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Abstract

We study embeddings between torsion-free nilpotent groups having iso-
morphic localizations. Firstly, we show that for finitely generated torsion-
free nilpotent groups of nilpotency class 2, the property of having isomor-
phic P -localizations (where P denotes any set of primes) is equivalent to
the existence of mutual embeddings of finite index not divisible by any
prime in P . We then focus on a certain family Γ of nilpotent groups
whose Mislin genera can be identified with quotient sets of ideal class
groups in quadratic fields. We show that the multiplication of equivalence
classes of groups in Γ induced by the ideal class group structure can be
described by means of certain pull-back diagrams reflecting the existence
of enough embeddings between members of each Mislin genus. In this
sense, the family Γ resembles the family N0 of infinite, finitely generated
nilpotent groups with finite commutator subgroup. We also show that, in
further analogy with N0, two groups in Γ with isomorphic localizations
at every prime have isomorphic localizations at every finite set of primes.
We supply counterexamples showing that this is not true in general, nei-
ther for finitely generated torsion-free nilpotent groups of class 2 nor for
torsion-free abelian groups of finite rank.
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0 Introduction

For a finitely generated nilpotent group N , the Mislin genus G(N) is the set

of isomorphism classes of finitely generated nilpotent groups M such that the

p-localizations Np and Mp are isomorphic for all primes p. The same notion is

defined for nilpotent spaces of finite type; see [17]. We also recall that, for any

set of primes P , a homomorphism ϕ : N → M of nilpotent groups is called a

P -equivalence if the induced homomorphism of P -localizations, ϕP : NP → MP ,

is an isomorphism.

If a group N belongs to the family N0 of infinite, finitely generated, nilpotent

groups with finite commutator subgroup, then the Mislin genus G(N) admits a

finite abelian group structure, which was first discussed in [16]. Moreover, if two

groups N and M belong to N0, then the following properties are equivalent:

(i) Np
∼= Mp for all primes p;

(ii) NP
∼= MP for every finite set of primes P ;

(iii) there exist injective P -equivalences N → M and M → N for every finite

set of primes P .

These properties need not be equivalent beyond N0. Indeed, it has long been

known that if two finitely generated nilpotent groups N and M satisfy NP
∼= MP

for some set P , then it does not follow in general that there is a P -equivalence

between N and M in either direction; see Roitberg’s article [31] and the refine-

ment made recently in [32]. We note, however, that no counterexample has been

given so far in which N and M are in the same Mislin genus. It is remarkable

that such counterexamples do exist in homotopy theory, as one can find nilpotent

spaces of finite type in the same Mislin genus admitting no essential maps be-

tween them in either direction; this was reported by Møller in [27, Example 3.11]

and by McGibbon and Møller in [25, Example 4.1].

We shall examine to what extent properties (i)–(iii) are related to each other

in the family of torsion-free finitely generated nilpotent groups of nilpotency

class 2, which will be called T2-groups for brevity. In Section 1 we show that

for any two T2-groups N and M , the property NP
∼= MP (where P is arbitrary)

implies that N and M embed into each other via P -equivalences. This yields

an alternative approach to a result of Smith [34], stating that T2-groups are

compressible.
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In Section 3 we focus on a family Γ of T2-groups for which all three properties

(i)–(iii) are equivalent, and which shares other interesting similarities with N0.

It consists of all nilpotent groups of the form

Γ(R, I) =


1 R I

0 1 I

0 0 1

 ,

where R is any order in a quadratic field and I is any invertible ideal of R.

Groups belonging to Γ, which have been studied notably by Grunewald and

Scharlau in [10] (see also [11], [29], or [33]), possess a very rich genus theory

which is best handled by means of the classical theory of binary quadratic forms

or the theory of ideals in orders of quadratic fields. In particular, the equivalence

between properties (i) and (ii) for groups in Γ may be viewed as a consequence

of the fact that binary integral quadratic forms which are equivalent over Zp for

all primes p are also equivalent over ZP for every finite set of primes P ; see [8,

Theorem 9.7.1] and [9, Theorem 1.1]. This is false for forms of higher order, as

shown in Example 2.2 below, and also if the usual equivalence of forms is replaced

by λ-equivalence in the sense of [11]; cf. Example 3.6 below. Thus, property (i)

fails to imply (ii) for T2-groups in general. We shall refer to (ii) by saying that N

and M are in the same strong genus. It is interesting that the notion of strong

genus is distinct from ordinary genus already in the family of abelian groups,

as we can exhibit in Section 2 an example of two abelian groups of finite rank

whose localizations are isomorphic at every prime but not at a set consisting of

three primes.

Mislin genera of groups in Γ can be identified with quotient sets of ideal class

groups, as we next explain. For a fixed ring R, we define Γ(R, I) and Γ(R, J)

to be equivalent if I and J are isomorphic as R-modules, that is, if rI = sJ for

some nonzero elements r, s ∈ R. The set of equivalence classes, which we denote

by CR, admits a commutative group structure induced by the multiplication of

ideals —hence, CR is isomorphic to the ideal class group of R. On the other hand,

it follows from results in [9] and [33] that groups in Γ with a common R belong to

the same Mislin genus and, in fact, their isomorphism classes constitute a whole

genus. Thus, for each invertible ideal I of R there is a surjection

CR →→ G(Γ(R, I)),

since equivalent groups in Γ are indeed isomorphic. Due to the fact that Γ(R, I)

is also isomorphic to Γ(R, J) if I and J lie in conjugate ideal classes, the above
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surjection is not one-to-one in general, but G(Γ(R, I)) corresponds bijectively

with the set of orbits of the involution x 7→ x−1 in CR. Contrary to what happens

in [16, Theorem 1.4], the group structure in CR cannot be transported to the genus

set in general. However, if the ideal class group of R has exponent 2, then the

sets CR and G(Γ(R, I)) coincide and hence, in this special case, the Mislin genus

of Γ(R, I) does acquire a commutative group structure.

We have observed, moreover, that the multiplication in CR is analogous to the

standard multiplication in Mislin genera within the family N0, in the sense that

both multiplications can be defined by means of a certain pull-back construction

reflecting the existence of enough P -equivalences between members of each genus

for any finite set P of primes.

Acknowledgements We are indebted to P. Hilton, C. A. McGibbon, P. Riben-

boim, J. Roitberg, L. Vaserstein, and W. C. Waterhouse, as well as to the editor,

R. Oliver, for their interest and help. We also thank the Centre de Recerca

Matemàtica of Barcelona for gathering us together during the preparation of

this article.

1 Embeddings of nilpotent groups of class two

Throughout the article, torsion-free finitely generated nilpotent groups will be

called T -groups, and we shall refer to T -groups of nilpotency class 2 as T2-groups.

Let P be any set of primes and P ′ denote its complement. Recall from [17,

Ch. I, § 1] that a homomorphism ϕ : N → M of nilpotent groups is called

P -injective if kerϕ is P ′-torsion, P -surjective if for every element x ∈M there is

a P ′-number m such that xm ∈ imϕ, and P -bijective or a P -equivalence if it is

both P -injective and P -surjective. The latter condition holds if and only if the

induced homomorphism ϕP : NP → MP is an isomorphism. We emphasize that

P -equivalences between torsion-free nilpotent groups are necessarily injective.

An embedding M ↪→ N of T -groups is a P -equivalence if and only if the index

[N : M ] is finite and it is a P ′-number (this follows, as in [12, Satz 5.81], from

the fact that each subgroup of a nilpotent group is subnormal).

Let M be any T2-group. Then the isolator of the commutator subgroup,

I = {x ∈M | xn ∈ [M,M ] for some n > 0},

is a free abelian subgroup in the center of M . We can choose a Mal’cev basis
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{v1, . . . , vr, w1, . . . , ws} in M (see [22, Ch. 6]), where w1, . . . , ws form a basis of I.

The group M is then said to be in the family T (r, s).

This allows to assign coordinates (X, Y ) = (x1, . . . , xr, y1, . . . , ys) to each

element of M , and the multiplication in M can be written as

(X, Y )(X ′, Y ′) = (X +X ′, Y + Y ′ + ζ(X,X ′)), (1.1)

where ζ : Zr×Zr → Zs is a bilinear map which is determined by the coordinates of

the commutators [vj, vi], with j > i, in the chosen Mal’cev basis. The associated

alternating bilinear map

φ(X,X ′) = ζ(X,X ′)− ζ(X ′, X) (1.2)

is the expression in coordinates of the commutator map (M/I) × (M/I) → I

sending (vI, v′I) to [v, v′].

Thus, groups in T (r, s) are precisely central extensions

Zs>→M→→Zr

in which the commutator subgroup [M,M ] has rank s. If we view the bilinear

map ζ as a 2-cocycle, then its cohomology class in H2(Zr; Zs) characterizes the

group M in the usual way [4].

It is important to observe that every T2-group M embeds into itself properly

via the function hn : M →M defined in coordinates by

hn(X, Y ) = (nX, n2Y ), (1.3)

which is indeed a monomorphism for every integer n 6= 0.

Theorem 1.1 Let M and N be torsion-free nilpotent groups of class at most

two. Assume that M is finitely generated. If MP
∼= NP for a certain set of prime

numbers P , then there exists a P -equivalence h: M → N .

Proof. By [17, Theorem I.3.3], there is a finitely generated nilpotent group K

together with P -equivalences K → N and K → M . On the other hand, the

existence of the homomorphisms hn defined in (1.3) ensures that T2-groups are

P -universal for each set of primes P , in the sense of Kahn–Scheerer [20], [21],

Lemaire [23], or Mimura–Toda [26]. Hence, there is a P -equivalence M → K

yielding the desired result, since the composition of two P -equivalences is again

a P -equivalence. 2
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In fact, under the assumptions of Theorem 1.1, it is not difficult to exhibit

an explicit P -equivalence M → N . It can be done as follows. Let f : MP → NP

be an isomorphism. View both M and N as subgroups of NP via the injections

l: N ↪→ NP and fl: M ↪→ NP ,

where l denotes the P -localization homomorphism. Let {v1, . . . , vr, w1, . . . , ws}
be a Mal’cev basis of M , chosen as explained above (we do not exclude the

possibility that M be abelian, in which case s = 0 and ζ is identically zero).

Since M is contained in NP , there are P ′-numbers n1, . . . , nr,m1, . . . ,ms such

that vni
i ∈ N for i = 1, . . . , r and w

mj

j ∈ N for j = 1, . . . , s. Take

n = lcm(n1, . . . , nr,m1, . . . ,ms),

which is also a P ′-number, and consider the homomorphism hn : M →M defined

in (1.3), where coordinates are of course referred to {v1, . . . , vr, w1, . . . , ws}. Then

hn(M) ⊂ N , since all the coordinates of an arbitrary element of hn(M) are

integer multiples of n. Thus, we may view hn as a homomorphism from M to N .

Moreover, as such, it is a P -equivalence, since the smallest P -local subgroup of

NP containing hn(M) is NP itself.

Corollary 1.2 Let M and N be T2-groups. Then, for any set P of prime num-

bers, the following statements are equivalent:

(i) MP
∼= NP .

(ii) N embeds into M as a subgroup of finite index prime to P .

(iii) M embeds into N as a subgroup of finite index prime to P . 2

This yields an alternative proof of Proposition 2 in [34], as it implies that

T2-groups are compressible. (A group G is compressible if whenever H is a sub-

group of finite index in G, there exists a subgroup K of finite index in H which

is isomorphic to G.)

Corollary 1.2 does not hold in general for arbitrary T -groups, since, as ob-

served in [34, Proposition 4], there exist T -groups of nilpotency class 6 which are

not compressible. Similar examples were displayed by Roitberg in [31] and [32].
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2 Strong genus

Motivated by Example 2 in [5], we have been interested in deciding if any two

nonisomorphic T -groups M , N in the same Mislin genus necessarily embed into

each other with relatively prime indices. We still do not know the answer to this

question. Note that, in view of Corollary 1.2, the answer would be affirmative for

T2-groups if it were true that MP
∼= NP for every finite set of primes P whenever

M and N are in the same Mislin genus. Unfortunately, Example 2.2 below will

show that this is not the case in general. This led us to introduce the following

terminology.

Definition 2.1 We say that two nilpotent groups M , N are in the same strong

genus if MP
∼= NP for all finite sets of primes P .

Of course, two nilpotent groups in the same strong genus are also in the same

genus. However, as we next show, the converse is not true (see also Example 2.3

and Example 3.6).

Example 2.2 Consider the groups

N = 〈v1, . . . , v8, w1, w2 | w1 and w2 central, [v2, v1] = [v4, v3] = w2,

[v6, v5] = w1, [v8, v7] = w6
1w2, [vj, vi] = 1 otherwise, for j > i〉,

M = 〈v1, . . . , v8, w1, w2 | w1 and w2 central, [v2, v1] = [v4, v3] = w2,

[v6, v5] = w3
1w2, [v8, v7] = w2

1w2, [vj, vi] = 1 otherwise, for j > i〉.

These are groups in T (8, 2). In the given Mal’cev bases, the respective com-

mutator maps φ, ψ, defined as in (1.2), have Pfaffians√
det(xφ1 + yφ2) = y2x(6x+ y),

√
det(xψ1 + yψ2) = y2(3x+ y)(2x+ y).

These two forms are equivalent at each prime p, in the sense that there is a linear

change of variables over Zp transforming the first form into the second; namely,

x = x′ + 1
3
y′, y = y′ if p 6= 3, and x = x′ + 1

2
y′, y = −y′ for p = 3. We use

these transformations, together with [5, Theorem 1.4], to show that the groups

N and M are in the same Mislin genus. Indeed, if p 6= 3, then one isomorphism

Np → Mp is defined by sending v6 7→ 1
3
v6, v8 7→ 3v8, w1 7→ w1 + 1

3
w2; for p = 3,

take instead v2 7→ −v2, v4 7→ −v4, v5 7→ v7, v6 7→ 1
2
v8, v7 7→ v5, v8 7→ 2v6,

w1 7→ w1 + 1
2
w2, w2 7→ −w2.
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However, the two Pfaffians above are not equivalent at the set P = {2, 3},
since no other linear change of variables takes one form to the other (up to

scalar factors). It follows that the groups NP and MP fail to be isomorphic if

P = {2, 3}; see [11, § 3] or [33, Ch. 11].

The two forms used in this example were supplied by W. C. Waterhouse,

whom we here thank; in spirit, this goes back to his example in [2, Lemma 2.2].

Of course, counterexamples are more abundant if one considers localization

of not necessarily nilpotent groups. For instance, the strong genus of any finite

group G consists of the isomorphism class of G only, while there exist many

isomorphism classes of (nonnilpotent) finite groups in the genus of the trivial

group [3].

Likewise, if we omit the assumption that the groups involved be finitely gen-

erated, then we can exhibit examples of abelian groups A and B which are in

the same genus but not in the same strong genus.

Example 2.3 Let x, y be any two linearly independent elements in Q2. Con-

sider the subgroups of Q2 given by

A = 〈Z[1
2
]x, Z[1

3
] y, 1

5
(x+ y) 〉, B = Z[1

2
]x ⊕ Z[1

3
] y.

Then, according to [1, Example 2.2], the group A is indecomposable, i.e., it is not

a direct sum of groups of rank 1. However, it is almost completely decomposable,

in the sense that

5A ⊆ B ⊆ A. (2.1)

It follows from (2.1) that Ap ∼= Bp if p 6= 5. Moreover, A5 = Z5 x ⊕ Z5 z,

where z = 1
5
(x + y), so that A and B are in the same genus. Now, if we choose

P = {2, 3, 5}, then

AP = 〈Z{3,5} x, Z{2,5} y,
1
5
(x+ y) 〉,

which is indecomposable. Therefore, A and B are not in the same strong genus.

On the positive side, we offer the following result. A nilpotent group N is

called fg-like if it is in the genus of some finitely generated nilpotent group.

Theorem 2.4 Let A and B be abelian fg-like groups. Then A and B are in the

same strong genus if and only if they are in the same genus.
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Proof. From the discussion in [6, § 1] it follows that it is sufficient to prove the

statement for A and B torsion-free. Thus, we assume that A and B are in the

genus of Zk for some common k ≥ 1, and we aim to proving that AP ∼= BP for

any finite set of primes P .

Pick any set {x1, . . . , xk} of linearly independent elements of A, and write

L = 〈x1, . . . , xk〉. An element a ∈ A is said to have p-height n if pna belongs

to L but pn−1a does not. By [7, Theorem 1.4], for each prime p there is a

positive number ν(p) such that all elements of A have p-height less than or equal

to ν(p). Now write P = {p1, . . . , pr} and choose λ = p
ν(p1)
1 · · · pν(pr)

r . Then

AP ⊆ (λ−1L)P ∼= Zk
P . Due to the fact that ZP is a principal ideal domain, AP

is itself a free ZP -module of rank k. Since the same argument applies to B, the

proof is complete. 2

It was observed by Hilton and Militello [13, Theorem 3.3] that, if a nilpotent

group G is fg-like and the commutator subgroup [G,G] is finite, then every

subgroup H of G is fg-like. However, if the assumption on [G,G] is removed,

then this need not be true; it is even possible to construct a counterexample

where G is torsion-free and has nilpotency class 2; see [14, § 4]. Still, one could

expect that each subgroup H of finite index in an fg-like group G could be fg-like.

We prove this for nilpotent groups of class at most 2.

Theorem 2.5 Let G be a torsion-free fg-like nilpotent group of class at most

two. Then the following hold:

(a) There is a finitely generated subgroup K ≤ G in the genus of G.

(b) If H is a subgroup of G of finite index, then H is fg-like.

Proof. We shall obtain (a) in the course of our argument to prove (b). Since

all subgroups of a nilpotent group are subnormal [22, Theorem 16.2.2], there is

no restriction in assuming that the index [G : H] is a power of a prime p, so

that the inclusion H ↪→ G is p′-surjective. Let K be a finitely generated group

in the genus of G. Then Kp
∼= Gp and from Theorem 1.1 it follows that there

is a p-surjective embedding K ↪→ G. Then H ∩ K is finitely generated and

belongs to the genus of H, as we next show. Firstly, the inclusion H ∩K ↪→ H

is p-surjective and hence (H ∩K)p ∼= Hp. Secondly, if q 6= p, then the inclusion

H ∩K ↪→ K is q-surjective, so that (H ∩K)q ∼= Kq
∼= Gq

∼= Hq as well. 2
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Theorem 2.5 remains true if the assumption about G is weakened by imposing

only that G be in the genus of a T -group which is p-universal for all primes p.

In fact, as explained in [21, Theorem 1], it is sufficient to have p-universality for

one prime p in order to have P -universality for all sets of primes P .

3 Ideal class groups and Mislin genera

We now consider a family Γ of T2-groups, whose Mislin genera can be arbitrarily

large, while remaining well understood thanks to the methods of Grunewald–

Segal–Sterling [11].

Let R be an order (i.e., a subring with additive group Z ⊕ Z) in the field

Q(
√
D), for some square-free integer D 6= 0, 1, and let I be any invertible ideal

of R. Let Γ(R, I) be the group of matrices of the form
1 r s

0 1 t

0 0 1

 , with r ∈ R, s ∈ I, t ∈ I. (3.1)

Thus, Γ(R, I) is a subgroup of the group UT3(R) of upper-triangular matrices

in GL3(R) with all diagonal entries equal to 1, which is a torsion-free finitely

generated nilpotent group of class 2; in fact, every such group Γ(R, I) belongs

to T (4, 2). The family of groups Γ(R, I), for all choices of R and I as above, will

hereafter be denoted by Γ. The extent to which this family Γ fails to exhaust

T (4, 2) is made precise in the Appendix.

We recall from [33, Theorem 3, p. 275] that two groups Γ(R1, I1) and Γ(R2, I2)

are isomorphic if and only if R1
∼= R2 by an isomorphism θ such that θ(I1) and

I2 lie in the same or in conjugate ideal classes of R2.

We declare that two groups Γ(R, I) and Γ(R, J) are equivalent if I and J

are in the same ideal class. Then the quotient set CR of groups in Γ with a

fixed R under this equivalence relation admits a (finite, commutative) group

structure, which is naturally induced by the multiplication of ideals; thus, it is

isomorphic to the well-known ideal class group of R (see e.g. [28] or [30]). The

unit element is the equivalence class containing the group Γ(R,R). The following

result describes how the Mislin genus of any Γ(R, I) can be obtained from the

group CR.

Theorem 3.1 Let D be any square-free integer, D 6= 0, 1. Let R be an order in

the field Q(
√
D), and let I be any invertible ideal of R. Then the Mislin genus
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of Γ(R, I) is in one-to-one correspondence with the set obtained by identifying

each element of the ideal class group of R with its multiplicative inverse.

Proof. If we fix R and let I run over all invertible ideals of R, then all groups of

the form Γ(R, I) belong to the same Mislin genus. This result is inferred from

[9, Theorem 1.1]; see also the argument in [29, Théorème 2.3] in the case when

R is the maximal order (i.e., the ring of algebraic integers in Q(
√
D)). Actually,

by [33, Theorem 3, p. 275] and [9, Theorem 1.1], the isomorphism classes of such

groups constitute a whole genus. It follows that there is a surjection

CR →→ G(Γ(R, I)),

which is not one-to-one in general, since conjugate ideals I, Ī give isomorphic

groups Γ(R, I) ∼= Γ(R, Ī), yet they may correspond to distinct elements of CR.

Thus, the genus set G(Γ(R, I)) is precisely the set of orbits of the involution

x 7→ x−1 in CR. 2

Corollary 3.2 If the ideal class group of R has exponent 2, then the multi-

plication of ideals induces a commutative group structure on the Mislin genus

of Γ(R, I). 2

For each invertible ideal I of an order R, the norm N(I) is defined as the index

of I in R. Thus, every group Γ(R, I) is a subgroup of Γ(R,R) with index N(I)2.

Since every group in the genus of Γ(R,R) can be identified with some Γ(R, I) in

several ways (in fact, infinitely many), the inclusions

Γ(R, I) ↪→ Γ(R,R)

give us plenty of embeddings from any given group in the genus into Γ(R,R). In

particular, every principal ideal aR, where a ∈ R, provides a self-embedding of

the group Γ(R,R).

We say that two inclusions Γ(R, I) ↪→ Γ(R,R) and Γ(R, J) ↪→ Γ(R,R) form

an exhaustive pair if

• the ideals I, J are relatively prime, and

• gcd(N(I), F ) = gcd(N(J), F ) = 1, where F is the index of R in the maxi-

mal order of Q(
√
D).
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(The latter condition is necessary to get a good factorization theory of ideals,

whenever R is not the ring of algebraic integers in Q(
√
D). The number F is

called the conductor of R; cf. [30, § 16].)

Theorem 3.3 Let R be an order in Q(
√
D), where D is any square-free integer,

D 6= 0, 1. Suppose that I and J are invertible ideals of R such that the inclusions

φ: Γ(R, I) ↪→ Γ(R,R), ψ: Γ(R, J) ↪→ Γ(R,R)

form an exhaustive pair. Then the diagram

Γ(R, IJ) → Γ(R, J)

↓ ↓ ψ

Γ(R, I)
φ→ Γ(R,R),

where all the arrows are inclusions, is both a pull-back and a push-out diagram

in the category of nilpotent groups.

Proof. The pull-back of φ, ψ over Γ(R,R) is isomorphic to Γ(R, I ∩ J). Since

φ, ψ form an exhaustive pair, we have I ∩ J = IJ . This follows from [28,

Proposition 1.5] in the case when R is a Dedekind ring, since I, J are relatively

prime. If R is not the ring of algebraic integers in Q(
√
D), then we must restrict

further the choice of I, J to ideals whose norms are prime to the conductor F

of R; but this is embodied in our definition of an exhaustive pair. It then follows

from [15, Corollary 2.2] that the diagram is also a push-out. 2

Consequently, the multiplication in the group CR can alternatively be de-

scribed by means of pull-back diagrams, provided that one chooses representa-

tives in CR that form exhaustive pairs. Such a choice is always possible, since any

class of invertible ideals in an order of a quadratic field contains a representative

I whose norm N(I) is prime to any given finite set of prime numbers (this follows

from the generalized Dirichlet prime number theorem [28, p. 358]). However, we

warn that Theorem 3.3 does not provide us with a well-defined binary operation

on isomorphism classes of groups, since Γ(R, I) ∼= Γ(R, Ī), yet Γ(R, IJ) need not

be isomorphic to Γ(R, ĪJ).

Corollary 3.4 Let M , N be groups in Γ which are in the same Mislin genus.

Then, for any finite set of primes P , there exist embeddings M ↪→ N and N ↪→M

whose indices are finite, relatively prime, and prime to P .
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Proof. Of course, it suffices to prove that, for any finite set of primes P , there

exists an embedding M ↪→ N whose index is finite and prime to P . Choose

invertible ideals K, L such that M ∼= Γ(R,K) and N ∼= Γ(R,L). Then choose

an exhaustive pair

φ: Γ(R, I) ↪→ Γ(R,R), ψ: Γ(R, J) ↪→ Γ(R,R)

where I is in the same ideal class as KL−1, J is in the same ideal class as L,

and the norm N(I) is prime to P . By Theorem 3.3, the group Γ(R, IJ) is the

pull-back of φ, ψ over Γ(R,R) and, by our choice of I, we have

[Γ(R,R) : Γ(R, I)] = N(I)2,

which is prime to P . It then follows from [15, Proposition 1.7] that the index

[N : M ] = [Γ(R, J) : Γ(R, IJ)] is also prime to P . 2

Corollary 3.5 If M , N are two groups in the family Γ, then M and N are in

the same strong genus if and only if they are in the same Mislin genus. 2

It is natural to ask if this result can be extended to all groups in T (4, 2).

Our next example shows that it is not the case, as we can display two groups

N and M in T (4, 2) which are in the same Mislin genus but not in the same

strong genus.

Example 3.6 Using the notation described in the Appendix, we consider the

groups N = G(δ, λ, f) and M = G(δ, λ, f ′), where δ = 1, λ = 6, f(x, y) =

6x2+xy and f ′(x, y) = 6x2+5xy+y2 (these choices are inspired by Example 2.2).

According to [9, Theorem 1.1], the groups N and M are in the same Mislin genus.

However, the forms f and f ′ are not λ-equivalent over ZP if P = {2, 3}, from

which it follows that the groups NP and MP are not isomorphic.

The conclusions of Corollaries 3.4 and 3.5 hold in the family N0 as well;

see [16, Corollary 2.2]. However, there are also important differences between

the properties of the genus sets in Γ and in N0. For example, in N0, a group M

belongs to G(N) if and only if

M × Z ∼= N × Z

(see [35]); however, this is not true in Γ. We recall that the family Γ consists

of T2-groups and hence the condition M × Z ∼= N × Z necessarily implies that
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M ∼= N , as shown by Hirshon in [19]. Hence, groups in the same genus in Γ do

not provide examples of non-cancellation.

Moreover, if we denote by Nk the cartesian product of k copies of N , then

the growth of G(Nk), as a function of k, also behaves quite differently. In N0,

we have |G(Nk)| ≤ |G(N)| for every positive integer k; see [16]. On the contrary,

the cardinality |G(Nk)| increases with k in the family Γ. If, say, |G(N)| = n for

a group N ∈ Γ (where n can be as big as one wants), then

|G(Nk)| ≥ (n+ k − 1)!

k! (n− 1)!
≥ (k + 1)n−1.

Actually, if M1, . . . ,Mk, N1, . . . , Nk belong to G(N) for a group N ∈ Γ, then

both M1 × · · · ×Mk and N1 × · · · ×Nk belong to G(Nk), and

M1 × · · · ×Mk
∼= N1 × · · · ×Nk

if and only if Mi
∼= Ni, i = 1, . . . , k, up to reordering; cf. [18], [24].

4 Appendix

For the convenience of the reader, we recall the basic ingredients in the classifi-

cation of groups in T (4, 2), as described in [11] or [33, Ch. 11].

For every group in T (r, s) one can choose a Mal’cev basis, which determines

an alternating bilinear map φ: Zr × Zr → Zs, as in (1.2). If r is even, then the

Pfaffian of the skew-symmetric matrix x1φ1 + · · ·+xsφs (i.e., a square root of the

determinant) is an integral form of degree 1
2
r in the variables x1, . . . , xs. If two

groups in T (r, s) have isomorphic localizations at a set P , where r is even, then

the corresponding Pfaffians are equivalent over ZP ; cf. [11, § 3]. However, we

emphasize that the converse is not true in general.

To any binary integral quadratic form f(x, y) = ax2 + bxy+ cy2 and positive

integers δ, λ, one can associate a group

G(δ, λ, f) = 〈v1, v2, v3, v4, w1, w2 | w1 and w2 central, [v2, v1] = [v4, v3] = 1,

[v3, v1] = wδλ2 , [v4, v1] = wδ1, [v3, v2] = waδ1 w
bδλ
2 , [v4, v2] = w−cδλ2 〉.

Any such group G(δ, λ, f) is in T (4, 2) and the torsion subgroup of its abelianiza-

tion is isomorphic to (Z/δZ)⊕ (Z/δλZ). The Pfaffian of the alternating bilinear

map associated with the given basis is equal to

δ2(a x2 + bλ xy + cλ2 y2).
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According to [11, Theorem 1], every group G in T (4, 2) is isomorphic to

G(δ, λ, f) for an appropriate choice of δ, λ, and f . The integers δ and λ are fully

determined by G, but the quadratic form f is not. In fact, two groups G(δ, λ, f)

and G(δ, λ, f ′) are isomorphic if and only if f and f ′ are λ-equivalent over Z, in

the following sense. Two binary quadratic forms f and f ′ are λ-equivalent over

a ring R if there exists a unit u ∈ R and a matrix r1 r2

λr3 r4

 ∈ GL2(R), ri ∈ R,

such that f ′(x, y) = u f(r1x + r2y, λr3x + r4y). Furthermore, the localizations

of two groups G(δ, λ, f) and G(δ′, λ′, f ′) at a set of primes P are isomorphic if

and only if δ′ = uδ, λ′ = vλ, where u, v are units in ZP , and the forms f and f ′

are λ-equivalent over ZP ; see [11, § 3].

We conclude by recalling how one uses ideals of orders in quadratic fields to

deal with most groups in T (4, 2) with λ = δ = 1. The content C(f) of a form

f(x, y) = ax2 + bxy+ cy2 is defined to be the greatest common divisor of a, b, c,

and it is set to be zero if f = 0. The discriminant D(f) is the number b2 − 4ac.

Both the content and the discriminant are invariant under λ-equivalence over Z,

for any λ. Thus, given a group G in T (4, 2), we may speak without ambiguity of

the invariants C(G), D(G), λ(G) and δ(G). If C(G) = 0, then the center of G

has rank 3 and the group G cannot be represented inside UT3(R) for any ring R.

If C(G) 6= 0, then the center of G has rank 2 and, as shown in [11, § 7], the

group G is isomorphic to the matrix group

Γ(R, I,M) =


1 R M

0 1 I

0 0 1


for a suitable choice of a ring R, an ideal I of R, and an additive subgroup M

of R containing I. Moreover, the ring R is determined up to isomorphism by the

group G, by [33, p. 273] and [11, Lemma 7]. If the discriminant D(G) is a square,

then the ring R necessarily contains zero-divisors. In the remaining cases, i.e.,

when D(G) is not a square, one has G ∼= Γ(R, I,M) for some order R in the

quadratic field Q(
√
D), where D = D(G). The index F of R in the maximal

order is determined as follows. If D(G) = k2d, where d is square-free and k is

a positive integer, then F = k if d ≡ 1 mod 4, or else k is necessarily even and

F = 1
2
k if d 6≡ 1 mod 4; cf. [11, Lemma 10].
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The abelianization of Γ(R, I,M) has a torsion subgroup which is isomorphic

to M/I. Hence, M = I if and only if the abelianization of G is torsion-free

(i.e., λ = δ = 1). In other words, the family Γ which we discussed in Section 3

consists precisely of those groups in T (4, 2) whose abelianization is torsion-free

and whose discriminant is not a square.
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