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Abstract

We exhibit a two-dimensional, acyclic, Eilenberg–Mac Lane space W

such that, for every space X, the plus-construction X+ with respect to

the largest perfect subgroup of π1(X) coincides, up to homotopy, with

the W -nullification of X; that is, the natural map X → X+ is homotopy

initial among maps X → Y where the based mapping space map∗(W,Y )

is weakly contractible. Furthermore, we describe the effect of W -nullifica-

tion for any acyclic W , and show that some of its properties imply, in

their turn, the acyclicity of W .

0 Introduction

In recent articles, Bousfield, Dror Farjoun, and others have developed a far-

reaching generalization of earlier work on homological localizations and local-

izations at sets of primes in unstable homotopy theory. The basic material can

be found in [9], [10], [13], [15]. Most of it has been collected in Dror Farjoun’s

book [14]. The concept of nullification plays a central role in this theory. Given

any space W , a W -nullification of a space X is a map X → PWX where the

based mapping space map∗(W,PWX) is weakly contractible and PWX is initial

in the homotopy category of spaces under X with this property.
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Many familiar constructions can be viewed, up to homotopy, as nullification

functors; see [14, 1.E]. A basic example is the plus-construction q : X → X+

of Quillen [22] with respect to the largest perfect subgroup of π1(X). Indeed,

any appropriate representative W of the wedge of “all” acyclic spaces satisfies

PWX ' X+ for all X.

In our attempt to choose W as small as possible, we have found that it

suffices to pick a two-dimensional Eilenberg–Mac Lane space W = K(F , 1),

where F is a locally free, perfect group which is uniquely determined up to the

following equivalence. Two groups G and G′ have the same nullity if the class

of groups R such that Hom(G,R) is trivial coincides with the class of those for

which Hom(G′, R) is trivial. We prove that there is precisely one nullity class

of locally free, perfect groups F such that K(F , 1)-nullification is naturally

isomorphic to the plus-construction. We can exhibit groups in this nullity class

whose cardinality is the continuum (see Example 5.3 below), but we do not

know if there is any countable group in the same class.

In a preparatory analysis, we describe the nature of W -nullification for every

W acyclic. Given W acyclic and any X, we show that the map X → PWX

coincides up to homotopy with the plus-construction on X with respect to a

certain perfect normal subgroup of π1(X) which we denote by T (W,X). More-

over, this property implies in its turn the acyclicity of W . If the space W is

a CW-complex of dimension at most two, then T (W,X) is the π1(W )-radical

of π1(X), a concept discussed in [11]. Thus, another feature of the present paper

is to prove that the perfect radical of an arbitrary group G coincides with the

F -radical of G, where F is the free product of a set of representatives of all

isomorphism classes of countable, locally free, perfect groups.

Acknowledgements The second-named author is grateful to the National

University of Singapore for its kind hospitality during preliminary work on this
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1 Sweeping subgroups

For any two groups G and H, we denote by S(G,H) the subgroup of H gen-

erated by the images of all homomorphisms G → H, and call it the subgroup

of H swept by G. Among its basic properties we emphasize the following:

(a) For all groups G and H, the subgroup S(G,H) is normal in H.

(b) If S(G,H) = H, then S(H,K) ≤ S(G,K) for all groups K.

(c) The quotient H/S(G,H) is initial in the category of groups Q under H

such that every composite homomorphism G → H → Q has a trivial

image.

It is important to observe that, after factoring out S(G,H) from H, new ho-

momorphisms from G to the quotient Q = H/S(G,H) may arise; thus, S(G,Q)

need not be trivial in general. It is not, for instance, if G = Z/p and H = Z/p2.

A more interesting example is seen by choosing G = Z/p and

H = 〈x, y, z | xp, yp, xyz−p〉, (1.1)

as in this case S(G,H) is the subgroup generated by the p-torsion elements of H

and yet the quotient H/S(G,H) is not p-torsion-free.

Given any group G, we say, as in [9] or [11], that a group R is G-reduced if

S(G,R) = {1}, that is, if Hom(G,R) is trivial. Every group H has a largest G-

reduced quotient, which is denoted by H//G. The epimorphism H→→H//G is

referred to as G-reduction, and its kernel is called the G-radical of H. Although

it has previously been denoted by TG(H), in this paper we shall adopt instead

the notation T (G,H) in order to avoid double subscripts.

It follows from (c) above that S(G,H) ≤ T (G,H) for all groups G and H.

In fact, as explained in [11, Theorem 3.2], T (G,H) can be constructed as the

union of a possibly transfinite sequence of normal subgroups T (α) of H, starting

with T (1) = S(G,H). If α is a successor ordinal, let T (α) be the inverse image

3



under the surjection H→→H/T (α−1) of the subgroup S(G,H/T (α−1)). If α is

a limit ordinal, define T (α) to be the union of the subgroups T (β) with β < α.

Then T (G,H) equals T (ν) for the smallest ordinal ν such that T (ν) = T (ν+1).

Recall that a group G is perfect if its commutator subgroup [G,G] is the

whole of G. A free product of perfect groups is also perfect, and every epimor-

phic image of a perfect group is perfect. Therefore, if G is perfect, then so is

S(G,H) for every group H. In addition, every extension of a perfect group by

another perfect group is perfect. Hence, if G is perfect, then so is each T (α)

in the above construction, and hence T (G,H) is perfect as well, for any H. It

follows that, if we denote by PH the perfect radical of H (that is, the largest

perfect subgroup), then

S(G,H) ≤ T (G,H) ≤ PH (1.2)

for all groups H, whenever G is perfect.

Now let W be a fixed connected space with basepoint. For every pointed

connected space X, we denote by S(W,X) the subgroup of π1(X) generated

by the images of all homomorphisms π1(W ) → π1(X) which are induced by

pointed maps W → X. Accordingly, we refer to S(W,X) as the subgroup of

π1(X) swept by the space W . It is clear from this definition that

S(W,X) ≤ S(π1(W ), π1(X)) (1.3)

for all spaces W and X. However, the inclusion can be strict. For example,

choose X to be any finite-dimensional CW-complex whose fundamental group

has an element of order p, where p is any prime. Then S(BZ/p,X) = {1} by

Miller’s main theorem in [21], yet S(Z/p, π1(X)) 6= {1}.
In contrast with this fact, if W is homotopy equivalent to a CW-complex

of dimension at most two, then every group homomorphism π1(W ) → π1(X)

is induced by some map W → X; see e.g. [20, ch. 7]. We also recall that

if X is a K(G, 1), then the set of pointed homotopy classes of maps [W,X]

is in one-to-one correspondence with the set Hom(π1(W ), G). This yields the

following.
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Lemma 1.1 Suppose that either W is homotopy equivalent to a CW-complex of

dimension at most two, or X is a K(G, 1) for some group G. Then S(W,X) =

S(π1(W ), π1(X)). 2

Lemma 1.2 For all connected spaces W and X, the subgroup S(W,X) is nor-

mal in π1(X).

Proof. The standard action of the group π1(X) on the set [W,X] ensures

that, for each map f : W → X and each element x ∈ π1(X), there exists a map

g: W → X such that g∗ = x−1f∗x. 2

Observe that, if the fundamental group π1(W ) is perfect, then S(W,X) is

perfect for every space X. We also remark that if S(V,W ) = π1(W ), then

S(W,X) ≤ S(V,X) for every space X. This shows that our construction is

functorial, in the sense explained below.

2 Sequences of plus-constructions

Let S be the category whose objects are connected spaces W , and with one

arrow V → W if and only if V sweeps π1(W ), that is, S(V,W ) = π1(W ). Then

S(−,−) is a contravariant-covariant bifunctor on the product category S×Ho,

where Ho denotes the ordinary pointed homotopy category of connected CW-

complexes. For each X in Ho, the functor S(−, X) takes values in the partially

ordered set of normal subgroups of π1(X).

Let SP be the full subcategory of S whose objects are spaces W with perfect

fundamental group. Then the restriction of S(−, X) to SP takes values in the

partially ordered set of perfect normal subgroups of π1(X). This relates to the

plus-construction via the following fundamental lemma due to Quillen; see (5.2)

in [2] or (3.1) in [17].

Lemma 2.1 Let X be any connected space. If N is a perfect normal subgroup

of π1(X), then any map h : X → Y such that h∗(N) is trivial factors through

the Quillen map q: X → X+
N , uniquely up to homotopy under X. 2
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Corollary 2.2 Let W be a connected space with perfect fundamental group.

Then, for each X, the space X+
S(W,X) together with the corresponding Quillen

map is initial in the homotopy category of spaces Y under X such that every

composite map W → X → Y sends π1(W ) to {1}. 2

However, for the same reason as in (1.1), the group S(W,X+
S(W,X)) need not

be trivial in general. Our next aim is to describe the initial space Y under X

such that S(W,Y ) = {1}, for a fixed W . It turns out to be the plus-construction

defined with respect to a certain larger subgroup of π1(X), which will be denoted

by T (W,X). It should be regarded as the appropriate closure of S(W,X).

To this end, we define iteratively a natural, increasing, possibly transfinite,

nested sequence of perfect normal subgroups N(α) of π1(X), together with

corresponding plus-construction maps qα : X → X+
N(α). First define N(0) = {1},

so that X+
N(0) = X and q0 is the identity map. Given N(α), define N(α+ 1) to

be the inverse image of S(W,X+
N(α)) in π1(X) under the surjection

(qα)∗ : π1(X)→→ π1(X
+
N(α))

∼= π1(X)/N(α).

As the inverse image of a normal subgroup, N(α+ 1) is also normal. From the

perfect-by-perfect group extension

{1} → N(α)→ N(α + 1)→ S(W,X+
N(α))→ {1},

we obtain that N(α + 1) is perfect. When α is a limit ordinal, define N(α) to

be the union of the subgroups N(β) with β < α. Finally, we take for T (W,X)

the union of all subgroups N(α). It is of the form N(ν) for some ordinal ν with

N(ν) = N(ν + 1). Hence, S(W,X+
N(ν)) is trivial.

Proposition 2.3 The construction T (−,−) is a contravariant-covariant bi-

functor on the product category SP×Ho, such that, for each X in Ho, T (−, X)

is a functor from SP to the partially ordered set of perfect normal subgroups

of π1(X). The space X+
T (W,X) together with the corresponding Quillen map is

initial in the homotopy category of spaces Y under X with S(W,Y ) = {1}.
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Proof. Naturality with respect to the second variable X is clear. Now, given

a morphism V → W in SP, with sequence of perfect normal subgroups M(α)

of π1(X) associated with V , we must show inductively that N(α) ≤ M(α) for

all α. Suppose that this is true for an ordinal α. Given any map W → X+
N(α),

denote by h the composite

W → X+
N(α) → X+

M(α) → X+
M(α+1),

which is defined by means of Lemma 2.1. Then, as g ranges through all maps

from V to W , the composites h◦g send all elements of π1(V ) to {1}. Therefore,

h sends S(V,W ) = π1(W ) to {1}. Hence, by Corollary 2.2, there is a unique

map X+
N(α+1) → X+

M(α+1) under X+
N(α), as required. Thus the induction goes

through.

For the second claim, we proceed by transfinite induction, considering the

fate of a map f : X → Y where S(W,Y ) = {1} as we move through the nested

sequence of subgroups N(α). We inductively assume that, for each α, the map f

factors uniquely through qα : X → X+
N(α) as f ' fα ◦ qα. Since every composite

map W → X+
N(α) → Y sends π1(W ) to {1}, Corollary 2.2 tells us that fα

factors uniquely through X+
N(α+1). If, on the other hand, α is a limit ordinal,

then since each group f∗(N(β)) with β < α is trivial, so too is f∗(N(α)). Again,

by Lemma 2.1, we obtain unique factorization of f through qα : X → X+
N(α).

Hence, as required, f factors uniquely through X → X+
T (W,X). 2

Proposition 2.4 Let W be a connected space whose fundamental group is per-

fect. Then

T (W,X) ≤ T (π1(W ), π1(X)).

Moreover, if W is homotopy equivalent to a CW-complex of dimension at most

two, then equality holds.

Proof. To prove that T (W,X) is contained in T (π1(W ), π1(X)), it suffices

to show that each subgroup N(α) in the construction of T (W,X) is contained
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in the corresponding subgroup T (α) in the construction of T (π1(W ), π1(X)).

For α = 1, the subgroup N(1) = S(W,X) is indeed contained in T (1) =

S(π1(W ), π1(X)). The argument continues by transfinite induction as above.

Now suppose that W is a CW-complex of dimension at most two. As-

sume given a homomorphism ϕ : π1(W ) → π1(X)/T (W,X). Then there is

at least one map W → X+
T (W,X) inducing ϕ on the fundamental group. Since

S(W,X+
T (W,X)) = {1}, the homomorphism ϕ has to be trivial. This shows

that π1(X)/T (W,X) is π1(W )-reduced and hence T (W,X) contains the radical

T (π1(W ), π1(X)). 2

3 Nullification with respect to acyclic spaces

Let W be any connected space. A space X is called W -null [10], [15] if the

space of pointed maps map∗(W,X) is weakly contractible. Thus, X is W -null

if and only if [ΣnW,X] is trivial for all n ≥ 0. For every space X there is a map

lX : X → PWX, called W -nullification, which is initial in Ho among maps from

X into W -null spaces. It can be constructed by repeatedly attaching mapping

cones to X in order to trivialize all maps coming from W and its suspensions;

see [9], [13].

If we assume, in addition, that the space W is acyclic (that is, the reduced

integral homology groups H̃n(W ) vanish for all n), then, as we next explain,

W -null spaces are particularly easy to recognize.

Lemma 3.1 Suppose that W is acyclic. Then, for a space X, the following

statements are equivalent:

(i) X is W -null.

(ii) Every map W → X is nullhomotopic.

(iii) The group S(W,X) is trivial.
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Proof. The implications (i)⇒(ii)⇒(iii) are obvious. In order to prove that

(iii)⇒(ii), observe that, given any map g: W → X, the homomorphism

g∗ : π1(W )→ π1(X)

is trivial by assumption. Since the space W is acyclic, the cohomology groups

Hn(W ; πm(X)) (with untwisted coefficients) vanish for n ≥ 1 and m ≥ 2.

It follows from obstruction theory that g is nullhomotopic. Finally, (ii)⇒(i)

because the acyclicity of W tells us that the suspensions ΣnW are contractible

for n ≥ 1. 2

We prove below that the converse of Lemma 3.1 is also true, in that the

equivalence of (i), (ii), and (iii) implies that W is acyclic. On the other hand,

equivalence merely of (i) and (ii) is in general insufficient for this conclusion.

This is clear for W = S2 ∨ S3 ∨ . . . (or any other space W having ΣW as a

retract).

Proposition 3.2 Let W be such that the class of W -null spaces coincides with

the class of spaces admitting no essential maps from W . If for some k ≥ 1 the

integral cohomology group Hk(W ) is nonzero, then Hm(W ) is nonzero for all

m ≥ k. In particular, if W is finite-dimensional, then it is acyclic.

Proof. Suppose that for some m ≥ k the cohomology group Hm(W ) van-

ishes. Then [W,K(Z,m)] = 0, and this implies, by assumption, that the space

K(Z,m) is W -null. Therefore

Hk(W ) ∼= [W,K(Z, k)] ∼= [Σm−kW,K(Z,m)] = 0,

and the result follows. 2

Theorem 3.3 Let W be any connected space. Then the following statements

are equivalent:

(i) W is acyclic.
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(ii) The class of W -null spaces coincides with the class of spaces X such that

S(W,X) is trivial.

(iii) For every space X, the W -nullification map lX : X → PWX coincides,

up to homotopy under X, with the plus-construction with respect to the

perfect normal subgroup T (W,X) of π1(X).

(iv) For every space X, the map lX : X → PWX is an integral homology

equivalence.

Proof. (i)⇒(ii): This has been shown in Lemma 3.1.

(ii)⇒(iii): Since S(W,K(Z, 2)) is trivial, it follows from (ii) that K(Z, 2)

is W -null. Therefore, H2(W ) = [W,K(Z, 2)] and H1(W ) = [ΣW,K(Z, 2)] are

zero, whence π1(W ) is perfect. (An obvious extension of this argument may

be used to infer (i).) Then by (ii) and Proposition 2.3, X → X+
T (W,X) and

X → PWX are both initial objects in the homotopy category of W -null spaces

under X.

(iii)⇒(iv): This is immediate.

(iv)⇒(i): By (iv), lW : W → PWW is an integral homology equivalence.

Since the space PWW is contractible, it follows that W is acyclic. 2

At this point we recall that the condition that the subgroup S(W,X) of

π1(X) be trivial is strictly weaker than the more obvious condition that the set

Hom(π1(W ), π1(X)) be trivial. Here is another example, where the space W

involved is acyclic.

Example 3.4 Let A be any locally finite acyclic group (e.g. the McLain group

M(Q,F2); see [3]), and let W be its classifying space. Then the 2-skeleton X

of W also has A as fundamental group, so that the identity homomorphism

on A lies in Hom(π1(W ), π1(X)). On the other hand, by [21], the set [W,X] is

trivial, as therefore is S(W,X).

We exhibit some further instances where the triviality of S(W,X) is guar-

anteed for an acyclic space W , and hence X is W -null, by Lemma 3.1.
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Example 3.5 Choose W such that π1(W ) is an acyclic group which has no

finite-dimensional (integral, say) representation. For example, after [4], [1], [7]

respectively, it could be any torsion-generated acyclic group, a binate group or

a “large” group of automorphisms as in [16]. Then S(W,X) is trivial whenever

the perfect radical Pπ1(X) is linear (for example, finite).

Example 3.6 Suppose that W is fundamentally torsion-generated (meaning

that there exists a map to W from a wedge of K(πα, 1) spaces, with each πα a

finite group, which induces an epimorphism on fundamental groups [6]). Then,

as in the proof of Theorem 2.1 in [6], for any X with Pπ1(X) complex-linear,

S(W,X) is trivial.

4 Nullification and group reduction

In this section, we show that the plus-construction q: X → X+ with respect to

the largest perfect subgroup Pπ1(X) can be described as nullification with re-

spect to a certain acyclic, two-dimensional, Eilenberg–Mac Lane space K(F , 1),

where the group F does not depend on X.

We rely on the following observation due to Heller; see [18, Lemma 5.7] and

Example 5.3 below.

Lemma 4.1 Assume given a perfect group P and any element x ∈ P . Then

there exists a countable, locally free, perfect group D and a homomorphism

ϕ: D → P containing x in its image. 2

Note that, since homology commutes with direct limits, a locally free perfect

group is necessarily acyclic. Moreover, if D is locally free, then a K(D, 1) can

be constructed as the homotopy direct limit of a sequence of wedges of circles,

and hence there is a two-dimensional CW-complex in its homotopy type.

Now choose a set of representatives of all isomorphism classes of countable,

locally free, perfect groups, and denote by F their free product (which is still
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acyclic). The following result is a direct consequence of Lemma 4.1, which we

record for its use elsewhere; cf. [11, § 3], [12].

Proposition 4.2 For a group H, the following statements are equivalent:

(i) The largest perfect subgroup of H is trivial.

(ii) Hom(P,H) is trivial for every perfect group P .

(iii) Hom(P,H) is trivial for every countable perfect group P .

(iv) Hom(P,H) is trivial for every countable, locally free, perfect group P .

(v) Hom(F , H) is trivial. 2

The equivalence between the statements (i) and (v) tells us precisely that a

group H is F -reduced if and only if its largest perfect subgroup PH is trivial.

We infer the following.

Theorem 4.3 Let F be the free product of a set of representatives of all iso-

morphism classes of countable, locally free, perfect groups. Then the following

hold.

(a) T (F , H) = PH for all groups H.

(b) S(BF , X) = T (BF , X) = T (F , π1(X)) = Pπ1(X) for all spaces X.

(c) The BF-nullification functor PBF is naturally isomorphic, in the pointed

homotopy category, to the plus-construction with respect to the largest per-

fect subgroup.

Proof. Since H/T (F , H) is F -reduced, P(H/T (F , H)) is trivial, from which

it follows that PH ≤ T (F , H). As T (F , H) is perfect, this is in fact an equality,

hence establishing (a).

Since the classifying space BF has the homotopy type of a two-dimensional

CW-complex, each homomorphism F → π1(X) is induced by a map BF → X.
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Hence, by Lemma 4.1, for each x ∈ Pπ1(X) there is a map h : BF → X such

that the image of h∗ contains x. This implies that S(BF , X) contains Pπ1(X).

But using Proposition 2.4 we have that

S(BF , X) ≤ T (BF , X) = T (F , π1(X)) ≤ Pπ1(X),

from which (b) follows. This, together with part (iii) of Theorem 3.3, proves

part (c) as well. 2

It follows from part (b) of this theorem that F is universal, in that the

space BF is initial in the category SP defined in Section 2. However, this

property does not characterize F up to group isomorphism, since the category

SP has very few morphisms. For example, if a group F ′ is perfect and maps

onto F , then BF ∼= BF ′ in SP and hence, by Proposition 2.3 and part (iii) of

Theorem 3.3, the functors PBF and PBF ′ are naturally isomorphic. The same

argument shows, more generally, that if G and G′ are acyclic groups which

sweep each other (that is, S(G,G′) = G′ and S(G′, G) = G), then the functors

PBG and PBG′ are naturally isomorphic.

Thus, the extent to which the group F is uniquely determined is best dis-

cussed by resorting to the appropriate equivalence relation, which we describe

in the next section.

5 Characteristic properties

Recall from [12, Proposition 1.4] that, given two groups G and H, the following

facts are equivalent:

(i) The G-reduction H//G is trivial.

(ii) T (H,K) ≤ T (G,K) for every group K.

(iii) For every group K there is a natural epimorphism K//H→→K//G.
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(iv) The class of G-reduced groups is contained in the class of H-reduced

groups.

In analogy with [10, § 3], we say that two groups G and G′ have the same

nullity if both G//G′ = {1} and G′//G = {1}. This happens if and only if

K//G ∼= K//G′ for all groups K, or equivalently, if the classes of G-reduced

and G′-reduced groups coincide. Of course, if G and G′ sweep each other,

then they have the same nullity. However, the converse need not be true, as

illustrated by the example given in (1.1).

Proposition 5.1 Let W , W ′ be two connected spaces such that the functors

PW and PW ′ are naturally isomorphic. Then the groups π1(W ) and π1(W
′)

have the same nullity.

Proof. Let R be any π1(W )-reduced group. Then Hom(π1(W ), R) is trivial,

and hence the classifying space BR is W -null. It follows from our assumption

that BR is W ′-null, so that R is π1(W
′)-reduced. The same argument shows

that each π1(W
′)-reduced group is also π1(W )-reduced, from which our assertion

follows. 2

The next result implies that there is precisely one nullity class of per-

fect, locally free groups G such that PBG is naturally isomorphic to the plus-

construction.

Proposition 5.2 Let G and G′ be perfect, locally free groups. Then the functors

PBG and PBG′ are naturally isomorphic if and only if the groups G and G′ have

the same nullity.

Proof. One implication follows of course from Proposition 5.1. To check the

converse, we use the fact that BG and BG′ are two-dimensional acyclic spaces.

By Lemma 3.1, a space X is BG-null if and only if S(BG,X) is trivial, and, by

Lemma 1.1, this happens if and only if π1(X) is G-reduced. Hence, the classes

of BG-null and BG′-null spaces coincide, from which it follows that PBG and

PBG′ are naturally isomorphic. 2
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Example 5.3 For each sequence n = (n1, n2, n3, . . .) of positive integers and

each r ≥ 1, let Fn,r be the free group freely generated by the following set of

2rn1 · · ·nr symbols:

{xr(ε1, . . . , εr; i1, . . . , ir) | εk ∈ {0, 1}, 1 ≤ ik ≤ nk}.

For r = 0, define Fn,0 to be infinite cyclic with a generator x0. Define homo-

morphisms ϕr : Fn,r → Fn,r+1 for r ≥ 0 by sending xr(ε1, . . . , εr; i1, . . . , ir) to

the following product of commutators:

nr+1∏
ir+1=1

[xr+1(ε1, . . . , εr, 0; i1, . . . , ir, ir+1), xr+1(ε1, . . . , εr, 1; i1, . . . , ir, ir+1)].

Let Fn be the direct limit of the direct system (Fn,r, ϕr). Thus, for each

sequence n of positive integers, the group Fn is countable, locally free, and

perfect (hence acyclic). Now let F ′ be the free product of the groups Fn, where

n ranges over all increasing sequences of positive integers. If we denote by a

the cardinality of the set of naturals and by c the cardinality of the set of reals,

then the disjoint union U of all the groups Fn has cardinality c · a = c, and

the set S of sequences of elements of U has cardinality ca = c. The group F ′

contains the set U and embeds into S; therefore the cardinality of F ′ equals c.

For every perfect group P and each element x ∈ P , one can write x as a

product of commutators. As a consequence of this fact, there is a sequence

of integers n (which may be chosen to be increasing) and a homomorphism

ψ : Fn → P whose image contains x. We omit the details of this claim; cf. [18,

Lemma 5.7]. It follows that the group F ′ has the same nullity as our former

group F . Therefore, by Proposition 5.2, the functor PBF ′ is naturally isomorphic

to the plus-construction as well.

One may speculate as to whether it is possible to replace F ′ by a locally free,

perfect group known to be countable. We thank C. F. Miller III for encouraging

us in such speculations, although no conclusion has as yet been forthcoming.
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It is worth emphasizing that the BF -nullification (plus-construction) of any

given space X can be carried out by means of one single push-out. Choose a set

{xα} whose normal closure in π1(X) is the largest perfect subgroup of π1(X).

For every index α, choose a map gα : BF → X such that xα belongs to the

image of the homomorphism (gα)∗. Let W be a wedge of copies of BF , one for

each α, and define a map g: W → X using the family {gα}. Then the homotopy

cofibre of g is homotopy equivalent under X to the space X+. However, as X

varies, so the cardinality of the set {xα} may increase without bound; thus no

one space W allows a single push-out for all spaces by this method.

The story is a little different when we look at the motivating example for

the plus-construction, namely the classifying space BGLR of the general linear

group of a ring R. Here, as shown in [5], PGLR is normally generated by any

single non-identity finite permutation matrix, regarded as in GLR through the

canonical homomorphism from GLZ to GLR. As a consequence of this fact,

there are many spaces W = BG for which a single push-out suffices to yield the

plus-construction for all rings R. Specifically,

Proposition 5.4 Let G be any acyclic group which has a nontrivial finite-

dimensional integral representation ρ : G → GLZ. Then, for all associative

rings R with unit, the homotopy cofibre of the induced map f : BG→ BGLR is

homotopy equivalent to BGLR+. 2

Any acyclic group G with a finite, nontrivial homomorphic image fulfills the

hypothesis made in Proposition 5.4. However, for instance, the acyclic groups

in Example 3.5 are excluded.

We shall address one final question. We know that if W is a space for which

PW is naturally isomorphic to the plus-construction on all spaces, then W is

acyclic, since in particular W+ ' PWW ' pt. As we next show, in order

to infer that W be acyclic, it suffices to assume that PW coincides with the

plus-construction on classifying spaces of discrete groups.
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Lemma 5.5 Let W be a space such that PWBGLC ' BGLC+, where C is the

field of complex numbers and GLC has the discrete topology. Then H1(W ) = 0.

Proof. If the abelian group H1(W ) is nonzero then it admits a nontrivial

homomorphism ψ to the group GL1C, which is divisible and contains ele-

ments of all finite orders. Now the fibre ABGLC of the plus-construction

q : BGLC→BGLC+ is acyclic. Thus because every map from W to BGLC

factors through ABGLC it must be trivial on homology. In particular, the

composite map

W → Bπ1(W )→ BH1(W )
Bψ−→ BGL1C→BGLC

is homologically trivial. However, on the first homology group it coincides with

ψ via the determinant isomorphism H1(BGLC) =K1(C) ∼=GL1C. This gives

the desired contradiction. 2

Theorem 5.6 Let W be a space such that PWBG ' BG+ for every discrete

group G. Then W is acyclic.

Proof. According to Kan–Thurston [19], there is a discrete group G with a

perfect normal subgroup N such that W ' BG+
N . By Lemma 5.5, the group

π1(W ) ∼= G/N is perfect. This implies that G is also perfect, and hence

W+ ' BG+ ' PWBG.

This shows that W+ is W -null, and hence the Quillen map q : W → W+ is

trivial. Since q is a homology isomorphism, W is acyclic. 2

In view of the historical association of the plus-construction with classifying

spaces of the form BGLR, we ask whether Theorem 5.6 can be improved as

follows.

Question 5.7 Suppose that W is a space with the property that

PWBGLR ' BGLR+

for every associative ring R with unit. Is W then necessarily acyclic?
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