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0 Introduction

In a series of works ([13], [14], [15]), Hilton introduced the terminology relative

group to denote a group epimorphism ε : G→→Q, and relative space to denote

a map f : E → B between connected spaces inducing an epimorphism of fun-

damental groups. He pointed out the desirability of relativizing the theory of

P -localization of nilpotent groups and spaces developed in [17], and carried out

the algebraic part of this project in [14], [16]. The homotopy-theoretical part

was settled by Llerena in [18], [19].

On the other hand, a certain amount of work has been done in the last few

years to develop P -localization methods in the category of all groups ([4], [11],

[20], [21], [22], [23], [24]), starting from earlier approaches on radicability in

groups ([2]). Given a set of primes P , a group G is called P -local ([17]) if the

map x 7→ xn is bijective in G for every integer n ≥ 1 whose prime divisors lie

outside P . The inclusion of the subcategory of P -local groups in the category

of groups has a left adjoint (see Proposition 5 in [22] or Example 3.3 in [7]),
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which is denoted by ( )P and called P -localization. This functor turns out to be

initial among all possible extensions of P -localization of nilpotent groups to the

category of all groups, in the sense that there is a unique natural transformation

from it to any other such extension; see Section 2 of [7].

P -localization of groups can also be relativized in the sense of Hilton. In

Section 1 we give a simple abstract proof of this fact using the methods of [7],

hence enlarging the list of idempotent functors encountered in practice whose

construction may be viewed as a particular case of a very general procedure. The

existence argument given by Ribenboim in the absolute case ([22]) is recovered

by identifying each group G with the corresponding epimorphism G→→{1}. Our

method is also guided by the attempt to develop the analog in homotopy theory,

i.e., to generalize the results of [19] to arbitrary relative spaces, using the new

ideas of [5].

In Sections 2 and 3 we use P -localization of relative groups as a tool to

obtain a description of the P -localization of groups having a nilpotent subgroup

of finite index (called virtually nilpotent or nilpotent-by-finite). We prove the

following: Given a group extension

N
ι

>→ G
ε→→ Q

in which N is nilpotent of class at most c and Q is nilpotent and torsion, then

the sequence

ΓcK(NP )>→NP
ιP→ GP

εP→→ QP (0.1)

is exact for every set of primes P ; here K is the preimage under ε of the

P ′-torsion subgroup of Q (P ′ denotes the complement of P ), and ΓcK(NP ) is the

cth term of the lower central series ([12]) of the action of K on NP induced by

the conjugation action of G on N . The assumption that Q be nilpotent can be

weakened; cf. Theorem 2.1.

This result illustrates the lack of exactness of the P -localization functor in

general, and allows us to prove, among other things, that the P -localization of
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a virtually nilpotent group is again virtually nilpotent (Theorem 3.3). Thus

P -localization restricts to the category of virtually nilpotent groups.

Our result (0.1) enables us then to analyze the behaviour of integral homol-

ogy under P -localization in the class of virtually nilpotent groups. In particular,

we are able to show examples of finitely generated nonnilpotent groups G for

which Hk(GP ) ∼= ZP ⊗Hk(G) for all k ≥ 1 and every set of primes P , where ZP

denotes the integers localized at P . These examples include the fundamental

group of the Klein bottle and the infinite dihedral group. It is remarkable that

no (nonnilpotent) examples with that property can be found in the class of

finite groups, because, as shown in [4], if G is finite and Hk(Gp) ∼= Zp ⊗Hk(G)

for all k ≥ 1 and all single primes p, then G has to be nilpotent.
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1 Localization of relative groups

We shall use the terminology and results of [6], [7], which we briefly recall.

A morphism f : A → B and an object X in a category C are called orthogonal

([9]) if for every morphism g: A→ X there is exactly one g′ : B → X such that

g′f = g; that is, if f ∗ : Hom(B,X) → Hom(A,X) is bijective. For a class of

morphisms S, the class of objects orthogonal to all f ∈ S is denoted by S⊥, and

analogously for a class of objects D. An orthogonal pair (S,D) in C consists of

a class of morphisms S and a class of objects D such that S⊥ = D and D⊥ = S.

If (S,D) is an orthogonal pair, then the classes S, D are saturated , meaning

that S⊥⊥ = S, D⊥⊥ = D.

Orthogonal pairs are useful tools to study idempotent functors, because, as
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explained in [1, §2], every idempotent functor E gives rise to an orthogonal

pair (S,D), and it is often possible to recover E from information contained

in (S,D). Specifically, Theorem 1.1 below will be useful for our purposes.

An object X of a cocomplete category C is called presentable ([10]) if, for a

sufficiently large ordinal α, every morphism from X to the colimit of a direct

system F : α→ C factors through F (i) for some i < α.

Theorem 1.1 ([7]) Let C be a cocomplete category and (S,D) an orthogonal

pair in C. Assume that there exists a set S0 ⊆ S such that (S0)⊥ = D, and

that the domains and codomains of morphisms in S0 are presentable. Then the

inclusion of the full subcategory of objects in D in the category C has a left

adjoint E : C → D. 2

The next example is illuminating and relevant for the sequel. In the category

G of groups one may consider, for a set of primes P , the set of maps

TP = {ρn : C → C, ρn(t) = tn, n ∈ P ′},

where C = 〈t〉 is infinite cyclic (we use multiplicative notation), and n ∈ P ′

means that n is a positive integer all of whose prime divisors lie outside P .

A group G belongs to DP = (TP )⊥ if and only if every x ∈ G has a unique

nth root for each n ∈ P ′, that is, if and only if G is P -local as defined in the

introduction. We call P -equivalences of groups the homomorphisms in the class

SP = (DP )⊥. Observe that (SP )⊥ = (DP )⊥⊥ = (TP )⊥⊥⊥ = (TP )⊥ = DP , so that

(SP ,DP ) is an orthogonal pair in G and, by Theorem 1.1, the inclusion of DP
in G has a left adjoint G → DP , which we call P -localization. The unit of the

adjunction is denoted by l. Thus a group homomorphism l: G→ GP P -localizes

if and only if l ∈ SP and GP ∈ DP (or, equivalently, if l is initial among all

homomorphisms from G to groups in DP ). If G is nilpotent, then l : G → GP

is the same map as the one described in Chapter I of [17]; in particular, if G is

commutative, then GP
∼= ZP ⊗G.
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The aim of this section is to relativize the functor described above. Let EG
denote the category of relative groups in the sense of Hilton (cf. [14], from which

our notation is taken). Thus, objects in EG are group epimorphisms ε: G→→Q,

and morphisms are commutative diagrams

G
ε→→ Q

f ↓ ↓ f̄

G′
ε′→→ Q′.

(1.1)

A relative group ε is called P -local if ker ε is a P -local group. This property

can be translated into categorical terms as follows.

Proposition 1.2 A relative group ε : G→→Q is P -local if and only if it is or-

thogonal to

C →→ {1}
ρn↓ ↓
C →→ {1}

(1.2)

for all n ∈ P ′, where C = 〈t〉 is infinite cyclic, and ρn(t) = tn. 2

In other words, if we denote by EDP the class of P -local relative groups

and by ET P the set of morphisms (1.2) with n ∈ P ′, then EDP = (ET P )⊥. It

follows, as in the absolute case, that (EDP )⊥⊥ = (ET P )⊥⊥⊥ = (ET P )⊥ = EDP ,

i.e., the class EDP is saturated. Thus, if we set ESP = (EDP )⊥, we obtain an

orthogonal pair (ESP , EDP ) in the category EG. We call morphisms in ESP
P -equivalences of relative groups.

Proposition 1.3 If the morphism

G
ε→→ Q

f ↓ ↓ f̄

G′
ε′→→ Q′

(1.3)

is a P -equivalence of relative groups, then f is a P -equivalence of groups and f̄

is an isomorphism.
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Proof. Given a P -local group L, the relative group L→→{1} is P -local and

therefore orthogonal to (1.3). This provides a bijection

f ∗ : Hom(G′, L) ∼= Hom(G,L)

and hence proves the first assertion. Similarly, a homomorphism g: Q′ → Q such

that gf̄ = id is obtained using the fact that (1.3) is orthogonal to the relative

group Q
=→→ Q, and the equality f̄ g = id is checked by using the relative group

Q′
=→→ Q′ in the same way. 2

In fact, it is possible to state a necessary and sufficient condition for a morphism

between relative groups to be a P -equivalence, but the proof requires additional

material; see Corollary 1.7.

Theorem 1.4 The inclusion of the full subcategory of P -local relative groups

in the category EG of relative groups has a left adjoint.

Proof. We want to show that Theorem 1.1 applies here. A diagram of relative

groups F : Λ→ EG gives rise to two diagrams F1, F2 in the category of groups,

together with a natural transformation F1 → F2. Since the category of groups

is cocomplete, there is a relative group colimF1→→colimF2, which is easily seen

to be a colimit of F . Hence, the category EG is cocomplete. The set ET P
defined in Proposition 1.2 satisfies (ET P )⊥ = EDP , and the relative group

C→→{1}, C infinite cyclic, is presentable in EG. Now our claim follows from

Theorem 1.1. 2

We shall use the term P -localization of relative groups to denote the left

adjoint given by Theorem 1.4. For a given object ε in EG, the P -localizing

morphism (i.e., the morphism induced by the unit of the adjunction) will be

denoted by

G
ε→→ Q

λ ↓ ↓ =

G(P )

ε(P )→→ Q.

(1.4)
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Thus the morphism ε → ε(P ) is initial among all morphisms from ε to P -local

relative groups, and terminal among all P -equivalences going out of ε. Note

that, by Proposition 1.3, we can always choose ε(P ) within its isomorphism

class so that the right-hand vertical homomorphism in (1.4) is precisely the

identity.

The notation G(P )→→Q in (1.4) is taken from [14], where it was first used to

denote the P -localization of G→→Q as a relative group, in a special case. The

group G(P ) should not be confused with GP , the (absolute) P -localization of G.

By Corollary 1.6 below, one might think of G(P ) as obtained “by localizing ker ε

inside G”. In particular, the absolute P -localization of G can be recovered as

the relative P -localization of G→→{1}.
We devote the rest of this section to showing that the functor given by

Theorem 1.4 extends, indeed, the functor constructed by Hilton in [14]. That

is, if the kernel of ε: G→→Q is nilpotent, then the two constructions agree.

Proposition 1.5 The restriction λ̂: ker ε→ ker ε(P ) in (1.4) is a P -equivalence

of groups.

Proof. Our argument requires a careful inspection of the procedure used in

the construction of ε(P ), along the lines of the proof of Theorem 1.1 (as given

e.g. in [7, Theorem 1.4]). The relative group ε(P ) is obtained as a direct limit

ε(P ) = lim
→

εi

of a direct system of relative groups εi : Gi→→Q, with ε0 = ε, and Gi+1 has the

form

Gi+1 = (Gi ∗ Fi)/Ni, (1.5)

where Fi and Ni are defined as follows: Fi is a free group with one generator

y(x) for every x ∈ ker εi without an nth root for some n ∈ P ′, and one generator

z(u, v) for every pair of elements u, v ∈ ker εi such that un = vn for some n ∈ P ′;
Ni is the normal subgroup of Gi∗Fi generated by the words y(x)nx−1, z(u, v)u−1,
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z(u, v)v−1. The homomorphism εi+1 : Gi+1→→Q is defined by εi+1(xNi) = εi(x)

if x ∈ Gi, and εi+1(xNi) = 1 if x ∈ Fi. The morphism

Gi
εi→→ Q

si ↓ ↓ =

Gi+1
εi+1→→ Q

(1.6)

is defined by si(x) = xNi. Now it suffices to show that

ŝi : ker εi → ker εi+1

is a P -equivalence of groups for every i ≥ 0. Fix such an i. Consider the

epimorphism

Gi ∗ Fi
κ→→ Q (1.7)

given by κ(x) = εi(x) if x ∈ Gi, and κ(Fi) = {1}. Then Ni ⊆ kerκ and

(kerκ)/Ni = ker εi+1. (1.8)

Using the methods of Bass-Serre (see [25, §5, Théorème 14]), the kernel of κ is

seen to be a free product

kerκ = (ker εi) ∗ F ′, (1.9)

where F ′ is the free group on the set {gy(x)g−1, gz(u, v)g−1}, where y(x), z(u, v)

are the generators of Fi, and g ranges within a set of representatives of cosets

of Gi mod ker εi.

Now assume there is given a homomorphism ψ : ker εi → L with L P -local.

Then, by (1.9), ψ admits an extension ψ̃ : kerκ → L, which is unique if we

impose the condition ψ̃(Ni) = {1}. Therefore, ψ factors uniquely through a

homomorphism ψ′ : ker εi+1 → L by (1.8), and this shows that

(ŝi)
∗ : Hom(ker εi+1, L) ∼= Hom(ker εi, L),

as desired. 2
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Corollary 1.6 A morphism

G
ε→→ Q

f ↓ ↓ =

G′
ε′→→ Q

(1.10)

is a P -localization of relative groups if and only if the induced homomorphism

f̂ : ker ε→ ker ε′ is a P -localization of groups.

Proof. If (1.10) P -localizes, then f̂ P -localizes by Proposition 1.5. Conversely,

assume that f̂ P -localizes. Then (1.4) and (1.10) give rise to a commutative

diagram

ker ε(P ) >→ G(P )

ε(P )→→ Q

ĝ ↓ g ↓ = ↓
ker ε′ >→ G′

ε′→→ Q

(1.11)

with gλ = f and ĝλ̂ = f̂ . But λ̂ and f̂ are both P -equivalences, so that ĝ is

also a P -equivalence and hence an isomorphism. It follows that g is also an

isomorphism. 2

Corollary 1.7 The morphism (1.3) is a P -equivalence of relative groups if

and only if f̄ is an isomorphism and the restriction f̂ : ker ε → ker ε′ is a

P -equivalence of groups. 2

Given a relative group ε: G→→Q, the conjugation action of G on ker ε induces

a unique action on (ker ε)P such that l: ker ε→ (ker ε)P is a G-homomorphism.

Consider the semidirect product (ker ε)P×|G with respect to this action, and

call H the subgroup generated by the elements of the form (l(x), x−1), x ∈ ker ε.

Then the following diagram is commutative and its rows are exact (cf. [3, page

117] or [14, Proposition 1.1])

ker ε >→ G
ε→→ Q

l ↓ ↓ = ↓
(ker ε)P >→ ((ker ε)P×|G)/H

ε′→→ Q.

(1.12)
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It follows from Corollary 1.6 that ε′ ∼= ε(P ), so that we can compute G(P )

in practice provided we have a sufficiently good description of (ker ε)P . The

diagram (1.12) also shows that our functor coincides with the one defined in

[14] when ker ε is nilpotent.

2 On the lack of exactness of P -localization

It is well-known that P -localization is not an exact functor in the category of

all groups. An easy counterexample is given by the extension

Z/3 >→ Σ3 →→ Z/2, (2.1)

where Σ3 is the symmetric group on three elements, since localization of (2.1) at

P = {3} gives the sequence Z/3→ {1} → {1}. However, P -localization always

preserves epimorphisms ([22, Proposition 10]). Moreover, for every extension

N >→ G→→ Q there is a commutative diagram with exact rows

N
ι

>→ G
ε→→ Q

ϕ ↓ l ↓ l ↓
ker(εP ) >→ GP

εP→→ QP ,

(2.2)

where ϕ is the composite of the following homomorphisms:

N
l→ NP

ιP→→ im (ιP ) ↪→ ker(εP ). (2.3)

If G is nilpotent, then ker(εP ) ∼= NP and ϕ P -localizes ([17, Theorem I.2.4]). In

general, ker(εP ) is the smallest P ′-ideal ([2]) of GP containing l(ι(N)), cf. [11,

Teorema 1.3.4]. An interesting abstract description of ker(εP ) was given in [20]

in the case when the extension N >→ G →→ Q splits. Other characterizations

of ker(εP ) in special cases are contained in [21] and [24].

Our main theorem below precisely identifies ker(εP ) in (2.2) when N is

nilpotent and Q is torsion (a group is said to be torsion if all its elements have

finite order).
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Theorem 2.1 Let N
ι

>→ G
ε→→ Q be a group extension in which Q is torsion

and N is nilpotent of class at most c. Let P be a set of primes. Denote by S

the kernel of l: Q→ QP , and set K = ε−1(S). Then:

(a) There is a group extension

(K/ΓcK)P >→ GP
εP→→ QP , (2.4)

where ΓkK, k ≥ 0, denotes the lower central series of the group K.

(b) If S is nilpotent, then there is a commutative diagram with exact rows

N
ι

>→ G
ε→→ Q

lπ↓ l ↓ l ↓
(N/ΓcKN)P >→ GP

εP→→ QP ,

(2.5)

in which ΓkKN , k ≥ 0, denotes the lower central series of the conjugation action

of K on N , and π is the projection N→→N/ΓcKN . Moreover, the following

sequence is exact:

ΓcK(NP )>→NP
ιP→ GP

εP→→ QP . (2.6)

Before proving this theorem, we need a few observations:

Lemma 2.2 Let N >→ G
ε→→ Q be a group extension. Then ε is a P -equiv-

alence if and only if every homomorphism ϕ : G → L with L P -local satisfies

ϕ(N) = {1}.

Proof. This follows directly from the definition. 2

Lemma 2.3 A torsion group is P -local if and only if it is P -torsion. If G is a

torsion group, then the P -localization homomorphism l : G → GP is surjective,

and ker l is generated by the P ′-torsion elements of G.

Proof. A P -local group cannot contain nontrivial P ′-torsion, because xn = 1

with n ∈ P ′ forces x = 1. Conversely, if G is P -torsion, then it is automatically
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P -local ([24, Corollary 6.20]). Now, if G is torsion and S is the subgroup of G

generated by its P ′-torsion elements, then G/S is P -torsion and, by Lemma 2.2,

the projection G→→G/S is a P -equivalence. Hence, GP
∼= G/S. 2

Lemma 2.4 (cf. [2, Theorem 11.5]) Let N >→ G→→ Q be a group extension in

which N is P -local and Q is P -torsion. Then G is P -local. 2

Corollary 2.5 Given a group extension N
ι

>→ G
ε→→ Q in which Q is

P -torsion, the sequence {1} → NP
ιP→ GP

εP→ QP → {1} is exact.

Proof. This was first pointed out in [11, Teorema 1.4.5]. Our own argument

is as follows. Consider the commutative diagram with exact rows

N
ι

>→ G
ε→→ Q

l ↓ λ ↓ = ↓
ker ε(P ) >→ G(P )

ε(P )→→ Q

(2.7)

given by (1.4). Thus ε(P ) : G(P )→→Q is the P -localization of ε: G→→Q as a relative

group. By Corollary 1.6, ker ε(P )
∼= NP . Since Q is P -torsion, Lemma 2.3 tells

us that Q = QP . By Lemma 2.4, G(P ) is P -local, and, by Proposition 1.3, λ is

a P -equivalence, ensuring that G(P )
∼= GP . Finally, the commutativity of (2.7),

together with the universal property of P -localization, tell us that the bottom

maps in (2.7) are ιP and εP , up to isomorphism. 2

Lemma 2.6 Let N >→ G
ε→→ Q be a group extension in which

(i) N is nilpotent of class at most c, and

(ii) Q is generated by P ′-torsion elements.

Then each homomorphism ϕ : G → L with L P -local satisfies ϕ(ΓcG) = {1}.
Furthermore, GP is nilpotent of class at most c.

Proof. Let I be the P ′-isolator ([22]) of ϕ(N) in the group L, i.e., the smallest

P -local subgroup of L containing ϕ(N). By [2, Theorem 15.1], I is nilpotent of

class at most c. We next prove that

ϕ(G) ⊆ I. (2.8)
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Given y ∈ G, write ε(y) = ε(x1) · · · ε(xr), xi ∈ G, where each ε(xi) is a

P ′-torsion element in Q. Then we can choose an integer m ∈ P ′ such that

(xi)
m ∈ N for all i = 1, . . . , r. Now

ϕ(y) = ϕ(yx−1
r · · ·x−1

1 )ϕ(x1) · · ·ϕ(xr)

belongs to I, because y(x1 · · ·xr)−1 ∈ N and ϕ(xi)
m ∈ ϕ(N) for all i. This

proves (2.8). Next, observe that ϕ(ΓcG) ⊆ ΓcI = {1}, which proves our first

assertion.

Now choose ϕ to be the P -localization homomorphism l: G→ GP . By (2.8),

l(G) is nilpotent of class at most c. But the P ′-isolator of l(G) in GP is GP

itself ([22, Proposition 6]), and hence the group GP is also nilpotent of class at

most c. 2

Proof of Theorem 2.1. The assumption that Q is torsion ensures that

l : Q → QP is surjective (Lemma 2.3). Now observe that K is precisely the

kernel of the composition G
ε→→ Q

l→→ QP . Moreover, K contains all elements

x ∈ G such that ε(x) = 1. Thus we can consider the group extensions

N >→ K
ε→→ S, (2.9)

K >→ G
lε→→ QP . (2.10)

We look first at (2.10). Since QP is P -torsion, from Corollary 2.5 we obtain

a commutative diagram with exact rows

K >→ G
lε→→ QP

l ↓ l ↓ = ↓
KP >→ GP

εP→→ QP .

(2.11)

Now we work with (2.9). By Lemma 2.3, S is generated by P ′-torsion

elements. Therefore, by Lemma 2.6, each homomorphism ϕ : K → L with

L P -local satisfies ϕ(ΓcK) = {1}, and hence, by Lemma 2.2, the projection
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K→→K/ΓcK is a P -equivalence. In other words, KP
∼= (K/ΓcK)P , which proves

part (a).

Next, assume that S is nilpotent. Then, since ΓcKN ⊆ ΓcKK = ΓcK,

Lemma 2.6 tells us that every homomorphism ϕ : K → L with L P -local

satisfies ϕ(ΓcKN) = {1}. Hence, by Lemma 2.2, the projection ν in the diagram

N >→ K
ε→→ S

π ↓↓ ν ↓↓ = ↓
N/ΓcKN >→ K/ΓcKN →→ S

(2.12)

is a P -equivalence. Now the conjugation action of K/ΓcKN on N/ΓcKN is nilpo-

tent. Since S is assumed to be nilpotent, K/ΓcKN is also nilpotent ([15, Theo-

rem 1.1g]), and P -localization preserves exactness in the bottom row of (2.12).

Since SP = {1}, we obtain a commutative diagram

N >→ K

lπ↓ ↓ lν

(N/ΓcKN)P
∼=→ (K/ΓcKN)P

(2.13)

in which the composition lν P -localizes because ν is a P -equivalence. Putting

diagrams (2.13) and (2.11) together, we obtain diagram (2.5). Finally, since the

homomorphism N/ΓcKN → NP/Γ
c
K(NP ) P -localizes ([12, Theorem 2.8]), the

exactness of (2.6) follows from the exactness of the bottom row in (2.5). 2

The assumption that S be nilpotent cannot be removed from part (b) of

Theorem 2.1, as the following counterexample shows.

Example 2.7 Take G = SL2(5), Q = PSL2(5), and P = {2}. Then N ∼= Z/2

is central in G. Hence, Γ1
KN = {0} and (N/Γ1

KN)P ∼= Z/2. But G is generated

by P ′-torsion elements, so that GP = {1}.

On the other hand, the hypothesis on Q in part (a) can be weakened. To

carry out the proof of part (a), we only need, for a fixed set P , that QP be a

torsion group and that S be generated by P ′-torsion elements. This happens,

of course, if Q is torsion, but also in other interesting cases, for example when

Q itself is generated by P ′-torsion elements.
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3 Applications to the study of virtually

nilpotent groups

A group G is virtually nilpotent if it contains a nilpotent subgroup H of finite

index. If this is the case, then H contains a subgroup N which is normal in G

and still of finite index in G. It follows that G has a Fitting subgroup, i.e., a

unique normal nilpotent subgroup F (G) such that any other normal nilpotent

subgroup is contained in it. We may thus associate to G, in a canonical way, a

group extension

F (G) >→ G
ε→→ Q(G) (3.1)

in which F (G) is nilpotent and Q(G) is finite. Let us call (3.1) the Fitting exten-

sion associated to G, and Q(G) the Fitting quotient . Given a set of primes P ,

we denote by S(G,P ) the kernel of l : Q(G) → Q(G)P , and by K(G,P ) its

preimage in G.

We devote this section to pointing out several consequences of Theorem 2.1

applied to the extension (3.1).

Proposition 3.1 Let G be a virtually nilpotent group, and P a set of primes

for which S(G,P ) is nilpotent. Then the kernel of l : G → GP is the set of

elements x ∈ G such that xm ∈ ΓcKF (G) for some m ∈ P ′, where c is the

nilpotency class of F (G), and K = K(G,P ).

Proof. By part (b) of Theorem 2.1, we have l(ΓcKF (G)) = {1}. If xm ∈
ΓcKF (G) with m ∈ P ′, then l(x)m = 1 and hence l(x) = 1 because GP

is P -local. Conversely, if l(x) = 1, then ε(x) belongs to S(G,P ), which is

nilpotent and generated by P ′-torsion elements, and hence P ′-torsion itself.

Thus xn ∈ F (G) for some n ∈ P ′. But xn is sent to 1 by the composi-

tion F (G)→→F (G)/ΓcKF (G) → (F (G)/ΓcKF (G))P . Therefore the class of xn

in F (G)/ΓcKF (G) has P ′-order, and this implies that xm ∈ ΓcKF (G) for some

m ∈ P ′. 2
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Proposition 3.2 Let G be a virtually nilpotent group, and P a set of primes

for which S(G,P ) is nilpotent. Then the homomorphisms si in the tower

· · · → F (G)/Γi+1
K F (G)

si→ F (G)/ΓiKF (G)→ · · · s0→ {1}, (3.2)

where K = K(G,P ), are P -equivalences for i greater than or equal to the

nilpotency class of F (G).

Proof. By Theorem 2.1, (F (G)/ΓiKF (G))P is isomorphic to ker(εP ) for all i

greater than or equal to the nilpotency class of F (G). 2

Theorem 3.3 If G is virtually nilpotent, then, for every set of primes P , its

P -localization GP is also virtually nilpotent.

Proof. Consider the Fitting extension (3.1) associated to G, and let c be the

nilpotency class of F (G). By part (a) of Theorem 2.1, there is a group extension

N >→ GP →→ Q(G)P in which N is nilpotent of class at most c. Since Q(G)P

is finite (by Lemma 2.3), the group GP is virtually nilpotent. 2

Corollary 3.4 If G is a virtually nilpotent subgroup of a P -local group L, then

the P ′-isolator I of G in L is also virtually nilpotent.

Proof. Let ι: G ↪→ L be the inclusion. Then ιP (GP ) is a P -local subgroup of

L containing G, and hence I is contained in ιP (GP ). But the class of virtually

nilpotent groups is closed under taking subgroups and epimorphic images, so

that our claim follows from Theorem 3.3. 2

Corollary 3.4 says precisely that the property of being virtually nilpotent is

closure-preserved in the sense of [8].

Example 3.5 Consider the fundamental group of the Klein bottle

π = 〈x, y | yxy−1 = x−1〉.
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There is a (non-split) extension

Z⊕ Z
ι

>→ π
ε→→ Z/2, (3.3)

where ι(1, 0) = x, ι(0, 1) = y2, ε(x) = 1, ε(y) = ξ, by writing Z/2 = 〈ξ | ξ2 = 1〉.
Hence, π is virtually nilpotent and (3.3) is its associated Fitting extension. If

2 ∈ P , then Theorem 2.1 gives a commutative diagram of extensions

Z⊕ Z >→ π →→ Z/2

l ↓ l ↓ = ↓
ZP ⊕ ZP >→ πP →→ Z/2.

(3.4)

In particular, l : π → πP is a monomorphism if 2 ∈ P . On the other hand,

if 2 6∈ P , then K(π, P ) = π and the projection π→→π/Γ1π is a P -equivalence.

Thus

πP ∼= ZP , (3.5)

and the kernel of l: π → πP is the subgroup generated by x. Observe also that,

if 2 6∈ P , then the tower (3.2) takes the form:

· · · → (Z/8)⊕ Z→ (Z/4)⊕ Z→ (Z/2)⊕ Z→ 0.

Example 3.6 Consider the infinite dihedral group D∞ = 〈u, v | u2 = v2 = 1〉.
One obtains, as in Example 3.5, that

(D∞)P ∼=

 ZP×| (Z/2) if 2 ∈ P
{1} if 2 6∈ P .

(3.6)

It is well-known that, if G is nilpotent and l: G→ GP is its P -localization,

then the homomorphisms

l∗ : Hk(G)→ Hk(GP ) (3.7)
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P -localize for all k ≥ 1 and each set of primes P . This is false, in general, for

nonnilpotent groups. We wish to obtain information on (3.7) when the group

G is virtually nilpotent. The next observation is an immediate consequence of

Corollary 2.5.

Theorem 3.7 The class of groups for which the homomorphism l : G → GP

induces P -localization on integral homology is closed under extensions by finite

P -groups.

Proof. Given a group extension N >→ G→→ Q in which Q is a finite P -group,

by Corollary 2.5 we have a commutative diagram with exact rows

N >→ G →→ Q

l ↓ l ↓ = ↓
NP >→ GP →→ Q.

Now, if we assume that l∗ : Hk(N)→ Hk(NP ) P -localizes for all k ≥ 1, then we

can use the induced morphism at the corresponding Lyndon-Hochschild-Serre

spectral sequences with ZP coefficients to obtain an isomorphism

l∗ : Hk(G; ZP ) ∼= Hk(GP ; ZP )

for all k ≥ 1. But, since both NP and Q have P -local integral homology groups,

so does GP . Hence, l∗ : Hk(G)→ Hk(GP ) P -localizes for all k ≥ 1. 2

Corollary 3.8 If G is virtually nilpotent and the set P contains all prime di-

visors of the order of its Fitting quotient Q(G), then l : G → GP induces

P -localization on integral homology. 2

Example 3.9 Let G be either the fundamental group π of the Klein bottle or

the infinite dihedral group D∞ (Examples 3.5 and 3.6). Corollary 3.8 applies if

2 ∈ P . But, in the case 2 6∈ P , direct computation shows that l : G→ GP also

induces P -localization on integral homology; to carry out this computation one

may use Theorem 3.10 below.
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The groups in Example 3.9 are somehow exceptional. If G is an arbitrary

virtually nilpotent group, no good homological behaviour is to be expected at

the primes not dividing the order of the Fitting quotient. For example, the

Fitting extension of the symmetric group Σ3 is

Z/3 >→ Σ3 →→ Z/2, (3.8)

and for P = {3} one has (Σ3)P = {1}, while H∗(Σ3) contains nontrivial

3-torsion. In fact, the following holds.

Theorem 3.10 Let A >→ G→→ S be a group extension in which A is commu-

tative and S is a finite P ′-torsion nilpotent group. Then, for each given k ≥ 1,

the homomorpism l∗ : Hk(G) → Hk(GP ) P -localizes if and only if the natural

homomorphism

H0(S;Hk(A))→ Hk(H0(S;A))

is a P -equivalence.

(Note that, since A is commutative, the action of S on H∗(A) is induced by an

action of S on A. We are thus measuring the difference between dividing out the

action of S before and after applying the homology functors. For example, in

the extension (3.8) we have H0(S;A) = 0, while S acts trivially on Hk(A) ∼= Z/3

for k = 3, 7, 11, . . .)

Proof. By part (b) of Theorem 2.1, there is a commutative diagram of exten-

sions

A >→ G →→ S

lπ↓ l ↓ ↓
H0(S;A)P >→ GP →→ {1}.

(3.9)

Consider the induced morphism at the corresponding Lyndon-Hochschild-Serre

spectral sequences with ZP coefficients. Since S is a finite P ′-torsion group,

both sequences collapse at the E2-term and give a commutative diagram

H0(S;Hk(A; ZP ))
∼=→ Hk(G; ZP )

↓ ↓ l∗

Hk(H0(S;A)P ; ZP )
∼=→ Hk(GP ; ZP )

(3.10)
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for all k ≥ 1. Now, since GP is commutative, l∗ : Hk(G)→ Hk(GP ) P -localizes

if and only if the right-hand arrow in (3.10) is an isomorphism, and this is

equivalent to the condition stated. 2
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matiques (Gauthiers-Villars, 1982), pp. 167–178.

[14] P. Hilton. Relative nilpotent groups. In Categorical Aspects of Topology

and Analysis, Lecture Notes in Math. vol. 915 (Springer-Verlag, 1982),

pp. 136–147.

[15] P. Hilton. Nilpotency in group theory and topology. Publ. Sec. Mat. Univ.
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