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Abstract

The extended genus of a nilpotent group N is the set of isomorphism

classes of nilpotent groups M , not necessarily finitely generated, such that

the p-localizations Mp, Np are isomorphic for all primes p. In this article,

for any torsion-free finitely generated nilpotent group N of nilpotency class 2,

the extended genus of N is analyzed by assigning to each of its members a

sequence of triads of matrices with rational entries, generalizing the sequen-

tial representation which has been exploited elsewhere in the case when N

is abelian. This approach allows, among other things, to obtain examples of

groups in the ordinary (Mislin) genus of N .
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0 Introduction

Torsion-free finitely generated nilpotent groups of class 2 have been extensively

studied; see e.g. [4], [5], [7], [10], [12]. Every such group N may be written as

a central extension Zm >→ N →→ Zn, where the commutator operation in N

defines an alternating bilinear map Zn × Zn → Zm. The analysis of this map

gives a big deal of information about N ; indeed, it has been used to classify

torsion-free finitely generated nilpotent groups of class 2 up to Hirsch length 6.

This has been achieved in [6], [7], where the problem of deciding whether two

such groups are in the same Pickel genus (see [13]) has also been considered.

We warn the reader that, in the present paper, we will be dealing with

genus in the sense of Mislin ([11]), instead of Pickel. The Mislin genus of a

finitely generated nilpotent group N is the set of isomorphism classes of finitely

generated nilpotent groups M such that the p-localizations Np, Mp (as defined

e.g. in [8]) are isomorphic for all primes p. It is well-known that, if N , M are

in the same Mislin genus, then they are also in the same Pickel genus. Thus,

both Pickel genera and Mislin genera are finite sets.

It is possible to dispense with the restriction that groups be finitely gen-

erated if one is willing to deal with possibly infinite (even uncountable) genus

sets. Thus, if N , M are nilpotent groups, not necessarily finitely generated,

such that Np
∼= Mp for all primes p, then we say, as in [2], that N and M are

in the same extended genus. In Section 2 we carry out a very natural general-

ization of several parts of [2], where suitable tools were given to study groups

in the extended genus of Zk, by associating to every such group a sequence of

matrices with rational entries, one for each prime p. A similar representation

is described in the present paper for torsion-free finitely generated nilpotent

groups of class 2 (in fact, we show that the first steps in the construction

are valid for every torsion-free nilpotent group). Given such a group N , we

associate to each group M in its extended genus a sequence of triads of ma-

trices {Ap, Bp, Cp} with rational entries, which is uniquely determined up to

a certain equivalence relation. If N is a central extension of Zm by Zn, then

the sequence {Ap} represents a group in the extended genus of Zn and the

sequence {Cp} represents a group in the extended genus of Zm. A key result



(Theorem 3.4 below) states that, if the group represented by {Ap} is finitely

generated —which, as explained in [2], can be detected by merely inspecting

the entries of each Ap— then M is also finitely generated. Hence, our approach

allows to recognize groups in the Mislin genus of N within the extended genus

of N by analyzing their associated matrices. Unfortunately, even though we

can easily decide if a given sequence of matrices {Ap, Bp, Cp} is realized by

some group in the extended genus of N , we know of no effective procedure to

decide whether two given sequences represent isomorphic groups or not. This

is of course a serious difficulty if one aims to computing orders of Mislin genera.

On the other hand, we emphasize that the applicability of our approach is not

limited by the Hirsch number of N .

More powerful methods for the analysis of genera are available if the Hirsch

number of N is less than or equal to 6, or also if the commutator subgroup

of N is cyclic. Under any of these restrictions, Mislin genera turn out to be

trivial except when n = 4, m = 2; see [6], [7], or [14, ch. 11]. In the case n = 4,

m = 2, a complete characterization of Mislin genera by means of a finite set

of arithmetical invariants has recently been described in [3].

1 The groups Gφ(R)

If N is a torsion-free nilpotent group of class 2, then by considering the isolator

of the commutator subgroup

I = I ([N,N ]) = {x ∈ N | xk ∈ [N,N ] for some integer k},

one obtains a central extension I >→ N →→ N/I of torsion-free nilpotent

groups. If one assumes, in addition, that N is finitely generated, then I ∼= Zm

and N/I ∼= Zn for some positive integers n, m. In this situation, we say, as

in [7] or [14, ch. 11], that the group N belongs to the class T (n,m). One can

associate with every group N in T (n,m) the map (N/I)× (N/I)→ I sending

(xI, yI) to the commutator [x, y] = x−1y−1xy. This map is full, in the sense

that its image generates a subgroup of rank m (or, equivalently, of finite index)

in I. Thus, after choosing bases in I and N/I, one obtains a full alternating

bilinear map φ : Zn × Zn → Zm. Any other choice of bases will give rise to



another map ψ, fitting into a commutative diagram

Zn × Zn f×f−→ Zn × Zn

φ ↓ ↓ ψ

Zm h−→ Zm

(1.1)

for some f ∈ GLn(Z) and h ∈ GLm(Z). In fact, the assignment N 7→ φ sets

up a bijective correspondence between the set of all isomorphism classes of

groups in T (n,m) and the set of all equivalence classes (in the sense of (1.1))

of full alternating bilinear maps φ: Zn × Zn → Zm; see [7, Theorem 2].

We next describe a broader class of torsion-free nilpotent groups, not nec-

essarily finitely generated, which contains the above as a special case. Let R

be a subring of Q containing 1 and φ : Rn × Rn → Rm be any full alter-

nating bilinear map. Note that, since the matrix of φ is skew-symmetric, the

assumption that φ be full forces the numbers m, n to satisfy the inequality

m ≤ 1
2
n(n − 1). We denote by Gφ(R) the group whose underlying set is the

Cartesian product Rn ×Rm, equipped with the multiplication

(x, y)(x′, y′) = (x+ x′, y + y′ + φ̄(x, x′)), (1.2)

where φ̄: Rn×Rn → Rm is the bilinear map obtained by replacing the entries

below the diagonal in the matrix of φ with zeros (so that φ(x, y) = φ̄(x, y) −
φ̄(y, x) for all x, y). By construction, Gφ(R) fits into a central extension

Rm >→ Gφ(R)→→ Rn, (1.3)

showing that Gφ(R) is torsion-free nilpotent of class 2. Moreover, the kernel

of (1.3) is equal to the isolator I ([Gφ(R), Gφ(R)]). The bilinear map φ̄ may

be viewed as a 2-cocycle and, as such, it determines a cohomology class [φ̄] ∈
H2(Rn;Rm) attached to the extension (1.3). In this situation, the next result

follows by standard arguments; cf. [1], [15].

Theorem 1.1 Let R, S be subrings of Q with 1 ∈ R ⊆ S. Assume given

full alternating bilinear maps φ : Rn × Rn → Rm, ψ : Sn × Sn → Sm.

Then every homomorphism F : Gφ(R) → Gψ(S) factors to a homomorphism

f : Rn → Sn. On the other hand, a homomorphism f : Rn → Sn can be lifted to



a homomorphism F : Gφ(R)→ Gψ(S) if and only if there is a homomorphism

h: Rm → Sm such that hφ = ψ(f ×f). If one lifting exists, then h is uniquely

determined by f , and the set of all liftings is in one-to-one correspondence with

the set of homomorphisms g: Rn → Sm. 2

More specifically, any homomorphism F : Gφ(R)→ Gψ(S) has the form

F (x, y) = (f(x), h(y) + θ(x)), (1.4)

where θ is some function satisfying ∂θ = hφ̄− ψ̄(f × f) and θ(0) = 0; any two

choices θ, θ′ must differ in a 1-cocycle, i.e., a homomorphism. Note also that

a bilinear map Rn ×Rn → Sm is a coboundary if and only if it is symmetric.

It will be useful to introduce some terminology. In the hypotheses of The-

orem 1.1, a homomorphism f : Rn → Sn will be called liftable if there is a

(uniquely determined) homomorphism h: Rm → Sm such that hφ = ψ(f × f).

In other words, f is liftable if it is the factorization of some homomorphism

F : Gφ(R)→ Gψ(S). A more practical way to describe liftable homomorphisms

is given in the next lemma.

Lemma 1.2 A homomorphism f : Rn → Sn is liftable if and only if, for every

vanishing linear combination of the form r1φ(x1, y1) + · · · + rkφ(xk, yk) = 0

with r1, . . . , rk in R, the following equality also holds:

r1ψ(f(x1), f(y1)) + · · ·+ rkψ(f(xk), f(yk)) = 0. 2

In particular, if f satisfies φ(x, y) = ψ(f(x), f(y)) for all x, y, then f is

liftable and any lifting F restricts to the canonical inclusion of Rm into Sm.

Observe also that, in order to test if a given map f : Rn → Sn is liftable, it

suffices to check the condition of Lemma 1.2 for the vectors {e1, . . . , en} of a

fixed basis of Rn. We also record the following remark for further use:

Lemma 1.3 Given an arbitary basis {e1, . . . , en} of Rn and a liftable homo-

morphism f : Rn → Sn, there is a unique lifting F : Gφ(R)→ Gψ(S) satisfying

F (ei, 0) = (f(ei), 0) for i = 1, . . . , n.



Proof. If h : Rm → Sm is the homomorphism determined by f , then we

set ϕ = hφ̄ − ψ̄(f × f) and θ(x) = −1
2

[ϕ(x, x)− x · diagϕ], where diagϕ

denotes the vector whose components are ϕ(e1, e1), . . . , ϕ(en, en). It follows

that ∂θ = ϕ and θ(ei) = 0 for i = 1, . . . , n. 2

Given a full alternating bilinear map φ : Zn × Zn → Zm and a set of

primes P , we can consider the unique extension of φ to a map Zn
P × Zn

P →
Zm
P , which we denote by the same letter φ (here, and in all of what follows,

ZP denotes the ring of integers localized at P ). Then, as a special case of

Theorem 1.1, we have a commutative diagram of group extensions

Zm >→ Gφ(Z) →→ Zn

↓ ↓ ↓
Zm
P >→ Gφ(ZP ) →→ Zn

P ,

(1.5)

where the vertical arrows are canonical embeddings. Since the first and third

vertical arrows in (1.5) are P -localizations, so is also the middle arrow (see [9,

Corollary I.2.6]). In other words,

Gφ(ZP ) ∼= Gφ(Z)P . (1.6)

If a group N = Gφ(Z) is in the class T (n,m), and M is in the Mislin

genus of N , then M also belongs to the class T (n,m). Furthermore, (1.6) and

Theorem 1.1 give the following.

Theorem 1.4 Two groups Gφ(Z), Gψ(Z) in T (n,m) are in the same Mislin

genus if and only if, for every prime p, there exist fp ∈ Aut(Zn
p ) and hp ∈

Aut(Zm
p ) such that hpφ = ψ(fp × fp). 2

2 On the extended genus

For a fixed nilpotent group N , the extended genus EG(N) is the set of isomor-

phism classes of (not necessarily finitely generated) nilpotent groups M such

that Np
∼= Mp for all primes p. In this broader sense, extended genera need

not be finite, and turn out to be relevant even for abelian groups (for which

Mislin genera are always trivial). For example, EG(Z) contains uncountably

many non-isomorphic groups.



We recall from [2] that, if M and N are in the same extended genus, then

they have the same nilpotency class and their torsion subgroups TM , TN are

isomorphic; moreover, M/TM and N/TN still belong to the same extended

genus. Thus the essential part of the study is concerned with extended genera

of torsion-free nilpotent groups.

If A is finitely generated abelian and torsion-free, then the extended genus

of A can be studied by representing it into a certain set of matrix sequences

with rational entries (see [2]). In this section, we generalize these methods to

torsion-free finitely generated nilpotent groups of class 2.

Before particularizing to this class of groups, however, we point out that

some basic results of [2] may be generalized to arbitrary torsion-free nilpotent

groups. Thus let N be torsion-free nilpotent; then, for every M ∈ EG(N) we

can fix, for each prime p, an isomorphism gp : Mp
∼= Np. We can also choose an

isomorphism of the rationalizations g0 : M0
∼= N0 (not necessarily compatible

with any of the gp’s). Now, since M is torsion-free, Mp embeds into M0. Thus

we may consider the homomorphism Fp = g0(gp)
−1, which is an injection of

Np into N0. Note that Fp extends in a unique way to an automorphism of

N0; hence we may view Fp either as a monomorphism from Np to N0 or as an

automorphism of N0, depending on the context.

Of course, a different choice of isomorphisms {g′p}, g′0 gives rise to a different

family {F ′p}. But the two families {Fp} and {F ′p} are then related by F ′p =(
g′0g
−1
0

)
Fp

(
gp(g

′
p)
−1
)
, and hence belong to the same coset in

Aut(N0) \
∏
p

Aut(N0) /
∏
p

Aut(Np). (2.1)

Since two isomorphic groups M ∼= M ′ are obviously represented by the same

element in (2.1), we have defined a function

Φ: EG(N) −→ Aut(N0) \
∏
p

Aut(N0) /
∏
p

Aut(Np). (2.2)

Furthermore, any group M ∈ EG(N) can be reconstructed inside N0 from a

representing sequence {Fp}, since

⋂
p

imFp = g0(M) ∼= M. (2.3)



The proof is the same as in [2, Theorem 2.1], for the argument only requires

that N be torsion-free. Observe that (2.3) implies that the function Φ is

injective. However, Φ is far from being surjective in general. We say that a

sequence of monomorphisms Fp : Np → N0, one for each prime p, is realizable

if its equivalence class is in the image of Φ; that is, if there exists a group M

together with isomorphisms gp : Mp
∼= Np for all primes p and g0 : M0

∼= N0,

such that Fp = g0(gp)
−1 for all p. By (2.3), if {Fp} is realizable, then such a

group M is determined up to isomorphism. We call it the realization of {Fp}.
Realizable sequences can be characterized as follows.

Theorem 2.1 Let N be a torsion-free nilpotent group. Assume given a

monomorphism Fp : Np → N0 for each prime p. Consider H = ∩pimFp, and

identify H0 with the isolator of H in N0. Then the following statements are

equivalent:

(i) H0 = N0.

(ii) H ∈ EG(N) and Φ(H) = [{Fp}].

(iii) {Fp} is realizable.

Proof. Assume that (i) holds. We first show that Hp = imFp for all p.

Thus fix a prime p, and observe that imFp is isomorphic to Np and hence

p-local. Therefore, we only have to prove that the inclusion of H in imFp

is p-surjective; cf. [9]. Assume given x ∈ imFp. Since we are assuming that

H0 = N0, we may pick an integer n such that xn ∈ H. Write n = pkm with

(m, p) = 1, and y = xm, which obviously belongs to imFp. Let q be any prime

different from p. Since imFq is q-local and contains H, it also contains the

q′-isolator of H in N0 (where q′ denotes the set of all primes p 6= q). But y

satisfies yp
k ∈ H, so that y ∈ imFq for every q 6= p as well. This tells us that

y ∈ H, as desired. We conclude that Hp = imFp ∼= Np, so that H ∈ EG(N).

Moreover, if we define isomorphisms {gp}, g0 by setting gp = F−1
p for all p, and

g0 = id, then we find that {Fp} precisely represents the group H. This shows

that (i)⇒(ii).

The implication (ii)⇒(iii) is trivial. We finally prove that (iii)⇒(i). Assume

that {Fp} realizes a certain group M , and let g0 : M0
∼= N0 be the associated



isomorphism of the rationalizations. Then g0(M) = H by (2.3). Since the

restriction g0 : M → N0 is 0-surjective, it follows that every element x ∈ N0

has a power in H, showing that H0 = N0. 2

Corollary 2.2 With the same hypotheses as in Theorem 2.1, if we assume in

addition that the group N is finitely generated, then {Fp} is realizable if and

only if H0
∼= N0.

Proof. Recall that any monomorphism of the rationalization of a finitely

generated nilpotent group into itself must be an isomorphism (this is shown by

arguing by induction on the nilpotency class). It follows that, if H0
∼= N0, then

the inclusion of H0 in N0 has to be an equality. Then we can use Theorem 2.1

to complete the argument. 2

If we omit the hypothesis that N be finitely generated, then it is not enough

to assume that H0
∼= N0 in order to conclude that {Fp} is realizable; not even

in the abelian case. For example, let N be an infinite direct sum of copies of

Z, indexed by the natural numbers, and let Fp be the canonical embedding

of Np into N0, followed by multiplication by p on the first coordinate. Then

H = ∩pimFp is isomorphic to N , so that H0
∼= N0, yet H0 is properly contained

in N0 and hence {Fp} is not realizable.

3 Extended genus of groups in T (n,m)

From now on we specialize to the case N = Gφ(Z), for a certain full alternating

bilinear map φ: Zn×Zn → Zm. In all of what follows, coordinates are referred

to the canonical bases of Qn and Qm. By (1.6) and Theorem 1.1, if P is any

set of primes, then an automorphism of NP is determined by three matrices

A ∈ GLn(ZP ), B ∈ Mm×n(ZP ), C ∈ GLm(ZP ) satisfying Cφ = AtφA, where

we denote the matrix of φ by the same letter. Hence, the representation (2.2)

gives us a chance to study the extended genus of groups in T (n,m) by working

with matrices with rational entries. The main difficulty is that —already

in the abelian case— given two representatives of cosets in (2.1), it may be

very hard to decide in practice whether they belong to the same coset or not.



However, we will be able to describe a practical procedure for constructing

realizable sequences {Fp}. Furthermore, it will be possible to decide when the

realization of such a sequence is finitely generated.

Thus, assume given an arbitrary family of monomorphisms

Fp : Gφ(Zp)→ Gφ(Q),

one for each prime p. Each Fp fits into a commutative diagram

Zm
p >→ Gφ(Zp) →→ Zn

p

↓ hp ↓ Fp ↓ fp

Qm >→ Gφ(Q)
π→→ Qn

(3.1)

where hp is injective because Fp is injective, and fp is injective because h0 and

F0, and hence also f0, are isomorphisms. As in (1.4), we can write

Fp(x, y) = (fp(x), hp(y) + θp(x)) (3.2)

for a certain function θp : Zn
p → Qm satisfying θp(0) = 0.

As we next explain, if {Fp} is realizable then both {fp} and {hp} are

realizable. However, the converse turns out to be false. If we consider the

subgroup H = ∩pimFp of Gφ(Q), then we have a commutative diagram with

exact rows,

Qm ∩H >→ H →→ π(H)

↓ ↓ ↓
Qm >→ Gφ(Q)

π→→ Qn,

(3.3)

where the vertical arrows are inclusions.

Lemma 3.1 With the above notation, we have Qm∩H = ∩pimhp and π(H) ⊆
∩pim fp.

Proof. If y ∈ ∩pimhp, then for every p we have y = hp(tp) for some tp ∈ Zm
p ,

and hence Fp(0, tp) = (0, hp(tp)) = (0, y) for all p, so that (0, y) ∈ H.

Conversely, if (0, y) ∈ H, then we can write (0, y) = Fp(zp, tp) for each p. It

follows that fp(zp) = 0 for all p, which forces zp = 0 for all p. Therefore

(0, y) = Fp(0, tp) = (0, hp(tp)) for all p, which implies y ∈ ∩pimhp. This

concludes the proof of the first equality. Now, if (x, y) ∈ H, then (x, y) =



Fp(zp, tp) = (fp(zp), hp(tp)+θp(zp)) for all p. Hence, x = fp(zp) for all p, which

implies that x ∈ ∩pim fp. 2

We note that the inclusion π(H) ⊆ ∩pim fp need not be an equality in

general (see remark 3 below).

Theorem 3.2 Assume given monomorphisms Fp : Gφ(Zp) → Gφ(Q), one for

each prime p. Let {fp} and {hp} be given by (3.1), and let H = ∩pimFp. Then

the following statements are equivalent.

(i) {Fp} is realizable.

(ii) {hp} is realizable and π(H) has rank n.

(iii) {fp} is realizable and π(H) has rank n.

Proof. If {Fp} is realizable, then it follows from Theorem 2.1 that the mid-

dle vertical arrow in (3.1) becomes an equality after rationalization. Hence,

π(H)0 = Qn and π(H) has exactly rank n. By Lemma 3.1, ∩pim fp has

also rank n, which implies that the sequence {fp} is realizable. Moreover,

(Qm∩H)0 = Qm, which tells us that ∩pimhp has rank m, so that {hp} is real-

izable. We have proved that (i)⇒(ii) and (i)⇒(iii). Now (ii)⇒(i) is obtained

by rationalizing (3.1) and invoking Corollary 2.2. Finally, the implication

(iii)⇒(ii) follows from part (a) of Theorem 3.3 below. 2

In what follows, we no longer assume that a sequence {Fp} has been given,

but only a sequence of monomorphisms fp : Zn
p → Qn which are liftable, in

the sense of Section 1. Recall that, in this situation, all liftings Fp of fp restrict

to the same homomorphism hp : Zm
p → Qm.

Theorem 3.3 Given a full alternating bilinear map φ: Zn
p × Zn

p → Zm
p and a

realizable sequence of liftable monomorphisms fp : Zn
p → Qn, then:

(a) The associated homomorphisms hp : Zm
p → Qm are monomorphisms,

and the sequence {hp} is realizable.

(b) Every lifting Fp of fp is a monomorphism.



(c) There is at least one lifting Fp for each p such that the sequence {Fp} is

realizable.

Proof. Since {fp} is realizable, we can pick a basis {x1, . . . , xn} of Qn such

that xi ∈ ∩pim fp for all i. Since φ is full, Qm is generated as a Q-vector space

by the elements φ(xi, xj), i = 1, . . . , n, j = 1, . . . , n. Now, in order to prove

that ∩pimhp has rank m, it suffices to see that φ(xi, xj) ∈ ∩pimhp for all i,

j. But for each fixed pair i, j we may write (xi, xj) = (fp(zp), fp(tp)) for all

p, so that φ(xi, xj) = φ(fp(zp), fp(tp)) = hpφ(zp, tp) for all p, as desired. The

fact that ∩pimhp has rank m implies that every hp is injective, and also shows

that the sequence {hp} is realizable. Now any lifting Fp has the form (3.2) and

hence it is injective.

We finally prove (c). Choose again a basis {x1, . . . , xn} of Qn which is

contained in ∩pim fp. Set xi = fp(z
i
p) for each i and each p. For every fixed p,

the family {z1
p , . . . , z

n
p } is a basis of Zn

p . Then, by Lemma 1.3, there is precisely

one lifting Fp satisfying Fp(z
i
p, 0) = (xi, 0) for i = 1, . . . , n. This tells us that

(xi, 0) ∈ ∩pimFp for all i. Hence xi ∈ π(H) for all i, so that π(H) has rank n.

It follows that {Fp} is realizable, by Theorem 3.2. 2

Remark 1. If ∩pim fp is finitely generated, then, in the last paragraph of the

above proof, we can choose {x1, . . . , xn} to be a basis of ∩pim fp as a Z-module.

If we do so, then the family {Fp} of liftings satisfying Fp
(
f−1
p (xi), 0

)
= (xi, 0)

for every i, p, is realizable and has the property that the inclusion π(H) ⊆
∩pim fp is an equality.

Remark 2. Suppose that we have in fact hpφ̄ = φ̄(fp × fp) for all p. Then

we may choose θp = 0 in (3.2) and hence, for every p, the map Fp(x, y) =

(fp(x), hp(y)) is a homomorphism. For this sequence of liftings, we have

π(H) = ∩pim fp, and therefore {Fp} is realizable.

Remark 3. It is not true that every lifting of a realizable sequence {fp} is

realizable. For example, set m = 1, n = 2, let fp and hp be the canonical

inclusions, and define for each p a homomorphism gp : Z2
p → Q by gp(e1) = 0,

gp(e2) = 1/p. Then Fp(x, y) = (x, y + gp(x)) is a homomorphism lifting fp.

However, if (z, t) ∈ imFp for all p, then gp(z) ∈ Zp for almost all p. This forces



that, if z = z1e1 + z2e2, then z2 = 0. Thus we find that π(H) has rank 1, and

hence, by Theorem 3.2, {Fp} is not realizable.

In conclusion, we are able to construct groups in the extended genus of

Gφ(Z) by exhibiting realizable sequences {fp} of liftable maps in GLn(Q). In

practice, we can search for liftable maps by using Lemma 1.2. Also, in order

to decide whether a given sequence {fp} is realizable, the techniques of [2] are

available. Specifically, we recall from [2, Theorem 2.5] that {fp} is realizable

if and only if the matrix of f−1
p has entries in Zp for almost all primes p. If

this is the case, then the realization of {fp} is finitely generated if and only if

the matrix of fp has entries in Zp for almost all p; see [2, Theorem 4.1].

Surprisingly, it turns out that if ∩pim fp is finitely generated, so is ∩pimFp

for any sequence of liftings {Fp}. Hence, among such sequences {Fp}, the ones

which are realizable give us groups which are in the Mislin genus of Gφ(Z).

We next prove this claim.

Theorem 3.4 In the hypotheses of Theorem 3.3, assume that the realization of

{fp} is finitely generated. Then the realization of {hp} is also finitely generated,

and so is H = ∩pimFp for every sequence {Fp} lifting {fp}.

Proof. Let {Fp} be any sequence lifting {fp}. We know from Lemma 3.1

that π(H) ⊆ ∩pim fp, and hence π(H) is finitely generated. Thus, in order to

prove that H is finitely generated, it suffices to see that Qm ∩H —that is, the

realization of {hp}— is finitely generated. We next show that the matrix of hp

has entries in Zp for almost all primes p. Fix any prime p such that

(i) the matrix of fp has entries in Zp, and

(ii) p does not divide the index of the subgroup generated by imφ in Zm
p .

Then we can ensure that, for such a prime p, the image of φ generates Zm
p as

a Z-module. Thus, for each fixed i, the vector ei of the canonical basis of Zm
p

is a sum of elements belonging to the image of φ, and hence the ith column of

the matrix of hp has the form

hp(ei) =
∑
j

hpφ(zj, tj) =
∑
j

φ(fp(zj), fp(tj)),



which has entries in Zp. Since all primes except a finite number satisfy (i) and

(ii), the proof is complete. 2

Example 1. LetGφ(Z) be any group in T (n,m). In order to study its extended

genus, we start by looking for realizable sequences of liftable monomorphisms

fp : Zn
p → Qn. One obvious choice is fp = αp id, where each αp is an arbitrary

nonzero rational number. By [2, Theorem 2.5], the sequence {fp} will be

realizable if and only if 1/αp belongs to Zp for almost all p. The associated

maps hp : Zm
p → Qm can be computed using the relation hpφ = φ(fp×fp). The

result is hp = (αp)
2 id. In fact, under our choices, we have hpφ̄ = φ̄(fp×fp) for

every p. Hence, by remark 2 above, the homomorphisms Fp : Gφ(Zp)→ Gφ(Q)

given by Fp(x, y) = (fp(x), hp(y)) form a realizable sequence. Therefore, if

H = ∩pimFp, then H ∈ EG(Gφ(Z)).

In this way we obtain an uncountable family of groups in the extended genus

of Gφ(Z). Namely, if we enumerate the primes as p1, p2, . . . , pi, . . . and pick an

arbitrary sequence of non-negative integers k1, k2, . . . , ki, . . ., then by choosing

αpi
= 1/pki

i , the resulting group H is the subgroup of Gφ(Q) generated by{
1
pki
i

e1, . . . ,
1
pki
i

en,
1
p2ki
i

e′1, . . . ,
1
p2ki
i

e′m | i = 1, 2, 3, . . .

}
;

cf. [2, Theorem 3.3], where {e1, . . . , en} and {e′1, . . . , e′m} denote the canonical

bases of Qn and Qm, respectively. Two such groups cannot be isomorphic

unless the corresponding sequences {ki} are almost equal.

Example 2. It was shown in [7] that any group in T (4, 2) admits a presentation

of the form

G(δ, λ; a, b, c) = 〈x1, x2, x3, x4, u1, u2 | u1, u2 central,

[x1, x2] = [x3, x4] = 1, [x1, x3] = u2
δλ,

[x1, x4] = u1
δ, [x2, x3] = u1

aδu2
bδλ, [x2, x4] = u2

−cδλ〉,

where δ and λ are positive integers and a, b, c are viewed as the coefficients

of a binary integral quadratic form ax2 + bxy + cy2. Using our notation, this

group is isomorphic to Gφ(Z) where φ: Z4×Z4 → Z2 is the alternating bilinear



map whose components are given by the following matrices:

φ1 =


0 0 0 δ

0 0 δa 0

0 −δa 0 0

−δ 0 0 0

 φ2 =


0 0 δλ 0

0 0 δλb −δλc
−δλ −δλb 0 0

0 δλc 0 0

 . (3.4)

Then, by Lemma 1.2, a map fp : Z4
p → Q4 will be liftable to a homomor-

phism Fp : Gφ(Zp)→ Gφ(Q) if and only if
φ(fp(e1), fp(e2)) = (0, 0)

φ(fp(e3), fp(e4)) = (0, 0)

φ(fp(e2), fp(e3)) = b φ(fp(e1), fp(e3)) + aφ(fp(e1), fp(e4))

φ(fp(e2), fp(e4)) = −c φ(fp(e1), fp(e3)).

(3.5)

One family of solutions of (3.5) is

fp =


1 0 0 0

0 1 0 0

0 0 αp + bβp −cβp
0 0 aβp αp

 , (3.6)

where αp, βp are arbitrary rational numbers such that det fp 6= 0. As explained

in [2], any choice of αp, βp belonging to Zp for almost all p, and such that f−1
p

has entries in Zp for almost all p, will provide a finitely generated group in the

Mislin genus of Gφ(Z).

For instance, by specializing to Gφ(Z) = G(1, 1; 1, 0, 14), we know from [3]

or [7] that the group Gψ(Z) = G(1, 1; 2, 0, 7) is in the same Mislin genus as

Gφ(Z). Indeed, we can represent Gψ(Z) by choosing fp = id if p 6= 2, α2 = 0,

β2 = 1/7 in (3.6). From (2.3) we find that Gψ(Z) is isomorphic to the subgroup

of Gφ(Z) generated by {e1, e2, 2e3, e4, e
′
1, 2e′2}.

Of course, the roles of Gφ(Z) and Gψ(Z) can be exchanged, so as to obtain

a certain embedding of Gφ(Z) into Gψ(Z). The phenomenon of groups in

the same Mislin genus embedding into each other turns out to be much more

general, far beyond the class T (4, 2). We plan to address this question in a

forthcoming paper.



References

[1] K. S. Brown, Cohomology of Groups, Graduate Texts in Math. 87, Springer-Verlag

(1982).

[2] C. Casacuberta and P. Hilton, On the extended genus of finitely generated abelian

groups, Bull. Soc. Math. Belg. Sér. A 41 (1989), 51–72.

[3] C. Cassidy and C. Lajoie, Genus of nilpotent groups of Hirsch length six, Math. Proc.

Cambridge Philos. Soc., to appear.

[4] K. Dekimpe and P. Igodt, Computational aspects of affine representations for torsion

free nilpotent groups via the Seifert construction, J. Pure Appl. Algebra 84 (1993),

165–190.
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