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0 Introduction

The genus of a finitely generated nilpotent group G is defined as the set of

isomorphism classes of finitely generated nilpotent groups K such that the

p-localizations Kp, Gp are isomorphic for all primes p [19]. This notion turns

out to be particularly relevant in the study of non-cancellation phenomena in

group theory and homotopy theory.

In the above definition, the restriction of finite generation is imposed in order

to prevent the genera from becoming too large—in fact, with that restriction,

genera are always finite sets. Nevertheless, it is perfectly possible to deal with

the so-called extended genus , in which the groups involved, though still nilpo-

tent, are no longer asked to be finitely generated. This generalization has been

found to be useful [9, 10, 15].

More serious difficulties arise in this context if one attempts to remove the

hypothesis of nilpotency. Given any family of idempotent functors {Ep} in the

category of groups, one for each prime p, extending p-localization of nilpotent

groups, one could expect to find groups G such that EpG = 1 for all primes p,

that is, belonging to the “genus” of the trivial group. In fact, as shown below,

there even exist groups G sharing this property for every family {Ep} chosen.

We call such groups generically trivial . In Sections 1 and 2 we exhibit their

basic properties and point out several sources of examples.
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A group G is called separable if for some family of idempotent functors

{Ep} as above, the canonical homomorphism from G to the cartesian product

of the groups EpG is injective. Residually nilpotent groups and many others

are separable. In Section 3, we observe that acyclic spaces X with generically

trivial fundamental group are relevant because the space map∗(X, Y ) of pointed

maps from X to Y is weakly contractible for a very broad class of spaces Y ,

namely for all those Y such that π1(Y ) is separable.

Acyclic spaces X with generically trivial fundamental group deserve to be

called generically trivial spaces, because, for every family of idempotent functors

Ep in the pointed homotopy category of connected CW-complexes extending

p-localization of nilpotent CW-complexes, the spaces EpX are contractible for

all p. Familiar examples of generically trivial spaces include all acyclic spaces

whose fundamental group is finite.

Note that nilpotent and generically trivial groups (and spaces) form together

a class to which p-localization extends in a unique way. The latter provide

the obstruction to the existence of localization-completion pullback squares for

general groups and spaces.

Finally, Section 4 is devoted to the problem of recognizing generically trivial

groups by inspecting their structure. This is in fact rather difficult, and linked to

the problem of determining in general the kernel of the universal homomorphism

from a given group G to a group in which p′-roots exist and are unique [22].

Acknowledgments . We are both sincerely indebted to the CRM of Barcelona

for its hospitality. Some parts of our exposition owe much to discussions with

George Peschke.

1 Separable and generically trivial groups

Let P be a set of primes and P ′ denote its complement. A group G is called

P -local [16, 20] if the map x 7→ xn is bijective in G for all positive integers
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n whose prime divisors lie in P ′ (written n ∈ P ′ for simplicity). For every

group G there is a universal homomorphism l : G → GP with GP P -local

[13, 20, 21], which is called P -localization. If the set P consists of a single prime

p, then we usually write Gp instead of GP . The properties of the P -localization

homomorphism are particularly well understood when G is nilpotent [16].

A group G is called separable [22] if the canonical map from G to the carte-

sian product of its p-localizations

γ : G −→
∏
p

Gp (1.1)

is injective. It is well-known that nilpotent groups are separable [16]. The class

of separable groups is in fact much larger. It also contains all groups which are

p-local for some prime p, and it is closed under taking subgroups and forming

cartesian products; cf. [22, Proposition 6.10]. Thus it is closed under small

(inverse) limits. In particular, since every residually nilpotent group embeds in

a cartesian product of countably many nilpotent groups, we have

Proposition 1.1 Residually nilpotent groups are separable. 2

If a group G is not separable, then one cannot expect to recover full infor-

mation about G from the family of its p-localizations Gp. The worst possible

situation occurs, of course, when all these vanish. We introduce new terminol-

ogy to analyze this case.

Definition 1.2 A group G is called generically trivial if Gp = 1 for all primes p.

As next shown, it turns out that such groups cannot be detected by any

idempotent functor extending p-localization of nilpotent groups to all groups.

The basic facts about idempotent functors and localization in arbitrary cate-

gories are explained in [1, 13].

Lemma 1.3 Assume given a set of primes P and an idempotent functor E in

the category of groups such that EZ ∼= ZP , the integers localized at P . Then,

for every group G and every n ∈ P ′, the map x 7→ xn is bijective in EG.
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Proof. This is in fact a stronger form of a result in [13]. Fix an integer n ∈ P ′

and denote by ρn : Z→ Z the multiplication by n. For a group K, the function

(ρn)∗ : Hom(Z, K) → Hom(Z, K) corresponds precisely to the nth power map

x 7→ xn in K under the obvious bijection Hom(Z, K) ∼= K. Thus we have to

prove that (ρn)∗ is a bijection when K = EG for some G; in other words, that

ρn is an E-equivalence. By assumption, there is a commutative diagram

Z
η→ EZ

∼=→ ZP

ρn↓ Eρn ↓ ψ ↓
Z

η→ EZ
∼=→ ZP ,

(1.2)

in which η denotes the natural transformation associated to E. Here η cannot

be identically zero, because there is a non-trivial homomorphism from Z to an

E-local group—namely, ZP . Thus, if x ∈ ZP is the image of 1 ∈ Z under

the top composition in (1.2), then x 6= 0 and ψ(x) = nx. It follows that ψ is

multiplication by n and hence an isomorphism. This implies that Eρn is also

an isomorphism, i.e. that ρn is an E-equivalence, as desired. 2

Theorem 1.4 (a) A group G is generically trivial if and only if EpG = 1

for every prime p and every idempotent functor Ep in the category of groups

satisfying EpZ ∼= Zp.

(b) A group G is separable if and only if the canonical homomorphism

G → ∏
pEpG is injective for some family {Ep} of idempotent functors in the

category of groups, one for each prime p, satisfying EpZ ∼= Zp.

Proof. One implication is trivial in both part (a) and part (b). To prove

the converse in (a), note that, for every prime p and every choice of Ep, the

homomorphism G → 1 is an Ep-equivalence when Gp = 1, because every ho-

momorphism ϕ: G→ K with K Ep-local factorizes through Gp by Lemma 1.3.

To prove the converse in (b), use again Lemma 1.3 to obtain, for every family

{Ep}, a factorization

G
γ→

∏
p

Gp →
∏
p

EpG. 2
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Corollary 1.5 Generically trivial groups are perfect.

Proof. Choose Ep to be Bousfield’s HZp-localization [8]. It follows from

Theorem 1.4 that, if G is generically trivial, then H1(G; Zp) = 0 for all primes

p, and hence H1(G; Z) = 0. Actually, there is another argument available: It

suffices to apply Corollary 2.1 below to the projection of a generically trivial

group G onto its abelianization G→→G/[G,G], using the fact that a generically

trivial abelian group is necessarily trivial. 2

In general, a perfect group need not be generically trivial. There are indeed

perfect groups which are locally free [3, Lemma 3.1] and hence separable [22, §9].

Further, in Section 4 below, we present an example of a countable perfect group

whose localizations contain the localizations of all finitely generated nilpotent

groups. However, as next shown, finite perfect groups are generically trivial.

Proposition 1.6 For a finite group G, the following assertions are equivalent:

(a) G is generically trivial;

(b) G is perfect;

(c) for every prime p, G is generated by p′-torsion elements.

Proof. The implications (c)⇒(a)⇒(b) hold for all groups G. If G is finite,

then, for each set of primes P , l : G → GP is an epimorphism onto a P -group,

and Ker l is generated by the set of P ′-torsion elements of G; cf. [22, §7]. This

shows that (a)⇒(c). To prove that (b)⇒(a), observe that, given a prime p, Gp

is perfect because it is a homomorphic image of G, and also nilpotent because

it is a finite p-group. This forces Gp = 1. 2

The implication (a)⇒(c) in Proposition 1.6 still holds if we assume G lo-

cally finite, by Lemma 2.5 below. Its failure to be true for arbitrary groups is

discussed in Section 4, cf. Theorem 4.7.

One of the most characteristic features of generically trivial groups G is that

homomorphisms ϕ: G→ K are trivial for a broad class of groups K. It follows
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from Corollary 1.5 that this happens whenever K is residually nilpotent. More

generally,

Proposition 1.7 A group G is generically trivial if and only if every homo-

morphism ϕ: G→ K with K separable is trivial.

Proof. If G is generically trivial, then the composition

G
ϕ→ K

γ→
∏
p

Kp
proj→→ Kp

is trivial for all p. Hence, γ(ϕ(x)) = 1 for every x ∈ G, and, if γ is a monomor-

phism, then ϕ(x) = 1 for every x ∈ G. To prove the converse, take K = Gp for

each prime p. 2

2 Other properties and examples

The class of generically trivial groups is closed under several constructions which

we list below in the form of corollaries of Proposition 1.7. Direct proofs of these

statements can also be given using basic properties of the P -localization functor

[20, 21, 22].

Corollary 2.1 Every homomorphic image of a generically trivial group is

generically trivial. 2

Corollary 2.2 If N >→ G →→ Q is a group extension in which N and Q are

generically trivial, then G is also generically trivial. 2

Corollary 2.3 The (restricted) direct product of a family of generically trivial

groups is generically trivial. 2

Corollary 2.4 The free product of a family of generically trivial groups is

generically trivial. 2
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Thus, the class of generically trivial groups is closed under small colimits.

This is not a surprise, in view of the next general fact: Since the P -localization

functor has a right adjoint—namely, the inclusion of the subcategory of P -local

groups in the category of groups—it preserves colimits [18, V.5], that is

Lemma 2.5 Let F be a diagram of groups, and denote by FP the diagram of

P -local groups induced by functoriality. Then (colimF )P ∼= (colimFP )P . 2

(Note that, to construct colimits in the category of P -local groups, one computes

the corresponding colimit in the category of groups and takes its P -localization.)

We next describe other important sources of examples of generically trivial

groups. As already observed, groups satisfying condition (c) in Proposition 1.6

are always generically trivial. Among such groups are all strongly torsion gener-

ated groups (a group is strongly torsion generated [7] if, for every n ≥ 2, there is

an element x ∈ G of order n whose conjugates generate G). Examples include

the subgroup E(R) generated by the elementary matrices within the general

linear group GL(R), for an arbitrary associative ring R with 1; see [6].

A simple group G containing elements of each finite order is strongly torsion

generated. Interesting examples of this kind are

– the infinite alternating group A∞;

– Philip Hall’s countable universal locally finite group [14];

– all non-trivial algebraically closed groups [17].

This last example shows, by [17, IV.8.1], that

Theorem 2.6 Every infinite group G can be embedded in a generically trivial

group of the same cardinality as G. 2

By [6], every abelian group is the centre of a generically trivial group. This

prompts the question: which groups are normal in generically trivial groups?

Although generically trivial groups are perfect, no further restriction can be

made on their integral homology in general, because
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Theorem 2.7 For any sequence A2, A3, . . . , An, . . . of abelian groups, there ex-

ists a generically trivial group G such that Hn(G; Z) ∼= An for all n ≥ 2.

Proof. By [7, Theorem 1], one can always find a strongly torsion generated

group with this property. 2

3 Some implications in homotopy theory

Our setting in this section is the pointed homotopy category Ho∗ of connected

CW-complexes. Our main tool will be the functor ( )P defined in [11, 12, 13]

for a set of primes P . It is an idempotent functor in Ho∗ which is left adjoint

to the inclusion of the subcategory of spaces X for which the nth power map

ρn : ΩX → ΩX, ω 7→ ωn, is a homotopy equivalence for every n ∈ P ′. The

map l : X → XP turns out to be indeed P -localization if X is nilpotent, and,

for every space X, the induced homomorphism l∗ : π1(X)→ π1(XP ) P -localizes

in the sense of Section 1. As explained in [13], the universality of Bousfield’s

H∗( ; ZP )-localization [8] in Ho∗ implies that

l∗ : H∗(X; ZP ) ∼= H∗(XP ; ZP ) (3.1)

for every space X. In fact, the map l∗ : H∗(X;A) → H∗(XP ;A) is an isomor-

phism for a broader class of (twisted) coefficient modules A, namely those which

are P -local as Z[π1(XP )]-modules; see [11].

Theorem 3.1 The following assertions are equivalent.

(a) X is acyclic and π1(X) is a generically trivial group.

(b) For every space Y such that π1(Y ) is separable, the space map∗(X, Y )

of pointed maps from X to Y is weakly contractible.

(c) EpX is contractible for every prime p and every idempotent functor Ep

in Ho∗ satisfying EpS
1 ' (S1)p.

(d) Xp is contractible for all primes p.
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For the proof we need to remark the following fact.

Lemma 3.2 If the space X is acyclic and Hom(π1(X), π1(Y )) consists of a

single element, then map∗(X, Y ) is weakly contractible.

Proof. Every map f : X → Y can be extended to the cone of X by obstruc-

tion theory, because f∗ : π1(X) → π1(Y ) is trivial and the cohomology groups

of X with untwisted coefficients are zero. Thus [X, Y ] consists of a single ele-

ment, and hence map∗(X, Y ) is path-connected. The higher homotopy groups

πk(map∗(X, Y )) ∼= [ΣkX, Y ], k ≥ 1, vanish because the suspension of an acyclic

space is contractible. 2

Proof of Theorem 3.1. The implication (a)⇒(b) follows from Proposi-

tion 1.7 and Lemma 3.2. Now assume given a prime p and an idempotent func-

tor Ep as in (c). Then, by the same argument used in the proof of Lemma 1.3,

the standard map ρn : S1 → S1 of degree n is an Ep-equivalence if (n, p) = 1,

and thus, for every space X, the map (ρn)∗ : [S1, EpX] → [S1, EpX] is a bi-

jection. This tells us that π1(EpX) is a p-local group and hence separable. If

we assume that (b) holds, then in particular η : X → EpX is nullhomotopic,

and the universal property of η forces EpX to be contractible. This shows that

(b)⇒(c). The implication (c)⇒(d) is trivial. Finally, if Xp is contractible then

π1(X)p = 1 and, by (3.1), Hk(X; Zp) = 0 for all k ≥ 1, where Zp denotes the

integers localized at p. If this happens for all primes p, then X is acyclic and

π1(X) is generically trivial. Thus, (d)⇒(a). 2

We call generically trivial those spaces satisfying the equivalent conditions

of Theorem 3.1. Such spaces are not rare. For example,

Proposition 3.3 Every acyclic space X with finite fundamental group is gener-

ically trivial.

Proof. If X is acyclic, then π1(X) is a perfect group. But finite perfect groups

are generically trivial by Proposition 1.6. 2
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Also classifying spaces of generically trivial acyclic groups G are generically

trivial spaces. Such groups G exist by Theorem 2.7. One explicit example is

Philip Hall’s countable universal locally finite group; see [5]. Another example

is the general linear group on the cone of a ring [5, 7]. A third example is the

universal finitely presented strongly torsion generated acyclic group constructed

in [7].

Since many groups are separable (cf. Section 1), Theorem 3.1 provides a

good number of examples of mapping spaces which are weakly contractible.

4 Structure of generically trivial groups

In this final section we address the question of how to characterize generically

trivial groups in terms of their structure.

Given a group G and a set of primes P , the kernel of l: G→ GP is hard to

compute in general. If G is nilpotent, then Ker l is precisely the set of P ′-torsion

elements of G [16]. For other groups G, it can be considerably bigger, as we

next explain.

An element x ∈ G is said to be of type TP ′ [20, 21] if there exist a, b ∈ G
and an integer n ∈ P ′ such that

x = ab−1, an = bn.

Note that the P -localization homomorphism kills all elements of type TP ′ . We

may recursively define a sequence of normal subgroups of G

1 = T0 ≤ T1 ≤ T2 ≤ . . . (4.1)

by letting Ti+1/Ti be the subgroup of G/Ti generated by all its elements of type

TP ′ . Set TP ′(G) =
⋃
i Ti. This subgroup of G was first analyzed by Ribenboim

[20]. It has, among others, the following elementary properties.

Proposition 4.1 (a) If G is P -local, then TP ′(G) = 1.
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(b) Every homomorphism ϕ: G→ K satisfies ϕ(TP ′(G)) ⊆ TP ′(K).

(c) For every group G, P ′-roots are unique in G/TP ′(G). 2

It follows from (a) and (b) that TP ′(G) is always contained in the kernel

of l : G → GP . However, Ker l can be bigger still. To understand this, we

introduce the following notion.

Definition 4.2 Given a set of primes P , a monomorphism ι: G→ K is called

P -faithful if ιP : GP → KP is also a monomorphism.

By [16, I.3.1] and Lemma 2.5, every embedding into a locally nilpotent group

is P -faithful for all sets P . On the other hand, an embedding of the cyclic group

of order 3 in the symmetric group Σ3 is not 3-faithful, since (Σ3)3 = 1.

The authors wish to acknowledge remarks of Derek Robinson helpful to the

following example.

Example 4.3 Let R denote the ring Z ⊕ (⊕pFp) and consider the group

K = M(Q, R) of all upper unitriangular R-matrices with finitely many non-

zero off-diagonal entries indexed by the rational numbers. By [4], K is acyclic

and locally nilpotent. Now, by Hirsch [23, p. 139], every finitely generated

nilpotent group embeds in the direct product of a torsion-free finitely generated

nilpotent group and finitely many finite p-groups. By Hall [23, p. 159], the

first factor admits a faithful representation by integral unitriangular matrices

(of finite size). Also, via its regular representation, a finite p-group of order

n embeds in the group of n × n unitriangular matrices over Fp. Thus every

finitely generated nilpotent group embeds in K. By the above remark, such an

embedding must be P -faithful. Thus K is a countable, acyclic group such that,

for all sets of primes P , KP contains a copy of GP for every finitely generated

nilpotent group G.

A group is called P ′-radicable [23] if each of its elements has at least one

nth root for every n ∈ P ′.
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Lemma 4.4 For every group G there exists a P -faithful embedding ι: G ↪→ K

into a group K which is P ′-radicable.

Proof. This follows from [21, Proposition 5.2]. In fact, ι can be chosen so that

ιP is an isomorphism. 2

We denote by ETP ′(G) the subset of G of those elements x belonging to

TP ′(K) for some P -faithful embedding G ↪→ K. This is in fact a normal sub-

group of G and, moreover, we have

Proposition 4.5 Assume given a group G and a set of primes P . Then the

kernel of l: G→ GP is precisely ETP ′(G).

Proof. The inclusion ETP ′(G) ⊆ Ker l is clear. To check the converse, choose

a P -faithful embedding G ↪→ K with K P ′-radicable, as given by Lemma 4.4.

Then, by part (c) of Proposition 4.1, the group K/TP ′(K) is P -local. Since

every homomorphism ϕ: K → L with L P -local satisfies ϕ(TP ′(K)) = 1, the

projection K→→K/TP ′(K) is a P -equivalence and hence a P -localization. It

follows that the kernel of l : G → GP is G ∩ TP ′(K), which is contained in

ETP ′(G). 2

Example 4.6 Let the infinite cyclic group C = 〈ξ〉 act on the abelian group

A = Z[1/q] by ξ · a = (1/q)a, for a certain positive integer q. Let S be the

semidirect product A×|C with respect to this action. One can directly check

that the nth power map is injective in S for all positive integers n, and hence

TP ′(S) = 1 for every set of primes P . Now denote a = (0, ξ), b = (1, 1) in

S, and let G = 〈S, c | cr = bman〉, where bman is not a kth power in S for

any k > 1 dividing r. Then TP ′(G) is still trivial. However, ETP ′(G) need

not be trivial in general. For example, choose q = 2, r = 2, m = 1, n = −2,

so that G = 〈a, b, c | a−1ba = b2, b = c2a2〉. (This example is due to B. H.

Neumann [2].) Let P be any set of primes such that 2, 3 6∈ P , and G ↪→ K be

a P -faithful embedding in which b has a cube root d. Write Ti = Ti(K) as in
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(4.1). Then one readily checks that (a−1da)3 = d6, and hence a−1dad−2 ∈ T1;

further (da−1)2c−2 ∈ T1, which implies d(ca)−1 ∈ T2, and so (ca)−3b ∈ T2. This

element belongs to ETP ′(G) and is not trivial.

We can now give the following characterization of generically trivial groups.

Theorem 4.7 A group G is generically trivial if and only if, for every prime p,

there exists a p-faithful embedding G ↪→ K such that G ⊆ Tp′(K). 2
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