
LOCALIZATION OF q-ABELIAN GROUPS

Carles Casacuberta

Abstract. Let q be a prime number. We prove that the (1/q)-localization of a
q-abelian group (i.e. a group in which (xy)q = xqyq for all x, y) is again a q-abelian

group. This provides an example of a class of groups which need not be nilpotent

and behave well under localization.
First we point out some facts on the structure of q-abelian groups and describe a

simple procedure to obtain nontrivial examples.

1. Introduction.

A group G in which (xy)n = xnyn holds for all elements x, y and some fixed
integer n has been called n-abelian.

This concept was first considered in [12] and extensively analyzed in [7], [2], [3],
[1]. Most of the standard notation was introduced by R. Baer in [3].

Many other authors have contributed to the description of the structure and
properties of n-abelian groups. One of the most complete general studies is [17].
Useful generalizations and applications have been recently described in [10], [5] and
[11].

Our main interest in n-abelian groups is the following: if A is an abelian group
and q is a prime number, then the (1/q)-localization of A is the natural map A→
A⊗ Z[1/q], a �→ a⊗ 1. This localization can be obtained, up to isomorphism, by
taking the direct limit of the telescope:

A
f−→ A

f−→ A
f−→ . . .

where f(a) = qa.
Now, if G is q-abelian, we can also consider:

G
f−→ G

f−→ G
f−→ . . .

where f(x) = xq. As expected, the direct limit of this system has unique qth roots
and the natural map from G to it is universal with respect to homomorphisms
from G to q-abelian groups with unique qth roots. This idea has been developed
in a slightly more general setting by I. Pop in [13]. We have observed that this
procedure, in fact, surprisingly gives the (1/q)-localization of G in the category of
all groups (that is, the map above mentioned turns out to be universal with respect
to homomorphisms from G to arbitrary groups having unique qth roots). This is
proved in section 5. Hence, q-abelian groups are (1/q)-localizable by telescoping
([9]).
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Many other concepts and constructions can be transferred from abelian groups to
n-abelian groups. This general principle is the starting point of [3], where, among
other things, the author points out (without proof) that the elements of finite order
in an n-abelian group form a subgroup. We supply a proof of this fact in section
3 and use it to obtain a clearer understanding of the effect of localization on a
q-abelian group.

We thank Luise-Charlotte Kappe for her valuable comments and for kindly mak-
ing known to us the extensive literature on the subject, from the first paper of F.
W. Levi (1944) until her own very recent work. We are also indebted to Manuel
Castellet, Pere Menal and the referee for many helpful suggestions.

2. Notation and remarks.

We denote [x, y] = xyx−1y−1.

Let n be a fixed integer. In this paper we always assume n ≥ 2.

Definition 1 ([3]). A group G is n-abelian if (xy)n = xnyn for all elements
x, y of G.

That is, G is n-abelian if and only if the power map x �→ xn is an endomorphism
of G.

Clearly n-abelian groups form a variety, which we denote n-Ab. It contains the
following subvarieties:

(i) Abelian groups.
(ii) Groups in which xn = 1 for all x.

(iii) Groups in which xn = x for all x.

In fact, n-Ab is the smallest variety containing (i), (ii) and (iii). This was proved
by J. L. Alperin in [1].

The verbal subgroup of a given group G with respect to n-Ab is called the
n-commutator of G, and is usually denoted [G,G;n]. This definition contains the
following information ([18, I.2]): [G,G;n] is the subgroup of G generated by all
the elements of the form xnyn(xy)−n (which is a normal subgroup), G/[G,G;n] is
n-abelian and the epimorphism G � G/[G,G;n] is universal among all homomor-
phisms G→ K with K n-abelian.

It is clear that [G,G;n] is always contained in the commutator subgroup [G,G].

The free n-abelian groups are the free objects in n-Ab.
It follows again from general considerations ([18, I.3]) that the free n-abelian

group on a set S may be described as Fn = F/[F, F ;n], where F is the free group
on S.

Every n-abelian group is a quotient of some free n-abelian group.
Free n-abelian groups were first considered by O. Grün in [7]. They were an

essential tool in [1], and have been recently studied in [19] and [10].
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The fact of being a group n-abelian forces it to satisfy several restrictive condi-
tions of a purely combinatorial nature. We shall make use of the following ones,
which are contained for example in [1, lemma 1]:

Lemma 1. If G is n-abelian, then [xn−1, yn] = 1 for all x, y in G.

Lemma 2. If G is n-abelian and satisfies:

[G,G] ∩ ker(x �→ xn) = 1,

then it is also (n− 1)-abelian.

Lemma 3. A torsion-free n-abelian group must be abelian.

3. The torsion subgroup.

Given an arbitrary group G, we call T (G) the set of all elements of G of finite
order, and Tn(G) ⊆ T (G) the set of those elements of n-torsion (i.e. such that
xnk

= 1 for some k ≥ 0).

If G is n-abelian, then Tn(G) is clearly a normal subgroup of G. We may factor:

G = G/Tn(G)

and then G has no elements of n-torsion. It follows from lemma 2 that G is also
(n− 1)-abelian.

Lemma 4. T (G) is a normal subgroup of G.

Proof. Given x, y ∈ T (G), pick an integer k such that xk = yk = 1. Since G is
n-abelian and (n− 1)-abelian, we have:

xn−1yn−1 = (yx)n−1 = yn−1xn−1

That is, [xn−1, yn−1] = 1. Then (xy)k(n−1) = ((xy)n−1)k = (xn−1yn−1)k =
xk(n−1)yk(n−1) = 1. Hence xy ∈ T (G). This means that T (G) is a subgroup of G.
The normality is obvious. �

From this we immediately obtain:

Proposition 1. If G is n-abelian, then T (G) is a normal subgroup of G.

Proof. Given x, y ∈ T (G), consider their classes x, y ∈ T (G). By lemma 4, xy ∈
T (G), which means (xy)k ∈ Tn(G) for some integer k. Hence xy ∈ T (G). The
normality is again obvious. �

It is interesting to know what this torsion subgroup looks like in the case of a
free n-abelian group. First recall from lemma 3 that for any n-abelian group G we
have [G,G] ⊆ T (G).
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Proposition 2. Let Fn be a free n-abelian group. Then:

T (Fn) = [Fn, Fn].

Proof. We only need to prove the inclusion T (Fn) ⊆ [Fn, Fn]. This can be derived
from a remark in [1]: write Fn = F/[F, F ;n] (§2), where F is a free group. Then
[F, F ;n] ⊆ [F, F ] implies Fn/[Fn, Fn] ∼= F/[F, F ], which is torsion-free. Our claim
follows. �

We summarize our conclusions in a structure result which will be useful in section
5:

Theorem 1. Let G be an n-abelian group. There is a short exact sequence:

1 → T (G) → G→ A→ 1

where A is abelian. Moreover, if Tn(G) = 1, then the map x �→ xn is an automor-
phism of T (G).

Proof. The first claim follows from proposition 1 and lemma 3.
The argument to prove the second assertion is standard: given y ∈ T (G), we

can find an integer k such that (k, n) = 1 and yk = 1. Write λk + μn = 1 with
appropriate integers λ, μ. This gives:

y = yλk+μn = yμn = (yμ)n

and thus the monomorphism x �→ xn is also an epimorphism in T (G). �

4. New examples of n-abelian groups.

We would like to have at hand explicit examples of noncommutative n-abelian
groups. Let us call those examples which are direct products of groups of type (i),
(ii) and (iii) in §2 trivial.

In view of theorem 1, it seems natural to start analyzing the structure of those
groups in which x �→ xn is an automorphism, in our attempt to find nontrivial
examples.

We have found the following decompositions:

Proposition 3. Let T be a group in which x �→ xn is an automorphism. There
are short exact sequences:

(a) 1 → Z(T ) → T → Q→ 1

where Z(T ) is the center of T and the map x �→ xn is the identity map in Q.

(b) 1 → N → T → A→ 1

where A is abelian, the map x �→ xn is the identity map in N , and N is maximal
with respect to that property.
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Proof.
(a) By lemma 1, xn−1 ∈ Z(T ) for all x ∈ T . Hence (x)n−1 = 1 for all x ∈ Q =

T/Z(T ).

(b) Let N = {x ∈ T | xn = x}. It is clear that N is a normal subgroup of T .
Now, given x, y ∈ T , we have:

[x, y]n−1 = (xyx−1y−1)n−1 = xn−1yn−1x−(n−1)y−(n−1) = [xn−1, yn−1] = 1

because T is (n− 1)-abelian by lemma 2 and the (n− 1)th powers lie in the center
of T .

It follows that [x, y]n = [x, y] and hence [T, T ] ⊆ N . This implies that A = T/N
is abelian. �

Example 1. Let n = 5 and T = Q8×Z/8, where Q8 denotes the quaternion group
of order 8. T is a trivial example, in our sense, of a group in which x �→ xn is an
automorphism.

One obtains:

Z(T ) ∼= Z/2 × Z/8 N ∼= Q8 × Z/4
Q ∼= Z/2 × Z/2 A ∼= Z/2.

Thus, in spite of the symmetry, the extensions (a) and (b) in proposition 3 need
not be split.

It is not difficult to show a nontrivial example:

Example 2. Let G = 〈s, t | s3 = t2 = (st)2〉. This group has order 12 and is
indecomposable. One readily checks that the map x �→ x7 is a homomorphism
(and hence an automorphism), which is not the identity because t7 = t−1.

Following the notation of proposition 3, we find thatQ ∼= Σ3 and N = 〈s〉 ∼= Z/6.

In fact, this example turns out to be a particular case of a more general situation.
It gives the idea of a method which produces many nontrivial examples on n-abelian
groups, as we next describe.

This method is essentially based on the following obvious remark:

Lemma 5. If G1, G2 are n-abelian groups, Q is an arbitrary group, and f1 : G1 →
Q, f2 : G2 → Q are homomorphisms, then the pull-back B = {(x, y) ∈ G1 × G2 |
f1(x) = f2(y)} is n-abelian.

Now take an arbitrary group homomorphism f : G→ Q and let Q act on a given
group N through ω : Q→ Aut(N). Then G acts on N through ωf .

In this situation we have a well-defined homomorphism: ϕ : N � G → N � Q,
ϕ(a, x) = (a, f(x)), rendering the following diagram commutative:

1 −−−−→ N −−−−→ N �G −−−−→ G −−−−→ 1∥∥∥ ϕ

⏐⏐� f

⏐⏐�
1 −−−−→ N −−−−→ N �Q −−−−→ Q −−−−→ 1
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It is plain that the right square is a pull-back square. The argument is the
following:

Write B = {(x, (a, y)) ∈ G × (N � Q) | f(x) = y}. Then ϕ and the projection
N�G � G induce a homomorphism θ : N�G → B, namely θ(a, x) = (x, ϕ(a, x)) =
(x, (a, f(x))). Clearly θ is mono and epi.

We immediately obtain:

Theorem 2. Let f : G → Q be an arbitrary group homomorphism, and let Q act
on a given group N .

(a) If G and N �Q are n-abelian, then N �G is also n-abelian.

(b) Suppose that the map x �→ xn is the identity map in N �Q. Then it is an
automorphism of N � G if and only if it is an automorphism of G, and it is the
identity map in N �G if and only if it is the identity map in G.

Proof. Assertion (a) follows from lemma 5.
To prove (b), use the isomorphism θ above described:
θ((a, x)n) = (θ(a, x))n = (x, (a, f(x)))n = (xn, (a, f(x))n) = (xn, (a, f(x))) =

θ(a, xn).
Hence (a, x)n = (a, xn) and our claim follows. �

Corollary 1. Let G be an abelian group acting on a finite group N through ω : G→
Aut(N). Let r be the order of N � (G/ kerω). Then N � G is n-abelian at least
for n ≡ 0, 1 mod r.

Proof. Apply theorem 2(a) to f : G � G/ kerω. �

Example 3. A whole family of examples which arise in this way are the dicyclic
groups:

Gm = 〈s, t | sm = t2 = (st)2〉
with m odd and n = 2m+ 1.

Changing z = st2 one obtains:

Gm = 〈z, t | zm = t4 = 1, tzt−1 = z−1〉.

Hence Gm
∼= Z/m� Z/4, where the action ω : Z/4 → Aut(Z/m) is given by the

relation tzt−1 = z−1. Then kerω = 〈t2〉 and Z/m� ((Z/4)/ kerω) ∼= Z/m� Z/2 is
the dihedral group of order 2m.

By theorem 2(b) the map x �→ x2m+1 is an automorphism of Gm which is not
the identity, because it is a nontrivial automorphism of Z/4 (being m odd).

Observe that example 2 is just the case m = 3.
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Note. Given an arbitrary group G, plainly the set of those integers n such that
G is n-abelian is multiplicatively closed. It is called the exponent semigroup of G.
The study of this set was the motivation for [12] and the subject of several recent
papers (see [19] for some references, and also [10], [5]).

Finally, we would like to know when the examples produced by theorem 2 are
nontrivial in our sense. The next proposition guarantees it under some rather
general assumptions.

If a group G acts on a group N , let us denote NG the subgroup of invariant
elements under the action.

Proposition 4. Let G be an indecomposable group acting on an abelian group
A = 0. Suppose that AG = 0. Then A � G cannot be properly decomposed as a
direct product B ×K with B abelian.

The proof is an easy consequence of the following fact: if a group G acts on an
abelian group A through ω : G→ Aut(A), then:

(a, x) ∈ Z(A�G) ⇐⇒
{
x ∈ Z(G) ∩ kerω
a ∈ AG.

It follows from proposition 4 that the groups Gm in example 3 are nontrivial in
our sense.

5. Localization of q-abelian groups.

5.1. Definitions and remarks.

Let P be a fixed set of primes.
We recall the following concept from [8]: a group K is P -local if the map x �→ xp

is bijective in K for each prime p not in P .
Given a group G, a homomorphism l : G → GP is a P -localization if GP is P -

local and l is universal (initial) among all homomorphisms f : G → K in which K
is P -local.

It is well-known that each group admits a P -localization (see for example [15]).
Then it is plainly unique up to isomorphism and functorial.

However, it is not easy to handle the P -localization of an arbitrary group. For
example, as far as we know, there is no good description of ker l in general.

In this section we fix a prime q and take P to be the set of all primes p = q.
Hence a P -local group (or (1/q)-local group) will be a group in which each element
has a unique qth root.

We are going to show that q-abelian groups can be P -localized by telescoping
in the sense of [9]. This allows us to describe several good properties of their
P -localization, completely analogous to those of the abelian case.

Our construction is based on the following argument (which is valid for an arbi-
trary set P ):
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Recall that if K is a P -local group and H is a subgroup of K, then the isolator
of H in K, denoted I(K,H), is the smallest P -local subgroup of K containing H.
If H is already P -local, then it is said to be isolated in K.

It often occurs that we have a P -localization functor in some variety V of groups
(that is, given G in V, we have a homomorphism λ : G→ G∗ in V which is universal
among all f : G → K in V with K P -local). This is the case, for example, with
V = N ilc = nilpotent groups of class c or less ([8]).

A necessary and sufficient condition in order to know that this functor is the
restriction of the P -localization in the whole category of all groups can be given as
follows:

Proposition 5. Let V be a variety of groups. Suppose that each group G in V has
a P -localization λ : G→ G∗ in V.

The following statements are equivalent:

(a) GP lies in V for each group G in V.

(b) If K is a P -local group and a given subgroup H ⊆ K is in V, then I(K,H)
is also in V.

(c) For each G in V there is a unique isomorphism rendering the following dia-
gram commutative:

G
l−→ GP

↓
G∗

This criterion has been more or less explicitly used in [6] and [16], where the case
V = N ilc was considered and affirmatively answered. The case c = 1 (V = Ab) is
particularly simple ([6, theorem 1.1.14]). Thus for each abelian group A we may
write AP = A⊗ZP without ambiguity. In our case P = {p = q}, ZP = Z[1/q] is
the smallest subring of Q containing 1/q.

In this section we prove:

(a) There is a P -localization functor (with “good” properties) in the variety q-Ab
of all q-abelian groups.

(b) This functor agrees with the P -localization in the category of all groups.

5.2. Main result.

Let G be a given q-abelian group. For each i = 1, 2, 3, . . . , let Gi be a copy of
G, and denote xi the element x ∈ G viewed in Gi.

Define fi : Gi → Gi+1 by fi(xi) = (xi+1)q.

Consider:
G∗ = lim−→(G1

f1−→ G2
f2−→ G3

f3−→ . . . )

and the homomorphism λ : G→ G∗ given by λ(x) = x1.

Each element of G∗ corresponds to some xi ∈ Gi, which is identified with xqk

i+k ∈
Gi+k for all k ≥ 0. Given two elements of G∗, we may assume, without restriction,
that they lie in some common Gi.
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Recall that a group homomorphism f : K → L is called P -injective if ker f is a
q-torsion subgroup, P -surjective if for any y ∈ L there exists some integer r such
that yqr ∈ im f , and P -bijective if it is both P -injective and P -surjective.

Plainly each fi in our construction is P -bijective. In this situation, the directed
system is called a telescope.

Theorem 3. λ : G→ G∗ is a P -localization in the variety q-Ab of q-abelian groups.

Proof. This is a particular case of [13]. The argument is essentially a reproduction
of the procedure in the abelian case. We give it to make it clear why we must stay
within q-Ab:

(a) G∗ is P -local.
Given xi ∈ Gi, then xi+1 ∈ Gi+1 is clearly a qth root for it. Suppose now that xq

i

and yq
i are identified in G∗. Then xqk+1

i+k = yqk+1

i+k for some k. That is, xqk+1
= yqk+1

as elements of G. But then xqk+1

i+k+1 = yqk+1

i+k+1, which tells us that xi and yi are
identified in G∗.

(b) G∗ is q-abelian.
(xiyi)q = xq

i y
q
i because Gi is q-abelian.

(c) λ is universal.
Let ϕ : G → K be a homomorphism where K is q-abelian and P -local. Define

ϕ1 : G1 → K by ϕ1(x1) = ϕ(x) and inductively ϕi : Gi → K by (ϕi(xi))q =
ϕi−1(xi−1). This has sense because K is P -local. Notice that each ϕi is a group
homomorphism because K is q-abelian: (ϕi(xi)ϕi(yi))q = (ϕi(xi))q(ϕi(yi))q =
ϕi−1(xi−1)ϕi−1(yi−1) = ϕi−1(xi−1yi−1) = (ϕi(xiyi))q.

We have ϕifi−1(xi−1) = ϕi(x
q
i ) = ϕi−1(xi−1) for each i and hence we obtain

a homomorphism ϕ∗ : G∗ → K such that ϕ∗(λ(x)) = ϕ1(x1) = ϕ(x). Finally, if
ψ : G∗ → K also satisfies ψλ = ϕ, then ψ = ϕ∗ because we lifted ϕ in the only
possible way. �

Now our aim is to prove that, in fact, λ : G→ G∗ coincides with l : G→ GP . In
view of proposition 5, we only need to prove the following:

Theorem 4. If K is any P -local group and a subgroup H ⊆ K is q-abelian, then
the isolator I(K,H) of H in K is also q-abelian.

The proof essentially uses only lemma 1 and the following observation:

Lemma 6. If K is a P -local group and x, y are elements of K, then [x, yq] = 1
implies [x, y] = 1.

Proof. The expression (xyx−1)q = xyqx−1 = yq gives xyx−1 = y because K has
unique qth roots. �

Proof of theorem 4. Let R(H) = {x ∈ K | xqr ∈ H for some r ≥ 0}.
Write R(H) =

⋃∞
r=0 Lr, where Lr = {x ∈ K | xqr ∈ H}.

We know that L0 = H is q-abelian. We are going to prove inductively that each
Lr is a q-abelian subgroup of K.

Assume that Lr−1 is a q-abelian subgroup. Let x, y be arbitrary elements of Lr.
Then xq and yq lie in Lr−1.
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Observe that [xq(q−1), yq2
] = 1 by lemma 1. Then lemma 6 gives [xq−1, y] = 1.

Obviously [x, yq−1] = 1 by symmetry. Since Lr−1 is q-abelian, we have:

xq2
yq2

= (xqyq)q = (xxq−1yyq−1)q = xq(q−1)(xy)qyq(q−1).

Thus xqyq = (xy)q. This shows that xy also lies in Lr, and therefore Lr is a
subgroup. Moreover, it is a q-abelian subgroup.

Now R(H) is an isolated q-abelian subgroup ofK containingH. Then I(K,H) ⊆
R(H) and our claim follows. (In fact, I(K,H) = R(H)). �

Corollary 2. We have an isomorphism:

G
l−→ GP

↓
G∗

Corollary 3. If G is q-abelian, then its P -localization l : G→ GP is P -bijective.

Proof. Plainly λ is P -bijective. �

5.3. Consequences.

Many of the pleasant properties of the classical localization of nilpotent groups
only depend on the fact of l being P -bijective (see [8]). These features therefore
hold for q-abelian groups as well. We list some of them:

Corollary 4. ker l = Tq(G).

Corollary 5. Let G be q-abelian and f : G→ K be a given homomorphism. Then
f is a P -localization if and only if K is P -local and f is P -bijective.

Corollary 6. P -localization is an exact functor in q-Ab, and it preserves central
extensions.

Now we can use our structure result (theorem 1) together with corollary 6 to
describe, with more clarity, the effect of P -localization on a q-abelian group.

Given G q-abelian, consider its q-torsion subgroup Tq(G). We have a group
extension:

(1) 1 → Tq(G) → G→ Q→ 1

where Q has no q-torsion. The projection G � Q induces then an isomorphism
GP

∼= QP .
Using theorem 1, write:

(2) 1 → T (Q) → Q→ A→ 1

where A is abelian and x �→ xq is an automorphism of T (Q). That is, T (Q) is just
P -local. Hence we obtain an extension:

(3) 1 → T (Q) → QP → AP → 1

where AP = A⊗ Z[1/q]. Moreover, whenever (2) splits, then (3) also splits.
We illustrate this with an example:
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Example 4. Let Z act nontrivially on Z/3. Take q = 7 and P = {p = 7}.
Since Aut(Z/3) ∼= Z/2 is P -local, the homomorphism ω : Z → Aut(Z/3) induces

a homomorphism ω′ : Z[1/7] → Aut(Z/3) such that ω′l = ω, where l : Z ↪→ Z[1/7]
is the P -localization.

The group Z/3 � Z is 7-abelian by corollary 1, and nonnilpotent. The sequence:

1 → Z/3 → Z/3 � Z → Z → 1

is just (2). We immediately infer that the embedding Z/3 � Z ↪→ Z/3 � Z[1/7]
P -localizes.

Observe that (a, b)7 = (a, 7b) in Z/3 � Z[1/7] (as in the proof of theorem 2).
Thus we might also have used corollary 5.

5.4. A comment on the behaviour of the homology.

If G is a nilpotent group and P is an arbitrary set of primes, then it is well-known
([8]) that the P -localization l : G → GP induces a P -localization l∗ : Hk(G) →
Hk(GP ) for each k ≥ 1. Hk denotes homology with integral coefficients.

For arbitrary groups this is far from being true.
When trying to check it for q-abelian groups, a serious difficulty arises: there

exist examples of finitely generated infinite groups in which xq = 1 for each element
x. Such groups are obviously q-abelian and their P -localization is trivial. However,
there is no reason, a priori, to suspect that their integral homology groups are
q-torsion groups (although we are not able to show any explicit counterexample).

We shall avoid this difficulty by only restricting our attention to q-abelian groups
for which the torsion subgroup is finite, as in example 4.

Then Hk(Tq(G); ZP ) = 0 for k ≥ 1 and hence the Lyndon-Hochschild-Serre
spectral sequence associated with the extension (1) gives an isomorphism:

Hk(G; ZP ) ∼= Hk(Q; ZP )

for all k ≥ 0, induced by the projection G � Q. Since this projection also induces
an isomorphism GP

∼= QP , we only need to check that Hk(Q; ZP ) is isomorphic to
Hk(QP ) for each k ≥ 1.

Now consider the spectral sequences associated with (2) and (3). We have:

E2
r,s = Hr(A;Hs(T (Q); ZP ))

Ẽ2
r,s = Hr(AP ;Hs(T (Q); ZP ))

and a morphism l∗∗,∗ : {E∗
∗,∗} → {Ẽ∗

∗,∗} induced by the localization map.
We claim that l2r,s is an isomorphism for all r, s ≥ 0. This is obvious for s = 0.

When s ≥ 1, observe that Hs(T (Q); ZP ) is a finite P -local group. Then our claim
is deduced from the following result, which is contained in [14]:

Lemma 7. Let A be an abelian group, and suppose that AP acts on a finite P -local
abelian group C. Then l : A→ AP induces an isomorphism Hk(A;C) ∼= Hk(AP ;C)
for each k ≥ 0.
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It follows that l∞r,s is also an isomorphism for all r, s ≥ 0, and hence l induces:

Hk(Q; ZP ) ∼= Hk(QP ; ZP )

for all k ≥ 0.
Finally observe that both AP and T (Q) have P -local homology groups. Thus

QP has also P -local homology groups, and Hk(QP ; ZP ) is naturally isomorphic to
Hk(QP ) for each k ≥ 1.

Summarizing, we have obtained:

Theorem 5. Let G be a q-abelian group such that T (G) is finite. Then l : G→ GP

induces a P -localization of the integral homology groups.
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