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Abstract. It is known that, in a locally presentable category, localization
exists with respect to every set of morphisms, while the statement that local-

ization with respect to every (possibly proper) class of morphisms exists in

locally presentable categories is equivalent to a large-cardinal axiom from set
theory. One proves similarly, on one hand, that homotopy localization exists

with respect to sets of maps in every cofibrantly generated, left proper, simpli-

cial model category M whose underlying category is locally presentable. On
the other hand, as we show in this article, the existence of localization with

respect to possibly proper classes of maps in a model category M satisfying

the above assumptions is implied by a large-cardinal axiom called Vopěnka’s
principle, although we do not know if the reverse implication holds.

We also show that, under the same assumptions on M, every endofunctor

of M that is idempotent up to homotopy is equivalent to localization with
respect to some class S of maps, and if Vopěnka’s principle holds then S can

be chosen to be a set. There are examples showing that the latter need not be
true if M is not cofibrantly generated. The above assumptions on M are

satisfied by simplicial sets and symmetric spectra over simplicial sets, among

many other model categories.

Introduction

Locally presentable categories were introduced by Gabriel and Ulmer in [18].
This concept has proved to be very useful in category theory. Among other things,
the orthogonal subcategory problem (asking if localization with respect to a given
class of morphisms exists) has a positive solution in locally presentable categories if
the given class of morphisms is a set; see, e.g., [1, 1.37]. Moreover, if one assumes the
validity of a suitable set-theoretical principle, then there is also a positive solution
to this problem for every proper class of morphisms. In fact, Adámek, Rosický and
Trnková proved in [2] that the statement that the orthogonal subcategory problem
has a solution for every class of morphisms in locally presentable categories is
equivalent to the weak Vopěnka principle, a large-cardinal principle that cannot be
proved using the usual ZFC axioms (Zermelo–Fraenkel axioms with the axiom of
choice).
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Localizing with respect to sets of maps is a common technique in homotopy
theory, as well as in other areas of Mathematics. However, localizing with respect
to proper classes of maps is a more delicate issue, since the standard methods may
fall into set-theoretical difficulties (see for instance [9], where positive results in
equivariant homotopy theory involving localization with respect to proper classes
of maps were obtained). Due to difficulties of this sort, it is still unknown whether
the existence of arbitrary cohomological localizations of spaces can be proved or
not using the ZFC axioms. An interesting step was made in [8], based on results
from [1], by showing that Vopěnka’s principle implies the existence of localization
with respect to every proper class of maps in the category of simplicial sets. The ex-
istence of cohomological localizations follows of course as a special case. Vopěnka’s
principle is equivalent to the statement that the category of ordinals cannot be
fully embedded into the category of graphs (where a graph is meant to be a binary
relation). This statement has a place in the hierarchy of large-cardinal principles;
see [1].

In this article we contribute further to the ongoing program of extending basic
results from locally presentable categories to homotopy theory, which may perhaps
give answers to other open problems under large-cardinal assumptions. In order to
achieve this, one has to work in suitable model categories. Specifically, our results
are stated in left proper, combinatorial, simplicial model categories. The term
“combinatorial” means that the model category is cofibrantly generated and the
underlying category is locally presentable (see [1] and [20] for the definitions of these
concepts). This notion is due to J. H. Smith, who constructed (in unpublished work)
localizations of combinatorial model category structures with respect to sets of
maps. In [15], Dugger proved that every combinatorial model category is equivalent
to a localization of a category of diagrams of simplicial sets, hence generalizing [1,
1.46]. Among many other examples, the model category of simplicial sets and the
model category of symmetric spectra based on simplicial sets are combinatorial.

In Section 1 we show that Vopěnka’s principle implies the existence of homo-
topy localization with respect to every class of maps in left proper, combinatorial,
simplicial model categories. This fact can also be deduced, with a different ar-
gument, from results obtained by Rosický and Tholen in [24, §2]. Furthermore,
under Vopěnka’s principle, every such localization is equivalent to localization with
respect to some set of maps.

Next, we address a closely related question, raised by Dror Farjoun in [11],
asking if any functor L on simplicial sets that is idempotent up to homotopy is
equivalent to localization with respect to some single map f . He himself showed in
[12] that, if L is assumed to be, in addition, continuous, then it is indeed equivalent
to localization with respect to a proper class of maps. This result was improved in
[8] by showing that the assumption that L be continuous is unnecessary, and that,
under Vopěnka’s principle, the proper class of maps defining L can be replaced by
a set (in the category of simplicial sets). Furthermore, it was shown that such a
replacement of a class by a set cannot be done using only the ZFC axioms, since a
counterexample was exhibited by means of another assumption (the nonexistence
of measurable cardinals), which is relatively consistent with ZFC.

In Section 2 we show (without resorting to large-cardinal principles) that every
homotopy idempotent functor L in a simplicial model category M is equivalent
to localization with respect to a proper class of maps, assuming either that L is
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continuous or that M satisfies suitable hypotheses allowing to approximate any
homotopy functor by a continuous functor. For this, one may assume that M is
a simplicial model category that is proper, cofibrantly generated and stable (as in
[23]), or left proper and either combinatorial or cellular (as in [14]). Furthermore, if
one assumes that Vopěnka’s principle is true and M is combinatorial, then, again,
the proper class of maps defining L can be replaced by a set. In most cases of
interest, such a set of maps can further be replaced by a single map (by taking
the coproduct of all maps in the set), but not always, as we show by means of an
example at the end of the paper.

In [10] an example was given of a homotopy idempotent functor in a locally
presentable (but not cofibrantly generated) model category that fails to be a local-
ization with respect to any set of maps. Namely, in the category of maps between
simplicial sets with the model structure generated by the collection of orbits (as
defined in [13]), the functor that sends every map to the final object (i.e., a map
between two points) is not a localization with respect to any set of maps. Hence
our results in Section 2 below are sharp.

Acknowledgements: Discussions with Mark Hovey, Jǐŕı Rosický, Brooke Shipley
and Jeff Smith are greatly appreciated.

1. Simplicial orthogonality

Model categories were introduced by Quillen in [22] and have recently been
discussed in the books [16], [19], [20], [21], among many other places, with slight
changes in the terminology and even in the assumptions. In this article we will as-
sume that model categories are complete, cocomplete, and equipped with functorial
factorizations. See [16, § 9], [20, § 7] or [21, § 1] for more details.

Although our main results are stated for simplicial model categories (for the
definition, see for example [19, II.3] or [20, 9.1.5]), several of our steps require only
the use of homotopy function complexes, as introduced in [17] and discussed in [20,
Ch. 17] or [21, § 5]. Thus, for any given model category M, we choose functorially
a fibrant simplicial set map(X, Y ) for each X and Y in M, whose homotopy type
is the same as the diagonal of the bisimplicial set M(X∗, Y∗) where X∗ → X is
a cosimplicial resolution of X and Y → Y∗ is a simplicial resolution of Y . The
homotopy type of map(X, Y ) remains unchanged if X or Y are replaced by weakly
equivalent objects. If M is a simplicial model category and Map(X, Y ) denotes
the simplicial set given as part of the structure of M, then Map(QX,RY ) is a
good choice of a homotopy function complex, where Q is a cofibrant approximation
functor and R is a fibrant approximation functor in M.

Before discussing simplicial orthogonality in model categories by means of ho-
motopy function complexes, we recall the following older concepts from category
theory. If C is any category, an object X and a morphism f : A → B are called
orthogonal (see [1] or [7] for details and motivation) if the induced function

C(f,X) : C(B,X) −→ C(A,X)

is bijective. (We denote by C(X, Y ) the set of morphisms from X to Y in C.) If
L is an endofunctor of C equipped with a natural transformation η : Id → L such
that Lη : L → LL is an isomorphism and ηL = Lη, then L is called an idempotent
functor or a localization. Then every object isomorphic to LX for some X is
orthogonal to every morphism f such that Lf is an isomorphism, and these two
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classes determine each other by the orthogonality relation; that is, an object is
isomorphic to LX for some X if and only if it is orthogonal to all morphisms f
such that Lf is an isomorphism, and reciprocally.

As a special case, this terminology applies to the homotopy category HoM
associated with any model category M. Thus, orthogonality in HoM between an
object X and a map f : A → B amounts to the condition that

(1) [f,X] : [B,X] −→ [A,X]

be bijective, where [X, Y ] means, as usual, HoM(X, Y ). Examples of idempotent
functors in the homotopy category of simplicial sets, such as homological localiza-
tions, have been studied since several decades ago; see [4].

Throughout the extensive study of localizations undertaken since then in ho-
motopy theory, a stronger notion of “simplicially enriched orthogonality” came to
be considered. There is no widely agreed terminology for it yet. It was called
simplicial orthogonality in [8] and homotopy orthogonality in [20, §17]. Thus, if M

is any model category with a choice of homotopy function complexes, an object X
and a map f : A → B will be called simplicially orthogonal or homotopy orthogonal
(not to be confused with orthogonality in HoM) if the induced map

(2) map(f,X) : map(B,X) −→ map(A,X)

is a weak equivalence of simplicial sets. Since there is a natural bijection between
π0 map(X, Y ) and [X, Y ], homotopy orthogonality implies indeed orthogonality in
the homotopy category HoM.

The fibrant objects that are homotopy orthogonal to a given map f are usually
called f-local. More generally, if S is any class of maps, the fibrant objects that
are homotopy orthogonal to all the maps in S are called S-local. We denote by
Sh⊥ the closure under weak equivalences of the class of S-local objects, and call it
the homotopy orthogonal complement of S. Similarly, for a class D of objects, we
denote by Dh⊥ the class of maps that are homotopy orthogonal to all the objects
in D. In particular, the maps in (Sh⊥)

h⊥ are called S-local equivalences, or shortly
S-equivalences.

The homotopy-theoretical version of the orthogonal subcategory problem asks
if Sh⊥ is reflective in HoM for a model category M and a given class of maps
S in M (that is, if a localization L exists in HoM such that the closure of the
image of L under isomorphisms is precisely the class Sh⊥). One reason for using (2)
instead of (1) as orthogonality relation is the fact that the answer to the orthogonal
subcategory problem would too often be negative using (1). For instance, there is
no localization in the homotopy category of simplicial sets onto the class of simply
connected spaces. See [5] for a more elaborate counterexample.

In order to construct localizations in HoM, one normally operates in the cor-
responding model category M. The following terminology is commonly used. A
homotopy idempotent functor is an endofunctor L : M → M preserving weak equiva-
lences, taking fibrant values, and equipped with a natural transformation η : Id → L
(called a coaugmentation) which is idempotent up to homotopy; that is, for each
object X, the morphisms LηX and ηLX from LX to LLX coincide in HoM and are
weak equivalences. Thus L defines indeed a localization in HoM.

If L is a homotopy idempotent functor such that LX is S-local for all X and
ηX : X → LX is an S-equivalence for all X, where S is any class of maps, then
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it is said that L is a homotopy localization with respect to the class S, or shortly
an S-localization. In this case, the class Sh⊥ is indeed the closure of the image of
L under isomorphisms in HoM. (In order to prove that every object Y in Sh⊥ is
weakly equivalent to LX for some X, consider the coaugmentation ηY : Y → LY ,
which induces a weak equivalence map(LY, Y ) ' map(Y, Y ), hence a bijection
[LY, Y ] ∼= [Y, Y ] yielding a map LY → Y in HoM which is inverse to ηY , so
Y ' LY , as needed.)

It is well known that the orthogonal subcategory problem for a class of maps S
in a model category M has a positive solution whenever S is a set and M satisfies
certain assumptions, which vary slightly depending on the authors. We will call
a model category combinatorial if it is cofibrantly generated and the underlying
category is locally presentable. The definition of a locally presentable category can
be found in [1] or [18], and the definition of a cofibrantly generated model category
is contained, e.g., in [20]. The notion of properness is also discussed in [20].

Theorem 1.1. Let M be a left proper, combinatorial, simplicial model category.
For every set of maps S there is a homotopy localization with respect to S.

Proof. The core of the proof is in [3]. See [20] for an updated approach. �

As far as we know, there is no way to prove this when S is a proper class, not
even for simplicial sets, using the ordinary axioms of set theory. In [8] it was shown
that the statement of Theorem 1.1 holds for a proper class S in the category of
simplicial sets using a suitable large-cardinal axiom (Vopěnka’s principle). We now
undertake a generalization of this fact to other model categories.

If M is a cofibrantly generated model category and C is a small category, then
the projective model structure on the category MC of C-indexed diagrams in M has
objectwise weak equivalences and objectwise fibrations, while the injective model
structure has objectwise weak equivalences and objectwise cofibrations. The pro-
jective model structure is discussed in [20, 11.6 and 11.7], where it is shown that,
if the model category M is simplicial, then MC with the projective model structure
is also simplicial.

Lemma 1.2. Let M be a cofibrantly generated simplicial model category and
C a small category. Suppose that A is a cofibrant diagram in the projective model
category structure of MC and X is a fibrant object of M. Then Map(A,X) is fibrant
in the injective model structure on the category of Cop-diagrams of simplicial sets.

Proof. We have to show that any commutative square

C� _

�Oi

��

// Map(A,X)

����

D // ∗,

where i is an objectwise trivial cofibration of Cop-diagrams of simplicial sets, admits
a lift. By adjunction (as in [20, 18.3.9]), this problem is equivalent to finding a lift
in the following commutative square in M:

A⊗C C

��

// X

����
A⊗C D // ∗.
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This problem is equivalent, by another adjunction, to finding a lift in the following
commutative square in MC:

∅ � _

��

// XD

�OXi

����

A // XC .

In the last square a lift exists, since A is projectively cofibrant and Xi is a projective
trivial fibration. �

Recall that a partially ordered set I is called λ-directed, where λ is a regular
cardinal, if every subset of I of cardinality smaller than λ has an upper bound.

Lemma 1.3. Let D be any class of objects in a combinatorial simplicial model
category M, and let S be its homotopy orthogonal complement. Then there exists a
regular cardinal λ such that S is closed under λ-directed colimits in the category of
maps of M.

Proof. Let C be a set of generating cofibrations for M. Choose a regular
cardinal λ such that any member of the set of domains and codomains of maps in
C is λ-presentable (such a cardinal exists since M is locally presentable). Let I be
any λ-directed partially ordered set, and suppose given a diagram f : I → ArrM,
where ArrM is the category of maps in M. Let us denote by X : I → M the domain
of f and by Y : I → M the codomain, so f can also be seen as a map from X to Y
in MI . Let us depict it, for simplicity, as a chain:

(3)

X0 −−−−→ X1 −−−−→ · · · −−−−→ Xn −−−−→ · · ·

f0

y f1

y fn

y
Y0 −−−−→ Y1 −−−−→ · · · −−−−→ Yn −−−−→ · · · .

Suppose that the maps fi are in S for each i ∈ I. Since M is cocomplete, ArrM is
cocomplete as well, and we may consider the colimit of the diagram f . We need to
show that the map colim f : colim X −→ colim Y is in S.

Choose a cofibrant approximation f̃ : X̃ → Ỹ to f using the projective model
structure on MI , hence obtaining the following commutative diagram in M:

X̃0

f̃0
��

�_
�� ��
???

� � // X̃1

f̃1 ��

�_
�� ��
???

� � // · · · �
�

// X̃n

f̃n ��

�_
�� ��
???

� � // · · ·

X0

f0
��

// X1

f1
��

// · · · // Xn
//

fn

��

· · ·

Ỹ0 �_
�� ��
???

� � // Ỹ1 �_
�� ��
???

� � // · · · �
�

// Ỹn �_
�� ��
???

� � // · · ·

Y0
// Y1

// · · · // Yn
// · · · ,

where f̃i is a cofibrant approximation to fi.
For every Z ∈ D, let Ẑ be a fibrant approximation to Z. The induced map

Map(colim f̃ , Ẑ) : Map(colim Ỹ , Ẑ) −→ Map(colim X̃, Ẑ)

can be written as a limit of a diagram of maps of simplicial sets

lim Map(f̃ , Ẑ) : lim Map(Ỹ , Ẑ) −→ limMap(X̃, Ẑ).
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The Iop-diagrams of simplicial sets Map(X̃, Ẑ) and Map(Ỹ , Ẑ) are fibrant in the
injective model structure by Lemma 1.2. Therefore, their inverse limits are homo-
topy inverse limits (since the constant diagram of points is cofibrant in the injective
model structure). Hence, Map(colim f̃ , Ẑ) is a weak equivalence, as a map induced
between homotopy inverse limits by levelwise weak equivalences Map(f̃i, Ẑ). This
shows that colim f̃ is in S.

Now trivial fibrations in M are preserved under λ-directed colimits, since the
set C of generating cofibrations has λ-presentable domains and codomains. From
the commutative diagram

colim X̃
∼ // //

colim f̃

��

colim X

colim f

��

colim Ỹ
∼ // // colim Y

we conclude that the map colim f̃ is a cofibrant approximation to the map colim f ,
since both colim X̃ and colim Ỹ are cofibrant in M (indeed, X̃ and Ỹ are cofibrant
diagrams in MI , and the colimit functor MI → M is left Quillen by [20, 11.6.8]).
Hence, colim f is in S, as claimed. �

The statement of Vopěnka’s principle and enough motivation for its use in this
context can be found in [1], [2], [8], and [24].

Lemma 1.4. Suppose that Vopěnka’s principle is true. Let D be any class of
objects in a combinatorial simplicial model category M, and let S = Dh⊥. Then
there exists a set of maps X such that X h⊥ = Sh⊥.

Proof. By abuse of notation, we also denote by S the full subcategory of
ArrM generated by the class S. Since M is locally presentable, ArrM is also
locally presentable. Then, assuming Vopěnka’s principle, it follows from [1, Theo-
rem 6.6] that S is bounded, i.e., it has a small dense subcategory. We have shown
in Lemma 1.3 that there exists a regular cardinal λ such that S is closed under
λ-directed colimits in the category ArrM. Hence, by [1, Corollary 6.18], the full
subcategory generated by S in ArrM is accessible. Thus, for a certain regular car-
dinal λ0 ≥ λ, the class S contains a set X of λ0-presentable objects such that every
object of S is a λ0-directed colimit of objects of X .

Since X ⊂ S, we have X h⊥ ⊃ Sh⊥ and (X h⊥)
h⊥ ⊂ (Sh⊥)

h⊥ = S. Our aim now is
to show the reverse inclusion (X h⊥)

h⊥ ⊃ S. By Lemma 1.3, (X h⊥)
h⊥ is closed under

λ-directed colimits. Hence (X h⊥)
h⊥ is also closed under λ0-directed colimits and

every element of S is a λ0-directed colimit of elements of X . This concludes the
proof, since ((X h⊥)

h⊥)
h⊥ = X h⊥. �

Theorem 1.5. Let M be a left proper, combinatorial, simplicial model category.
If Vopěnka’s principle is assumed true, then for any (possibly proper) class of maps
S there is a homotopy localization with respect to S.

Proof. By Lemma 1.4, there exists a set X of maps in M such that X h⊥ = Sh⊥.
Then the homotopy localization with respect to X , which exists by Theorem 1.1,
is an S-localization. �

Thus, the statement of Theorem 1.5 is a positive answer to the orthogonal
subcategory problem for all classes of maps in sufficiently good model categories.
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2. Idempotent functors and simplicial orthogonality

The next theorem is motivated by results of Dror Farjoun in [12]. We consider
a model category M and assume, as in the beginning of the previous section, that a
functorial choice of a homotopy function complex map(X, Y ) for all X and Y has
been made.

In what follows, if f : A → B is a map and X is an object, we keep denot-
ing by map(f,X) the map of simplicial sets map(B,X) → map(A,X) induced
by f . If η : F → G is a natural transformation between two functors and H is
another functor, then ηH : FH → GH denotes the natural transformation given
by (ηH)X = ηHX for every object X, and Hη : HF → HG denotes the natural
transformation given by (Hη)X = HηX for all X.

Theorem 2.1. Let M be any model category. Let L be an endofunctor of the
homotopy category HoM with the following properties:

(a) There is a natural transformation η : Id → L in HoM such that Lη = ηL
and Lη : L → LL is an isomorphism on all objects.

(b) There is a map lX,Y : map(X, Y ) → map(LX,LY ) for all X, Y , which is
natural in both variables up to homotopy.

(c) map(ηX , LY ) ◦ lX,Y ' map(X, ηY ) for all X and Y .
Then the map

map(ηX , LY ) : map(LX,LY ) −→ map(X, LY )

is a weak equivalence for all X, Y .

Proof. Let us write Z = LY for simplicity. The assumption (a) says precisely
that L is idempotent in the homotopy category HoM. Hence, among other conse-
quences of this fact, ηZ : Z → LZ is an isomorphism in HoM. Then map(A, ηZ) is
a weak equivalence of fibrant simplicial sets for every A, hence a homotopy equiv-
alence. Choose a homotopy inverse

ξA,Z : map(A,LZ) −→ map(A,Z)

of map(A, ηZ) for each A. We claim that ξLX,Z ◦ lX,Z is now a homotopy inverse
of map(ηX , LY ). The proof proceeds as in [6, Theorem 2.4]. On one hand, by the
naturality of l,

ξLX,Z ◦ lX,Z ◦map(ηX , Z) ' ξLX,Z ◦map(LηX , LZ) ◦ lLX,Z .

Then, using the fact that Lη = ηL in HoM and assumption (c), we obtain

ξLX,Z ◦map(LηX , LZ) ◦ lLX,Z '
ξLX,Z ◦map(ηLX , LZ) ◦ lLX,Z ' ξLX,Z ◦map(LX, ηZ) ' id.

On the other hand,

map(ηX , Z) ◦ ξLX,Z ◦ lX,Z ' ξX,Z ◦map(X, ηZ) ◦map(ηX , Z) ◦ ξLX,Z ◦ lX,Z .

Since composition with ηX on the left and composition with ηZ on the right com-
mute, we obtain

ξX,Z ◦map(X, ηZ) ◦map(ηX , Z) ◦ ξLX,Z ◦ lX,Z '
ξX,Z ◦map(ηX , LZ) ◦map(LX, ηZ) ◦ ξLX,Z ◦ lX,Z '

ξX,Z ◦map(ηX , LZ) ◦ lX,Z .
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Finally, using (c) again,

ξX,Z ◦map(ηX , LZ) ◦ lX,Z ' ξX,Z ◦map(X, ηZ) ' id,

which completes the proof. �

Assumptions (b) and (c) in Theorem 2.1 need not be satisfied by arbitrary
idempotent functors in HoM, not even by those derived from functors in M. Recall
that a functor F in a simplicial model category is called simplicial or continuous if
it is equipped with natural maps of simplicial sets

lFX,Y : Map(X, Y ) −→ Map(FX, FY )

preserving composition and identity; see [19, IX.1] or [20, 9.8]. A natural transfor-
mation ζ : F → G of simplicial functors is called simplicial or continuous if

(4) Map(ζX , GY ) ◦ lGX,Y = Map(FX, ζY ) ◦ lFX,Y

for all X and Y ; cf. [19, IX.1].
Thus, we may view conditions (b) and (c) in Theorem 2.1 as “continuity up to

homotopy” of L and η, respectively. What we have shown is that continuity up to
homotopy is sufficient for the validity of Dror Farjoun’s result [12, Theorem 2.1].
In fact we have extended it to arbitrary model categories.

Now we use Proposition 6.4 in [23] to show that the assumptions (b) and
(c) in Theorem 2.1 hold automatically in most cases of interest. Let M be any
model category and let sM denote the category of simplicial objects over M. The
canonical model structure on sM is the one where every level equivalence is a weak
equivalence, the cofibrations are the Reedy cofibrations, and the fibrant objects
are the homotopically constant Reedy fibrant objects (see [23] for motivation and
further details). This model structure need not exist; however, when it exists, sM is
a simplicial model category that is Quillen equivalent to M. Moreover, the simplicial
model category structure on sM is unique up to simplicial Quillen equivalence.

Sufficient conditions for the existence of the canonical model structure in sM
were given in [23], and other sufficient conditions can be found in [14]. Pointed
model categories where the suspension functor and the loop functor are inverse
equivalences on the homotopy category are called stable. According to [23, Propo-
sition 4.5], if M is a proper, cofibrantly generated, stable model category, then the
canonical model structure on sM exists. Likewise, as shown in [14], if M is left
proper and combinatorial, or left proper and cellular, then the canonical model
structure on sM exists.

Theorem 2.2. Let M be a cofibrantly generated simplicial model category where
the canonical model category structure exists in sM. Let L be an endofunctor of
M equipped with a natural transformation η : Id → L that renders L homotopy
idempotent. Then L is a homotopy localization with respect to the class of maps ηX

for all X.

Proof. Let us denote by L′ the simplicial approximation to L given by [23,
Corollary 6.5]. Thus, L′X = |QL̂Sing RX| for each object X, where the notation
is as follows. The singular functor Sing is defined as (SingX)n = X∆[n] for all n;
the realization functor | − | is its left adjoint; L̂ is the prolongation of L over sM;
R is a fibrant replacement functor in M and Q is a simplicial cofibrant replacement
functor in sM. By its construction, L′ is a simplicial functor, since it is a composite
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of simplicial functors (see [23] for details), and there is a ziz-zag of weak equivalences
between LX and L′X for all X.

Although it is not explicitly stated in [23], if ζ : F → G is any natural trans-
formation of functors that preserve weak equivalences, then the above construction
yields a natural transformation ζ ′ : F ′ → G′ which is itself simplicial. To prove
this claim, note that, for each family of objects Xi in M indexed by a set I, the
following diagram commutes:∐

i∈I FXi

��

// F
(∐

i∈I Xi

)
��∐

i∈I GXi // G
(∐

i∈I Xi

)
,

where the horizontal arrows are defined by applying F or G to the inclusions into
the coproduct, and the vertical arrows are given by the natural transformation ζ.
Now recall that for a simplicial set K and an object A in sM, one defines K⊗A by
(K⊗A)n =

∐
s∈Kn

An (cf. [23]). Hence the above diagram yields the commutativity
of the diagram

∆[n]⊗ F̂A

��

// F̂ (∆[n]⊗A)

��

∆[n]⊗ ĜA // Ĝ(∆[n]⊗A),

for all n and every A in sM, where F̂ is the prolongation of F over sM and Ĝ is
the prolongation of G. This implies that the following diagram (where the vertical
arrows are now given by ζ ′) is also commutative:

∆[n]⊗ F ′X

��

// F ′(∆[n]⊗X)

��

F ′σ // F ′Y

��

∆[n]⊗G′X // G′(∆[n]⊗X) G′σ // G′Y ,

for every n-simplex σ : ∆[n]⊗X → Y of Map(X, Y ), where X and Y are any two
objects of M. This says precisely that ζ ′ is a simplicial natural transformation.

Thus, in our case, there is a simplicial natural transformation η′ : Id′ → L′

(where Id′ need not be the identity). Therefore, although L′ need not be a coaug-
mented functor in M, it follows that L and η fulfill the conditions of Theorem 2.1
in the homotopy category HoM, since L and L′ define isomorphic functors in HoM.
More precisely, take map(X, Y ) = Map(QX,RY ) as a homotopy function complex
in M. Then the map lX,Y required in (b) is the composite

Map(QX,RY ) −→ Map(L′QX,L′RY ) −→ Map(L′QX,RL′RY ),

where the first arrow is given by the continuity of L′, followed by an equivalence

Map(L′QX,RL′RY ) ' Map(QL′X, RL′Y )

given by the fact that L′ preserves weak equivalences and takes cofibrant values
since the realization functor preserves cofibrations; see [23].

The conclusion of Theorem 2.1 implies then that L is a homotopy localization
with respect to the class of maps of the form ηX for all X. �
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Now the results of the previous section yield the following answer to Dror
Farjoun’s problem in sufficiently good model categories.

Theorem 2.3. Assuming Vopěnka’s principle, any homotopy idempotent func-
tor in a left proper, combinatorial, simplicial model category is an X -localization
for some set of maps X .

Proof. Under these assumptions, the canonical model structure exists in sM
by [14]; cf. [23, Remark 3.8]. Therefore, Theorem 2.2 can be used and Lemma 1.4
completes the argument. �

This result applies to a useful case not previously established in the litera-
ture, namely to the stable homotopy category of Adams–Boardman, by using, for
example, the model category of symmetric spectra based on simplicial sets.

In the model categories of simplicial sets or spectra, the set X of maps given
by Theorem 2.3 can be replaced by a single map f , namely the coproduct

∐
g∈X g

of all maps in X . In a general model category, one has to be more careful, in view
of the next counterexample.

Consider the model category which is a product of two copies of the category
of simplicial sets, i.e., the category of diagrams of simplicial sets over the discrete
category with two objects, equipped with the projective model structure (where
fibrations and weak equivalences are objectwise). Take S = {f, g} for

f : (∅, ∅) −→ (∗, ∅) and g : (∅, ∗) −→ (∅, ∗
∐
∗) .

An object (X, Y ) is S-local if and only if X and Y are fibrant, X is contractible
and Y is either contractible or empty.

Suppose that there exists a map

h : (A,B) −→ (C,D)

such that any S-local object is also h-local, and vice versa. The object (X, ∅) is
h-local if and only if X is contractible. This condition implies that both B and D
are empty; otherwise, for any simplicial set Z, either contractible or not, the object
(Z, ∅) would be h-local. But in this case any object (X, Y ) with contractible X
becomes h-local, hence the contradiction. Note however that, in order to ensure
that every set of maps yields the same localization as their coproduct, it is enough
to assume that the set of maps X → Y is nonempty for all X and Y in the model
category under consideration.
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