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Abstract

We obtain a simplicial group model for localization of
(not necessarily nilpotent) spaces at sets of primes by ap-
plying a suitable functor dimensionwise, as in earlier work of
Quillen and Bousfield–Kan. For a set of primes P and any
group G, let G→ LPG be a universal homomorphism from G
into a group which is uniquely divisible by primes not in P ,
and denote also by LP the prolongation of this functor to sim-
plicial groups. We prove that, if X is any connected simplicial
set and J is any free simplicial group which is a model for the
loop space ΩX, then the classifying space WLPJ is homotopy
equivalent to the localization of X at P . Thus, there is a map
X → WLPJ which is universal among maps from X into
spaces Y for which the semidirect products πk(Y ) o π1(Y )
are uniquely divisible by primes not in P . This approach also
yields a neat construction of fibrewise localization.

0 Introduction

Certain constructions in homotopy theory are especially suited to
the use of simplicial groups as models. One of such constructions is
Bousfield–Kan completion. As shown in [3, IV.4], if R is a subring
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of the rationals or R = Z/p, then the R-completion R∞X of any
reduced simplicial set X is weakly equivalent to the classifying space
W (GX )̂R, where GX is Kan’s loop group [17] of X and (GX )̂R is
the dimensionwise R-lower central series completion of GX, which is
defined in [3, IV.2]. This construction was also studied by Wilkerson
in [29] for simply connected CW-complexes of finite type, and by
Quillen in [26] using profinite completion.

In this article we use a similar pattern to obtain a new model
for localization of spaces at primes, following a suggestion of Dror
Farjoun. Let us first recall the relevant definitions. A localization of
a space X (a CW-complex or a simplicial set) at a set of primes P
is a map X → XP which is universal in the homotopy category
among maps from X into P -local spaces. A space is P -local if each
of its connected components is P -local, and a connected space Y is
P -local if the self map ρn: ΩY → ΩY induced by a degree n map of
S1 is a weak homotopy equivalence for all positive integers n with
no prime factors in P . If the space Y is simply connected, then
this condition means precisely that the homotopy groups πk(Y ) are
uniquely P ′-divisible for k ≥ 2, where P ′ denotes the complement
of P in the set of all primes. In fact, for X simply connected, one
has πk(XP ) ∼= πk(X) ⊗ ZP for all k, where ZP denotes the integers
localized at P . The properties of XP are well understood when X is
simply connected or nilpotent (see [3], [15], [29]), so we do not intend
to obtain any new information in this case. For nonnilpotent spaces,
however, the homotopy type of XP can be very different from that
of X, much in the same way as with homological localizations. A
survey of results in this direction is offered in [4].

Our construction of XP in the present article goes as follows. Given
a connected CW-complex X, we may assume that it has a single 0-cell
(since collapsing a maximal tree does not change the homotopy type
of X). Pick a free simplicial group J which is a model for the loop
space ΩX, with one nondegenerate generator in dimension n for each
(n+1)-cell of X, as described in [18] or in [29]. If a reduced simplicial
set X is given instead of a CW-complex, then let J be Kan’s loop
group GX, as in [17]. Now, if Jn denotes the group of n-simplices
of J , let Jn → LPJn be its localization at P , i.e. a universal homo-
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morphism from Jn into a uniquely P ′-divisible group [27]. We prove
that, if we denote by LPJ the simplicial group obtained by apply-
ing LP dimensionwise to J , then the classifying space WLPJ is a
P -localization of X.

Our argument relies on properties of uniquely P ′-divisible groups,
together with a spectral sequence described by Quillen in [26]. This
spectral sequence is useful in our setting thanks to the fact that free
groups behave reasonably well under P -localization. Namely, if F is
a free group, then the localization homomorphism F → LPF induces
isomorphisms H∗(F ;A) ∼= H∗(LPF ;A) for a wide class of coefficient
modules, as shown in [6] and recalled in Section 1 below. This is
one basic reason why simplicial groups happen to be very suitable
as models for P -localization of spaces, like in the case of profinite
completion or Bousfield–Kan completion. However, it is an open
problem to decide whether ordinary homological localizations [2] fit
into the same pattern or not. What is clear is that localizations with
respect to generalized homology theories cannot be modeled in prin-
ciple using dimensionwise constructions on simplicial groups, since
such localizations do not preserve connectivity levels in general [23].

Indeed, as an application of our technique, we find that if the
homotopy fibre of a map X → Y is n-connected for some n ≥ 1,
then the homotopy fibre of the induced map XP → YP is n-connected
too. In practice, this allows one to determine homotopy groups of
P -localizations of spaces in a certain range of dimensions, as in [3,
IV.5.1] for completions or in [11] for integral homology localizations.

Another useful application of our results is a neat, explicit con-
struction of fibrewise P -localization using simplicial groups. This
construction applies to all fibre sequences of connected spaces and
does not require any extra assumptions on the fibre, contrary to for-
mer approaches such as in [19]. We thank the referee for suggesting
that we add this application to the article.

Our results are stated for simplicial sets with only one vertex,
as in [3, IV.4] or in many articles on similar topics. This is good
enough to yield models for localizations of connected simplicial sets
or CW-complexes, but it is dissatisfying in some aspects, e.g. the need
to collapse a maximal tree makes our construction functorial only up
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to homotopy. To remedy this, simplicial groupoids should be used
instead of simplicial groups; see [12] or [14] for background about
simplicial groupoids. Such a generalization is not carried out in this
article, since the necessary localization techniques in the category of
groupoids are not yet available.

Acknowledgements We are indebted to Jeff Smith for explaining
to us the basic features of prolongation of functors and for enlight-
ening discussions. We also acknowledge earlier conversations with
Emmanuel Dror Farjoun and George Peschke on this topic.

1 Uniquely divisible groups

Let P be any set of primes, possibly empty, which will remain fixed
throughout. We adopt the usual convention of denoting by P ′ the
complement of P in the set of all primes, and saying that n is a
P ′-number if n is a positive integer with no prime factors in P .
A group G is called P -local or uniquely P ′-divisible if the map x 7→ xn

is bijective in G for every P ′-number n. For every group G there is
a natural homomorphism, called P -localization,

lG:G→ LPG,

which is initial among homomorphisms from G to uniquely P ′-divis-
ible groups; see [6] or [27]. (We use the expression LPG instead
of GP to avoid notational difficulties later in the article; however,
we keep denoting by ZP the P -localization of the additive group of
integers, i.e. the group of rational numbers whose denominator is a
P ′-number.)

This defines an idempotent functor LP on groups, in the follow-
ing sense. A functor L in a category C is called idempotent if it
is equipped with a natural transformation l: Id → L such that, for
every object X, the two morphisms lLX and LlX from LX to LLX
coincide and are isomorphisms. If L is an idempotent functor, then
the objects X such that lX :X → LX is an isomorphism are called
L-local, and the maps f :X → Y such that Lf :LX → LY is an iso-
morphism are called L-equivalences. Thus, a group homomorphism
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f :G → K will be called a P -equivalence if LPf :LPG → LPK is an
isomorphism.

If F is free, then lF :F → LPF is a monomorphism. The group
LPF was described by Baumslag in [1] using a different terminol-
ogy. He proved that LPF is isomorphic to the union of a (possibly
transfinite) ascending chain of groups Fi, where F0 = F and, for each
ordinal i, the group Fi+1 is an amalgamated sum ZP ∗U Fi for a cer-
tain subgroup Z ⊆ U ⊆ ZP and a certain embedding U ↪→ Fi. This
description shows that FP has homological dimension 2, and it also
shows that the map lF :F → LPF induces homology isomorphisms

Hk(F ; ZP ) ∼= Hk(LPF ; ZP )

for all k. In fact, as shown in Corollary 7.3 and Theorem 8.7 of [6], if F
is free then the P -localization homomorphism induces isomorphisms

Hk(F ;A) ∼= Hk(LPF ;A) and Hk(LPF ;A) ∼= Hk(F ;A)

for all modules A over LPF which are P -local in the following sense.
An abelian group A with an action of a group G is a P -local module
over G if the structure map ZG→ End(A) sends the elements of the
form 1 + x+ x2 + · · ·+ xn−1 to automorphisms, where x ∈ G and n
is any P ′-number. This is equivalent to imposing that the semidirect
product AoG be uniquely P ′-divisible; see [6]. If the action of G is
trivial, then a P -local module over G is just a ZP -module.

We shall need a few remarks about uniquely divisible groups, which
we collect in this section for convenience. Some of these remarks
only rely on the fact that P -localization is an idempotent functor, so
we state them in their full generality. The next result follows from
Proposition 1.2.1 in [13].

Lemma 1.1 If L is any idempotent functor in a category C, then
the full subcategory of L-local objects is closed under limits. 2

Thus, let I be any small category and F any diagram indexed
by I in the category of groups. If F (i) is uniquely P ′-divisible for
every i ∈ I, where P is any set of primes, then the (inverse) limit
of F is also uniquely P ′-divisible. Therefore, the class of uniquely
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P ′-divisible groups is closed under pull-backs, and the kernel of ev-
ery homomorphism between uniquely P ′-divisible groups is uniquely
P ′-divisible.

Every idempotent functor L in a category C, if regarded as a func-
tor from C to the full subcategory D of L-local objects, is left adjoint
to the inclusion functor of D into C. Therefore, L preserves colimits;
see [20, V.5]. In particular, L preserves coequalizers, so we have

L(coeq(f, g)) ∼= L(coeq(Lf, Lg))

for any two parallel arrows f , g in C, if coequalizers exist in C. This
fact will be crucial in Theorem 4.1, so we state it more precisely but
omit the standard proof.

Lemma 1.2 Let L be any idempotent functor in any category. Let
α:B → C be a coequalizer of two morphisms f, g:A → B, and let
β:LB → D be a coequalizer of Lf and Lg. Then LC ∼= LD. More-
over, the unique morphisms δ:C → D and γ:D → LC such that
δ ◦ α = β ◦ lB and γ ◦ β = Lα are L-equivalences. 2

A coequalizer α:B → C of two morphisms f, g:A→ B in an arbi-
trary category will be called a simplicial coequalizer if there is a mor-
phism s:B → A such that f◦s = g◦s = idB (hence, f and g are neces-
sarily epimorphisms). In the category of groups, this implies that C is
isomorphic to the quotient of B by the subgroup generated by the el-
ements of the form f(a)g(a)−1 with a ∈ A. (The condition that α is a
simplicial coequalizer guarantees that this is a normal subgroup, since
we may write bf(a)g(a)−1b−1 = f(s(b)as(b)−1) g(s(b)as(b)−1)−1, for
all a ∈ A and b ∈ B.)

Theorem 1.3 Let α:B → C be a simplicial coequalizer of two group
homomorphisms f, g:A → B where A and B are uniquely P ′-divis-
ible. Then C is uniquely P ′-divisible.

Proof. The group C is P ′-divisible because it is an epimorphic
image of a P ′-divisible group. Suppose that α(x)n = α(y)n with
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x, y ∈ B and n a P ′-number. Then y−nxn is in the kernel of α, so we
can write

y−nxn = f(a1)g(a1)
−1 · · · f(ak)g(ak)−1 (1.1)

for a finite set of elements {a1, . . . , ak} in A. Now pick c0 = s(yn)
and ci = s(g(ai)) for i = 1, . . . , k, where s is a common splitting for
f and g. Then f(c0) = g(c0) = yn and f(ci) = g(ai) = g(ci) for
i = 1, . . . , k. Hence, we can rewrite (1.1) as

xn = f(c0)f(a1)f(c1)
−1 · · · f(ak)f(ck)−1 = f(c0a1c

−1
1 · · · akc

−1
k ).

Since A is P ′-divisible, there is an element d ∈ A such that

dn = c0a1c
−1
1 · · · akc

−1
k ,

and the equation xn = f(d)n in B tells us that x = f(d). On the other
hand, our choices have been made so as to guarantee that g(d)n = yn,
from which we infer that g(d) = y. Therefore, xy−1 = f(d)g(d)−1,
and this implies that α(x) = α(y), as desired. 2

Corollary 1.4 Let G be a simplicial group. If G0 and G1 are uni-
quely P ′-divisible, then so is π0(G).

Proof. By definition, the projection G0 → π0(G) is a simplicial
coequalizer of the faces d0, d1:G1 → G0, where the common splitting
is the degeneracy s0. 2

In fact, we have the following:

Proposition 1.5 If G is a simplicial group in which Gn is uniquely
P ′-divisible for every n ≥ 0, then the homotopy groups πn(G) are
P ′-divisible for n ≥ 0.

Proof. Let NG be the Moore chain complex associated with G; see
[7, § 3] or [21, § 17]. Thus, (NG)0 = G0 and, for k ≥ 1, (NG)k is the
intersection of the kernels of the faces di:Gk → Gk−1 for 0 ≤ i ≤ k−1.
The differential ∂k: (NG)k → (NG)k−1 is the restriction of dk.
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Since (NG)k is a pull-back of a diagram where all groups are
uniquely P ′-divisible by assumption, (NG)k itself is uniquely P ′-div-
isible, for k ≥ 0, by Lemma 1.1. For the same reason, ker ∂k is
uniquely P ′-divisible for k ≥ 1. So is also im ∂k+1, since P ′-roots
exist in im ∂k+1 as it is an epimorphic image of (NG)k+1, and they
are unique because im ∂k+1 is contained in (NG)k. Now Lemma 1.6
below implies that, for n ≥ 1, the abelian group

πn(G) = ker ∂n/im ∂n+1

is uniquely P ′-divisible. The case n = 0 has been stated in Corol-
lary 1.4. 2

In general, a group which is P ′-divisible and P ′-torsion-free need
not be uniquely P ′-divisible; a counterexample is given after Theo-
rem 39.6 in [1]. However, if a group A is nilpotent and P ′-divisible,
then A is uniquely P ′-divisible if and only if A is P ′-torsion-free;
see Theorem 13.6 in [1] or Corollary I.2.3 in [15]. This fact yields the
following result, as in Corollary 13.7 in [1].

Lemma 1.6 Let A = G/N , where G and N are uniquely P ′-divisible
groups and A is nilpotent. Then A is uniquely P ′-divisible. 2

2 Prolongation of functors

Every functor L from a category C to a category D can be extended
to a functor from the category of simplicial objects over C to the cat-
egory of simplicial objects over D, by applying L at each dimension,
and to the face and degeneracy maps. Such an extension is called a
prolongation of the functor L. If we view a simplicial object over C
as a functor X: ∆op → C, where ∆op is the opposite of the category
whose objects are the ordered sets [n] = {0, 1, . . . , n} and whose mor-
phisms [n] → [m] are order-preserving maps, then the prolongation
of L assigns to every X the composite functor

∆op X−→ C L−→ D.
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We shall be especially interested in the prolongation of endofunc-
tors from the category of groups to the category of simplicial groups.
Recall from [25, II.3.7] that the category of simplicial groups admits
a simplicial model category structure where, for a simplicial group
G and a simplicial set X, one defines G⊗X as the simplicial group
where (G⊗X)n is a free product of copies of Gn indexed by Xn.
In the terminology of [17, § 4], a loop homotopy between two ho-
momorphisms f, g:G → K of simplicial groups is a homomorphism
H:G⊗∆[1]→ K such that H0 = f and H1 = g. (Every loop homo-
topy is also a homotopy between the underlying maps of simplicial
sets, but not conversely.) The following result is commonplace.

Lemma 2.1 Let L be any functor in the category of simplicial groups
which is a prolongation of a functor from groups. If two homomor-
phisms f and g are loop homotopic, then so are Lf and Lg.

Proof. We show, more generally, that for every simplicial set X
and every simplicial group G, there is a homomorphism

LG⊗X → L(G⊗X)

which is natural in G and X and is the identity when X is a point.
This implies our claim, by choosing X = ∆[1] and considering the
composite

LG⊗∆[1] −→ L(G⊗∆[1])
LH−→ LK,

where H is a loop homotopy between f and g, as in [8].
Thus, for every n ≥ 0, we apply L to the natural inclusions of Gn

into G⊗X, yielding homomorphisms LGn → L(G⊗X), which add
up together into a homomorphism LG ⊗ X → L(G ⊗ X) with the
desired properties. 2

A homotopy functor is a functor which carries weak equivalences
into weak equivalences. Functors defined by prolongation in the cat-
egory of simplicial groups are far from being homotopy functors in
general (for instance, the assumption that B be free cannot be deleted
from Theorem 5.1 below). However, the technique of prolongation
can be used to construct homotopy functors in the category of re-
duced simplicial sets by the following method, which was exploited
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by Bousfield and Kan in [3, IV.4]. Given a functor L in the cate-
gory of groups, we may assign to each reduced simplicial set X the
reduced simplicial set WLGX, where G is Kan’s loop group func-
tor and W is the classifying space functor (see [17, § 10]). A weak
equivalence f :X → Y yields a weak equivalence Gf :GX → GY of
simplicial groups, which is then a loop homotopy equivalence, since
GX and GY are free; see Proposition 6.5 in [17]. By Lemma 2.1, the
induced map LGf :LGX → LGY is a loop homotopy equivalence, so
WLGf is a homotopy equivalence. This shows that WLG is indeed
a homotopy functor.

Well-known instances of this construction yield alternative descrip-
tions of the Dold–Thom infinite symmetric product [9],

SP∞X ' W (GX)ab,

and the Bousfield–Kan R-completion functor

R∞X ' W (GX )̂R,

where R is a subring of the rationals or Z/p, and the corresponding
functor on groups is R-lower central series completion [3, IV.2].

In the rest of the article, we describe another homotopy functor
which is obtained analogously, by choosing L to be localization at a
set of primes P in the category of groups, that is, the functor which
assigns to every group a uniquely P ′-divisible group in a universal
way. An interesting feature of the resulting functor on reduced sim-
plicial sets is that it is homotopy idempotent, contrary to the two
examples above.

3 Localization of spaces

For a set of primes P , a simplicial set X (or a CW-complex) is called
P -local if it is local in the sense of Dror Farjoun [10] with respect to
all degree q maps of the circle S1 for q ∈ P ′. That is, X is P -local if
and only if X is fibrant and the maps

ρq: map(S1, X)→ map(S1, X)
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induced by degree q maps S1 → S1 are weak equivalences for q ∈ P ′.
As explained in [6], a connected space X is P -local if and only if

the fundamental group π1(X) and each of the semidirect products
πk(X) oπ1(X), k ≥ 2, are uniquely P ′-divisible. Using the terminol-
ogy given in Section 1, X is P -local if and only if π1(X) is a P -local
group and, for k ≥ 2, πk(X) is P -local as a module over π1(X).

A map f :X → Y is called a P -equivalence if, for every map
g:X → Z where Z is P -local, there is a map h:Y → Z, unique
up to homotopy, such that h ◦ f ' g. A recognition principle for
P -equivalences was given in Theorem 3.2 of [6], as follows:

Theorem 3.1 A map f :X → Y of connected spaces is a P -equival-
ence if and only if

• f∗: π1(X)→ π1(Y ) is a P -equivalence of groups, and

• f ∗:Hk(Y ;A) ∼= Hk(X;A) for all k and every P -local module A
over π1(Y ). 2

According to Theorem 3.3 in [6], for every space X there is a map
lX :X → XP where XP is P -local and lX is a P -equivalence. Such
a map will be called a P -localization of X. Up to homotopy, this
coincides with Dror Farjoun localization [10] with respect to a set
of degree q maps of S1 with q ∈ P ′. In the subcategory of simply
connected (or nilpotent) spaces, it coincides, up to homotopy, with
the classical localization at sets of primes; see [3], [15].

4 Proof of the main result

As in the previous sections, we fix a set of primes P and denote
by LP the P -localization functor in the category of groups. For a
reduced simplicial set X, we consider the map ηX :X → WLPGX
which is adjoint to the homomorphism GX → LPGX given by pro-
longation of LP to simplicial groups; that is, ηX is the composite of
the natural weak equivalence X → WGX with the map induced by
the homomorphism GX → LPGX.
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Our main result is that ηX is homotopy equivalent to the P -local-
ization lX :X → XP described in Section 3. We devote the rest of
this section to giving a proof of this claim.

Theorem 4.1 For any simplicial group G and any set of primes P
there is a natural isomorphism π0(LPG) ∼= LPπ0(G).

Proof. From Lemma 1.2 it follows that the natural homomorphism
π0(G) → π0(LPG) is a P -equivalence of groups, and Corollary 1.4
tells us that the group π0(LPG) is uniquely P ′-divisible. 2

Theorem 4.2 For every reduced simplicial set X and every set of
primes P , the natural map ηX :X → WLPGX is a P -equivalence.

Proof. First, the induced homomorphism of fundamental groups,

π1(X)→ π1(WLPGX),

is a P -equivalence if and only if the homomorphism

π0(GX)→ π0(LPGX)

induced by the localization map GX → LPGX is a P -equivalence,
which is the case by Lemma 1.2.

Secondly, we have to prove that the homomorphisms

Hk(WLPGX;A)→ Hk(X;A)

induced by ηX are isomorphisms for every P -local module A over
π0(LPGX); see Section 3. For this, we use a first-quadrant spectral
sequence due to Quillen [26], which, for a simplicial group G and a
module A over π0(G), takes the form

Er,s
2 = πrHs(G;A) ⇒ Hr+s(WG;A),

where Hs(G;A) is regarded as a cosimplicial abelian group with
Hs(Gn;A) in dimension n.
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In our situation, (GX)n is a free group for every n, and therefore,
by Corollary 7.3 and Theorem 8.7 in [6], the P -localization homo-
morphism (GX)n → LP (GX)n induces isomorphisms

Hs(LP (GX)n;A) ∼= Hs((GX)n;A)

for s ≥ 0 and every P -local module A over π0(LPGX). This is in fact
an isomorphism of cosimplicial abelian groups, and Quillen’s spectral
sequence yields an isomorphism

Hk(WLPGX;A) ∼= Hk(WGX;A),

for k ≥ 0, as desired. 2

Our next aim is to prove that, for every X, the space WLPGX is
P -local.

If X is a simplicial set and G is a simplicial group, then the (un-
pointed) function space map(X,G), whose n-simplices are the sim-
plicial maps X×∆[n]→ G, admits a natural structure of a simplicial
group where multiplication of two maps is defined pointwise. There-
fore, the following result is straightforward.

Lemma 4.3 Let G be a simplicial group which is uniquely P ′-div-
isible at every dimension. Then, for every simplicial set X, the
simplicial group map(X,G) is uniquely P ′-divisible at every dimen-
sion. 2

Lemma 4.4 Let G be any simplicial group. Then

πn(G) o π0(G) ∼= π0(map(Sn, G)) for n ≥ 0.

Proof. Recall that π0(G) acts on πn(G) by

[g] · [x] = [sn
0 (g) x sn

0 (g)−1],

where g ∈ G0, x ∈ (NG)n, and s0 denotes the corresponding degen-
eracy of G. Thus, the map

φ: π0(map(Sn, G))→ πn(G) o π0(G),
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given by φ([f ]) = ([f(en) sn
0 (f(e0))

−1], [f(e0)]), is a group homo-
morphism (compare with Theorem 1.7 in [24]); here e0 and en are
the nondegenerate simplices of Sn. This homomorphism has a two-
sided inverse given by φ−1([x], [g]) = [f ], where f(e0) = g and
f(en) = x sn

0 (g). 2

Theorem 4.5 For any simplicial group G and any set of primes P ,
the simplicial set WLPG is P -local.

Proof. By Lemma 4.4, we have

πn(WLPG) o π1(WLPG) ∼= π0(map(Sn−1, LPG)),

and, by Lemma 4.3, the simplicial group map(Sn−1, LPG) is uniquely
P ′-divisible at every dimension, so we may use Corollary 1.4 to com-
plete the argument. 2

Now, Theorem 4.2 and Theorem 4.5 yield together our main result:

Theorem 4.6 If X is any reduced simplicial set and P is any set
of primes, then the space WLPGX is homotopy equivalent to the
P -localization XP . 2

5 Applications

In practice, one often works with connected CW-complexes instead of
reduced simplicial sets. The following extension of Theorem 4.6 yields
manageable models for P -localizations of connected CW-complexes,
by using the free simplicial groups considered by Kan in [18]. Given
a connected CW-complex X, replace it, if necessary, by a homotopy
equivalent CW-complex with a single 0-cell. Then let J be a free
simplicial group with a nondegenerate generator in dimension n for
every (n+1)-cell of X, as described in [18]. Thus, J is loop homotopy
equivalent to the free simplicial group obtained by applying Kan’s
loop group functor G to the reduced singular complex of X (which
is much larger than J in general). By the next result, we may use J
to calculate XP as well.
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Theorem 5.1 Let X be any reduced simplicial set and P any set of
primes. If J is any free simplicial group which is weakly equivalent
to GX, then WLPJ ' XP .

Proof. Since J is a free simplicial group, there is a loop homotopy
equivalence h: J → GX, by Proposition 6.5 in [17]. By Lemma 2.1,
LPh is a loop homotopy equivalence, from which it follows that the
induced map WLPJ → WLPGX is a homotopy equivalence. 2

The assumption that J be free in Theorem 5.1 can be weakened,
by imposing only that the homomorphisms

Hi(Jn;A)→ Hi(LPJn;A)

induced by the P -localization Jn → LPJn be isomorphisms for all i, n,
and every P -local module A over π0(LPJ). This is seen by looking
carefully at the proof of Theorem 4.2. For example, J could be
nilpotent at every dimension (by Theorem 4.3 in [6]); compare also
with Corollary 3.5 in [26].

As a consequence of our description of the P -localization func-
tor, we gain a good control of its “low dimensional behaviour”, as
in [3, IV.5]. Indeed, if two CW-complexes or simplicial sets X and Y
have isomorphic n-skeleta, then their P -localizations XP and YP have
isomorphic n-skeleta too, since our construction of P -localization is
carried out dimensionwise. We state this result in the same form as
in [3, IV.5.1].

Theorem 5.2 Fix an integer n ≥ 0 and a set of primes P . If
f :X → Y is a map of spaces such that the induced homomorphism
πk(X) → πk(Y ) is an isomorphism for k ≤ n and an epimorphism
for k = n + 1, then πk(XP ) → πk(YP ) is also an isomorphism for
k ≤ n and an epimorphism for k = n+ 1. 2

In other words, if the homotopy fibre of f :X → Y is n-connected
for some n ≥ 1, then the homotopy fibre of fP :XP → YP is n-con-
nected as well. A consequence of Theorem 5.2 is that the homotopy
groups πk(XP ) of the P -localization of a space X can easily be cal-
culated for k ≤ n if either the (n+ 1)-skeleton or the nth Postnikov
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section of X is a nilpotent space; cf. [15]. That is, if π1(X) is a
nilpotent group acting nilpotently on πk(X) for 2 ≤ k ≤ n, then

πk(XP ) ∼= πk(X)⊗ ZP for k ≤ n.

A similar result was proved for integral homology localizations in
Theorem 1.1 of [11].

Our description of P -localization of spaces using simplicial groups
admits a relative version, namely fibrewise P -localization of fibre
sequences. Fibrewise localizations or completions were first discussed
by Sullivan in Theorem 4.2 of [28] and Bousfield–Kan in [3, IV.5.7],
and later developed by May in [22]. Fibrewise localization at sets of
primes was described by Llerena in [19] under the assumption that
the fibre be nilpotent. More recently, fibrewise localizations have
been considered in greater generality by Dror Farjoun in [10, 1.F].

Our construction of fibrewise P -localization applies to any fibre
sequence F → X → B in the category of reduced simplicial sets.
Thus, we are implicitly assuming that the map f :X → B is surjec-
tive and the induced homomorphism π1(X) → π1(B) is an epimor-
phism. By [25, II.3.10], the induced epimorphism Gf :GX → GB is
a fibration of simplicial groups. Its fibre is the simplicial group K
where Kn = ker(Gf)n. Both the natural homomorphism GF → K
and its adjoint map F → WK are weak equivalences; cf. [25, II.3.11].

Lemma 5.3 The kernel K of the epimorphism Gf :GX → GB is a
free simplicial group.

Proof. Since (GX)n is free for all n, the subgroup Kn is also free
for all n. Thus, in order to prove that K is a free simplicial group,
we have to exhibit bases for each Kn which are stable under the
degeneracies of K. We shall not distinguish notationally between
the degeneracies of distinct simplicial sets. Recall however that the
degeneracy si: (GX)n−1 → (GX)n is the homomorphism spanned by
si+1:Xn → Xn+1, for i = 0, . . . , n− 1. Since (GB)n is free on the set
Bn+1 − s0(Bn), we may define inductively homomorphisms

σn: (GB)n → (GX)n
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for each n, by imposing that σn ◦ si = si ◦ σn−1 for i = 0, . . . , n− 1,
where n ≥ 1, and that (Gf)n ◦ σn be the identity for all n. (Note
that such a σ does not necessarily commute with the face operators.)
Then the image of σn is a Schreier system of coset representatives
of the kernel Kn in (GX)n (cf. [7, § 4] or [16, § 18]). Hence, as in
Corollary 4.7 in [7], the group Kn is freely generated by the elements

σn(w) x σn((Gf)n(x))−1 σn(w)−1,

with w ∈ (GB)n and x ∈ Xn+1 − s0(Xn) − σn(Bn+1 − s0(Bn)). By
our choice of σn, these elements form a basis which is closed under
the degeneracies of GX, hence of K. 2

Now, for each n, we apply the relative P -localization functor of [5]
to the group extension

Kn � (GX)n � (GB)n,

yielding a commutative diagram

Kn � (GX)n � (GB)n

↓ εn↓ id ↓
LPKn � En � (GB)n

(5.1)

which is universal in the category of group extensions among mor-
phisms from the upper extension into extensions with P -local kernel;
cf. Theorem 1.4 in [5]. This allows us to endow the sequence of groups
En with the structure of a simplicial group, which we denote by E.
Thus, we obtain a fibration E → GB of simplicial groups with fibre
LPK, and a commutative diagram of fibre sequences

F → X → B
l ↓ e ↓ ' ↓

WLPK → WE → WGB,
(5.2)

where the left vertical map l is the composite F → WK → WLPK,
and the map e is adjoint to ε:GX → E. We call (5.2) the fibrewise
P -localization of the given fibration. This terminology is justified by
the following theorem.
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Theorem 5.4 The map l:F → WLPK is a P -localization and the
map e:X → WE is a P -equivalence of reduced simplicial sets.

Proof. The first claim follows from Theorem 5.1, since K is a free
simplicial group (by Lemma 5.3) which is weakly equivalent to GF .
To prove the second claim, we use the description of P -equivalences
given in Theorem 3.1. By Proposition 1.3 in [5], the homomorphism
εn in (5.1) is a P -equivalence for all n. From the fact that ε0 and
ε1 are P -equivalences it follows, by Theorem 4.1, that the homo-
morphism π0(GX) → π0(E) induced by ε0 is a P -equivalence of
groups. Next, let A be any P -local module over π0(E). Then (5.2)
induces a morphism of first-quadrant spectral sequences for coho-
mology with coefficients in A. (A suitable reference for such spectral
sequences with twisted coefficients is [25, II.6.17] for homology or
Proposition 2.1 in [26] for cohomology.) Since we already proved
that the left vertical arrow l in (5.2) is a P -localization, we see that
l∗:Hk(WLPK;A) → Hk(F ;A) is an isomorphism for all k. This
implies that e∗:Hk(WE;A) ∼= Hk(X;A) for all k as well. 2
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