥ for any class of maps S; this is due
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to the fact that C is not closed under homotopy limits, since the homotopy
fibre of a map between 1-connected spaces need not be 1-connected.

Similarly, the class of spaces whose fundamental group is uniquely radica-
ble and whose higher homotopy groups are Q-vector spaces for every choice
of a basepoint is closed under products and retracts but it is not reflective in
Ho(sSet∗), as shown in [11].

Example 4.3. There are reflections onto full subcategories closed under
products and retracts in Ho(M) for a simplicial model categoryM that are
not S-localizations for any class of morphisms S. Our main example involves
the class C of connective spectra whose homotopy groups are Q-vector spaces.
A reflection onto C in Ho(Sp) can be given explicitly as follows. For an
arbitrary spectrum X, let X ∧ HQ be its rationalization. Since X ∧ HQ
splits as a wedge

∨
k∈Z ΣkH(πk(X)⊗Q), we can retract it into

LX =
∨
k≥0

ΣkH(πk(X)⊗Q)

(or into any other segment). The composite ℓ : X → LX is a reflection
onto C, since every map X → Y where Y ∈ C factors uniquely through
X ∧HQ up to homotopy, and [ΣkHA, Y ] = 0 if k < 0, for all A. However,
the class C is not closed under fibres and therefore L is not an S-localization
for any class of maps S.

In this example, L can be lifted to an endofunctor on Sp, namely the
composite of X 7→ X ∧HQ with passage to the connective cover. However,
while the first functor is coaugmented, the second functor is augmented, that
is, there is a zig-zag of natural transformations

X −→ X ∧HQ←− (X ∧HQ)c.

The second arrow can be reversed in Ho(Sp), but not in Sp. Indeed, it follows
from [12, Theorem 2.2] that there does not exist any natural transformation
Id→ L in Sp lifting the unit ℓ of the reflection L on Ho(Sp).

Example 4.4. The existence of cohomological localizations is not equiva-
lent to the weak Vopěnka principle. The reason is that it follows from [3,
Theorem 9.3] that to infer the existence of cohomological localizations it is
sufficient to assume that the weak Vopěnka principle holds for classes de-
finable with Σ2 formulas (with parameters) in the Lévy hierarchy [24]. The
weak Vopěnka principle for Σ2 classes with parameters is equivalent to the
existence of a proper class of strong cardinals, as shown in [4].

As of today, it is not known if the existence of cohomological localizations
is equivalent to the validity of any large-cardinal principle.
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5 Left Bousfield localizations

left Bousfield localization of a model categoryM with respect to a class of
maps S is a model structure MS on the same underlying category as M
together with a left Quillen functor M → MS which is initial among left
Quillen functors that send maps in S to weak equivalences. Such a model
category is known to exist ifM is combinatorial and left proper and S is a
set. The same conclusion holds for a class S using Vopěnka’s principle, by
[30, Theorem 2.3] or by [12, Lemma 1.4]. If a left Bousfield localizationMS
exists, then a fibrant replacement onMS yields an S-localization onM in
the sense of the previous sections.

It is natural to ask under which conditions an S-localization L on Ho(M)
can be enhanced into a left Bousfield localization of M. Example 4.4 in
the previous section is not an obstruction for this, since the reflection L
constructed in that example is not an S-localization for any class of maps S.
Yet, Example 4.4 illustrates the fact that it is not possible in general to lift
a reflection on Ho(M) to a coaugmented functor onM.

A semi-model category is defined with the same axioms as a model cate-
gory, except that the lifting axiom and the factorization axiom hold only for
morphisms with fibrant codomain (in right semi-model categories) or instead
with cofibrant domain (in left semi-model categories). It was shown in [5]
that if the assumption that M be left proper is omitted, then a Bousfield
localizationMS for a set of maps S still exists as a left semi-model category.
Furthermore, as pointed out in see [5, § 5], an example where left properness
fails and left Bousfield localization does not exist as a model category is given
in [32, Example 3.48].

The next theorem is based on results from [7] and [10] and states the
existence of a right semi-model structure onMS under suitable assumptions.

Theorem 5.1. Suppose given a class of maps S in a combinatorial model cat-
egoryM such that idempotents split in Ho(M). Assuming the weak Vopěnka
principle, a left Bousfield localizationMS exists as a right semi-model cate-
gory with non necessarily functorial factorizations.

Proof. Since combinatorial model categories are locally presentable, we use
the argument given in the proof of Proposition 2.1 to obtain a weak reflection
fX
x : X → Xx onto S⊥ for every object X. Furthermore, for every map
h : X → Y inM there is a map h̃ : Xx → Yy such that h̃ ◦ fX

x = fY
y ◦ h, as

shown in Remark 2.2.
Using the assumption that idempotents split in Ho(M), we obtain from

Proposition 2.3 a reflection ℓX : X → LX for everyX. According to the proof
of Proposition 2.3, the map ℓX is the composite of two maps sX : X → EX
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and t′X : EX → LX. The map sX can be made functorial since homotopy
limits are functorial inM, and we also have a strict equality uX ◦ sX = fX

x .
The map tX can be chosen so that tX ◦fX

x = sX , since f
X
x is a weak reflection

onM. Moreover, if LX → EX is a cofibration then t′X and u′
X can be chosen

so that u′
X ◦ t′X = tX ◦ uX strictly. Then we may define Lh : LX → LY as

Lh = t′Y ◦ Ef ◦ u′
X , and we obtain that

Lh ◦ t′X ◦ sX = t′Y ◦ Ef ◦ tX ◦ uX ◦ sX = t′X ◦ Ef ◦ sX = t′Y ◦ sY ◦ h.

Hence for every map h : X → Y inM there is a map Lh : LX → LY such
that Lh ◦ ℓX = ℓY ◦ h strictly, not just up to homotopy.

As a consequence, even though L need not be an endofunctor of M,
condition A.2 from [7] is fulfilled. Conditions A.3 and A.4 are also fulfilled,
since the class of L-equivalences is equal to S⊥⊥, and condition A.5 is checked
with a similar argument as in [7, Proposition 6.6].

As pointed out in [10, Proposition 3.13], the fact that (L, ℓ) satisfies con-
ditions A.2–A.5 from [7] ensures the existence of a right semi-model structure
MS as in [10, Theorem 3.5]. For this to hold, it is not necessary to assume
that M be proper. In this semi-model structure, factorizations need not
be functorial, in accordance with the fact that there need not be a fibrant
replacement functor onMS lifting L.
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classes of structures, J. Symb. Log. 88 (2023), no. 1, 145–168.

[5] M. A. Batanin and D. White, Left Bousfield localization without left
properness, J. Pure Appl. Algebra 228 (2024), no. 6, 107570.

[6] J. Bergner, A model category structure on the category of simplicial
categories, Trans. Amer. Math. Soc. 359 (2007), 2043–2058.

19



[7] G. Biedermann and B. Chorny, Duality and small functors, Alg. Geom.
Topol. 15 (2015), 2609–2657.

[8] A. K. Bousfield, Unstable localization and periodicity, in: Algebraic
Topology; New Trends in Localization and Periodicity (Sant Feliu de
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