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Abstract

We extend arbitrary group completions to the category of pairs (G, N) where G

is a group and N is a normal subgroup of G. Relative localizations are special cases.
Our construction is a group-theoretical analogue of fibrewise completion and fibrewise
localization in homotopy theory, and generalizes earlier work of Hilton and others on
relative localization at primes. We use our approach to find conditions under which
factoring out group radicals preserves exactness. This has implications in the study of
the effect of plus-constructions on homotopy fibre sequences.

Introduction

Relative completions and relative localizations of groups are group-theoretical analogues of

fibrewise completions and fibrewise localizations in homotopy theory. The latter were first

discussed in the work of Sullivan [25] and Bousfield–Kan [7], and since then by many other

authors, primarily focusing on localization at primes; see e.g. [15], [16], [19]. More recently,

Bousfield [6, § 4] and Dror Farjoun [13, Ch. 1] have defined a fibrewise version of homotopical

localization of spaces with respect to any map. The aim of this paper is to provide a similar

tool for groups, and give applications within group theory and to homotopy theory.

Thus, our initial goal was to state and prove that localization of groups with respect to

any group homomorphism (see [8]) also admits a relative version, that is, can be suitably

defined on pairs of groups. However, we will present this result in much greater generality,

by proving that every pointed endofunctor which is compatible with conjugation (as defined

∗The authors were supported by DGR under grants ACI98–23 and ACI99–34 during the preparation of
this article. The first-named author was also supported by DGES under grant PB97–0202 and the second-
named author was a fellow of the EC Research Training Network HPRN-CT-1999-00119.
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in Section 1) admits a relative version. We will then prove that completions are compatible

with conjugation. Our notion of “completion” is explained in Section 2 and intends to be

as general as possible, certainly applicable to many well-known constructions such as profi-

nite completion and pronilpotent completion. By a “localization” we mean an idempotent

completion.

Theorem 2.2 below, together with results in Section 1, imply the existence of fibrewise

R-completion of groups for a commutative ring R, which was sketched by Bousfield and Kan

in [7, IV.5.6]. Our approach also generalizes, very naturally, Hilton’s construction in [14]

and the one described by Descheemaeker and Malfait in [12].

Although localizations are special cases of completions, the relevance of their universal

property justifies a distinguished treatment. Thus, if L is any localization in the category of

groups, then the relative L-localization of a pair (G,N) is a pair (E,LN) with E/LN ∼= G/N ,

together with a morphism (G,N) → (E,LN) which is initial among morphisms from (G,N)

to pairs where the normal subgroup is L-local. We may describe this transformation by

saying that the effect of L on N is uniformly extended over all cosets of G relative to N .

In the last two sections, we restrict ourselves to a special kind of group localizations,

namely the ones consisting of dividing out radicals. These are called epireflections. Using

their relative version, we analyze the effect of epireflections on group extensions. By doing

so, we extend results of Berrick [2] about hypoabelianization of groups and preservation of

homotopy fibre sequences under Quillen’s plus-construction. Our results apply to the case of

plus-construction with respect to homology with mod n coefficients, among other examples.

A preliminary version of the present article was useful to Rodŕıguez and Scevenels in [23,

Theorem 6], in order to relate exactness of certain localizations with closure properties of the

corresponding image classes. Some of their results are improved in Section 4 of this article.

Acknowledgements Discussions with Jon Berrick, Warren Dicks and Armin Frei were

beneficial to us during the preparation of this article.

1 Relativizing pointed endofunctors

Let C be any category. A functor L: C → C together with a natural transformation l: Id → L

is called a pointed endofunctor or a coaugmented functor in the literature.

If (L, l) is a pointed endofunctor in a category C, and G is a group, then (L, l) defines,

in a canonical way, a pointed endofunctor in the category of G-objects (that is, objects of

C equipped with an action of G) with G-maps as morphisms. Indeed, for every G-object N
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and every element g ∈ G, there is a commutative diagram

N
g−→ N

l ↓ ↓ l

LN
Lg−→ LN

(1.1)

yielding a G-action on LN such that l is a G-map.

From now on, we will exclusively work in the categories of groups and relative groups.

A relative group is a pair (G,N) where G is a group and N is a normal subgroup of G. It

is usually more convenient to regard a relative group as a group extension N � G � Q.

A morphism of relative groups is a commutative diagram

N � G � Q
l ↓ f ↓ ↓
N ′ � G′ � Q′

of group extensions. Note that such a diagram yields an action of G on N ′ via f , and l is

automatically a G-map, that is,

l(gng−1) = f(g) l(n) f(g)−1

for all n ∈ N and g ∈ G.

Now let (L, l) be any pointed endofunctor in the category of groups. As in [5] or [14], we

look for suitable conditions ensuring that the diagram

N � G � Q
l ↓
LN

can be embedded into a morphism of relative groups

N � G � Q
l ↓ f ↓ id ↓

LN
j

� E
p
� Q,

(1.2)

specializing to the standard homomorphism

l∗:H
2(Q;N) → H2(Q;LN)

whenever N and LN are abelian, and admitting a similar description in terms of cohomology

classes of nonabelian 2-cocycles otherwise.
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This is the precise group-theoretical analogue of fibrewise functorial transformations in

homotopy theory, where “continuity” of the functor is a necessary assumption to ensure that

it can be coherently extended over the fibres. Similarly, we have to require that (L, l) be

compatible with conjugation, in the sense that we now make precise. Our aim is to guarantee

that the action of G on LN via f in (1.2) agrees with the action defined by the functoriality

of L as depicted in (1.1).

For a group N , we denote by Aut(N) the group of automorphisms of N , and by Out(N)

the quotient of Aut(N) by the inner automorphisms. That is, Out(N) is the cokernel of

the homomorphism τ :N → Aut(N) given by τx(y) = xyx−1. We also need to consider the

homomorphism Aut(N) → Aut(LN) sending each ϕ to Lϕ, which we do not label.

Definition 1.1 A pointed endofunctor (L, l) in the category of groups is compatible with

conjugation if the diagram

N
l−→ LN

τ ↓ τ ↓
Aut(N) −→ Aut(LN)

(1.3)

is commutative for every group N .

This property is not a tautology. For instance, it fails if L is the identity functor and

l(n) = 1 for every group N and all n ∈ N . On the other hand, as we prove in Section 2,

group completions are compatible with conjugation.

Note that, if (L, l) is compatible with conjugation, then L induces a group homomorphism

Out(N) → Out(LN),

but the converse need not be true (as the same counterexample given above shows). Observe

also that the diagram (1.3) trivially commutes if N and LN are abelian.

We next prove that compatibility with conjugation is sufficient to define a relative version

of (L, l). We will give two different, equivalent constructions. The first one is based on

earlier work of Hilton [14] and Bokor–Hilton [5]. The second one generalizes the method of

Descheemaeker–Malfait published in [12].

First construction. Suppose given a group extension N � G � Q. Using the technique

described in [5], [7, IV.5.6] or [14], we may embed the given extension into a commutative

diagram with exact rows

N � G � Q
l ↓ f ↓ id ↓
LN

j→ E
p
� Q,

(1.4)
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where we emphasize that the homomorphism j need not be injective if we omit the condition

that (L, l) be compatible with conjugation. The group E and the maps in (1.4) are defined

as follows; cf. [14]. Let LN oG denote the semi-direct product with respect to the G-action

on LN induced by functoriality from the conjugation action of G on N . Let S be the normal

subgroup of LN oG generated by all the elements of the form (l(n)−1, n) with n ∈ N . For

x ∈ LN and g ∈ G, we denote by (x, g)S the class of (x, g) in the quotient

E = (LN oG)/S.

The homomorphism f is defined as f(g) = (1, g)S, and the homomorphisms j and p are given

respectively by j(x) = (x, 1)S and p((x, g)S) = gN . Then the diagram (1.4) commutes, and

the kernel of p coincides with the image of j, since, for all n ∈ N and x ∈ LN , we may write

(x, n) = (x l(n), 1)(l(n)−1, n).

Now, the assumption that (L, l) is compatible with conjugation implies that j is injective. To

see this, it is sufficient to prove that the set of elements of the form (l(n)−1, n) with n ∈ N is

closed under conjugation inside LN oG, and this follows precisely from the commutativity

of (1.3) and the fact that l:N → LN is a G-map by (1.1).

Note that if L is the identity and l(n) = 1 for every N and all n ∈ N , then E is isomorphic

to (N/[N,N ]) oQ, so in this example j is not injective, unless N is abelian.

Second construction. Recall that every extension N � G � Q of groups determines

a group homomorphism ψ:Q → Out(N), which is called an abstract kernel. An extension

N � G � Q is defined to be equivalent to another extension N � G′ � Q if there is

an isomorphism G ∼= G′ inducing the identity on both N and Q. As explained e.g. in [17],

there is a one-to-one correspondence between the set Extψ(Q,N) of equivalence classes of

extensions N � G � Q inducing an abstract kernel ψ:Q→ Out(N) and the set H2
ψ(Q;N)

of cohomology classes of pairs (ϕ, c), where ϕ:Q → Aut(N) is a function lifting ψ, and

c:Q×Q→ N is a normalized 2-cocycle, that is,

ϕ(x) ◦ ϕ(y) = c(x, y)ϕ(xy) c(x, y)−1

ϕ(x)(c(y, z)) c(x, yz) = c(x, y) c(xy, z),

for all x, y, z ∈ Q, and ϕ(1) = id and c(x, 1) = c(1, x) = 1 for all x ∈ Q.

Given a 2-cocycle (ϕ, c), the associated extension of N by Q can be explicitly described

as the set N ×Q equipped with the multiplication

(n, x)(m, y) = (n (ϕ(x)(m)) c(x, y), xy) . (1.5)
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Now suppose given an extension N � G � Q and a pointed endofunctor (L, l). Choose

a normalized set-theoretical section σ:Q→ G and let (ϕ, c) be the corresponding 2-cocycle,

classifying the given extension. Specifically, ϕ is the composite of σ with the conjugation

homomorphism G → Aut(N), and c is defined as c(x, y) = σ(x)σ(y)σ(xy)−1. Then the

assumption that (L, l) is compatible with conjugation ensures that (L ◦ ϕ, l ◦ c) is also a

normalized 2-cocycle. Indeed, in order to verify that

L(ϕ(x)) ◦ L(ϕ(y)) = l(c(x, y))L(ϕ(xy)) l(c(x, y))−1,

one needs the functoriality of L and the assumption that (1.3) commutes. The second

condition

L(ϕ(x))(l(c(y, z))) = l(c(x, y)) l(c(xy, z)) l(c(x, yz))−1

only requires that l be a natural transformation.

The 2-cocycle (L ◦ϕ, l ◦ c) yields a group extension LN � E � Q, which is independent

of the choices made, up to equivalence. Moreover, the homomorphism f :G → E sending

(n, x) to (l(n), x) renders commutative the diagram

N � G � Q
l ↓ f ↓ id ↓
LN � E � Q,

in such a way that the action of G on LN defined via f agrees with the action given by

conjugation on N and functoriality of L.

We conclude by checking that the bottom extension in this diagram agrees, up to equiv-

alence, with the extension obtained with the first construction. For this, define a section

σ′:Q→ (LN oG)/S by σ′(q) = (1, σ(q))S. Then the corresponding 2-cocycle is

c′(x, y) = σ′(x)σ′(y)σ′(xy)−1 = (1, c(x, y))S = (l(c(x, y)), 1)S.

Hence c′ = l ◦ c, as needed.

2 Relative completions and localizations

Our main goal in this section is to show that, if the pointed endofunctor (L, l) is a completion,

then it is compatible with conjugation.

We first make precise what we mean by a completion functor. Let D be any class of

objects in a category C and let K:D → C denote the embedding, where D is now viewed as a
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full subcategory of C. For any object X in C, the objects of the comma category (X ↓ K) are

the morphisms X → D with D in D, and morphisms in (X ↓ K) are commutative triangles.

The D-completion of an object X is the inverse limit X̂ (if it exists) of the functor from

(X ↓ K) to the category C sending X → D to D. In other words, D-completion is the

codensity monad (or codensity triple) of the full embedding K:D → C. That is, the right

Kan extension of K along itself; see [7, IV.2.2], after Artin–Mazur, and [18, p. 246].

Thus, if D-completion exists for an object X, then there is a natural morphism l:X → X̂,

which may be viewed as “the closest approximation to X by an inverse limit of objects in D”.

Well-known examples in the category of groups include profinite completion (where D is the

class of finite groups) and pronilpotent completion (where D is the class of nilpotent groups).

Each of these admits local versions at primes.

If D-completion exists for all objects, then it is a pointed endofunctor. The existence of

D-completion is guaranteed for all objects if (small) inverse limits exist in C and the class D
is a set, but also in other cases, for instance when D is reflective. If X̂ belongs itself to D,

then D-completion is idempotent on X. It is in fact idempotent on all objects in many cases,

but not always (see [7, IV.2 and IV.5.4]).

Recall that a pointed endofunctor (L, l) is called idempotent if Ll:L → LL is an iso-

morphism and Ll = lL; see [8] for a recent survey about this concept. Idempotent pointed

endofunctors will be called localizations. Such functors L are characterized by the follow-

ing universal property. For all X, Y and every morphism ϕ:X → LY , there is a unique

morphism ψ:LX → LY such that ψ ◦ l = ϕ.

If L is a localization in any category, then L-local objects are those isomorphic to LX for

some X, and L-equivalences are morphisms f such that Lf is an isomorphism. Thus, for ev-

ery X, the morphism l:X → LX is an L-equivalence, and it is the unique L-equivalence from

X to an L-local object, up to isomorphism. Furthermore, local objects X and equivalences

f :A→ B are orthogonal , meaning that the induced function

f ∗: C(B,X) → C(A,X)

is a bijection, where C(B,X) denotes the set of morphisms B → X in C.

Some examples of localizations in the category of groups are abelianization, hypoabelian-

ization (i.e., dividing out the perfect radical), and localization at primes.

Localizations are special cases of completions. Specifically,

Proposition 2.1 Every localization (L, l) is isomorphic to D-completion where D is the

class of L-local groups.
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Proof. For each object X, the morphism l:X → LX is an initial object in the comma

category (X ↓ K), where K:D → C is the full embedding. 2

We now prove that completions are compatible with conjugation, as defined in Section 1.

Theorem 2.2 Let D be a class of groups such that D-completion exists for all groups. Let

N be any group and let l:N → N̂ denote its D-completion. Then the action of N on N̂

induced by conjugation and functoriality satisfies

n · x = l(n)x l(n)−1 for all n ∈ N and x ∈ N̂ .

Proof. First we need to describe the action of N on N̂ in explicit terms, using the fact

that N̂ is an inverse limit. For any element n ∈ N , let τn:N → N denote conjugation by n.

For each homomorphism fD:N → D with D in D, we consider the composite

N
τn−→ N

fD−→ D

and denote by gn,D the corresponding homomorphism N̂ → D in the limiting cone, satisfying

gn,D ◦ l = fD ◦ τn (abbreviated to gD when n = 1). Then the automorphism γn: N̂ → N̂

induced by τn is uniquely characterized by the property that gD ◦ γn = gn,D for every

fD:N → D.

Now fix any n ∈ N . Observe that, for each fD:N → D with D in D, we have

τfD(n) ◦ fD = fD ◦ τn,

and this implies that τfD(n) ◦ gD = gn,D. Thus, we write ν(x) = l(n)x l(n)−1 for x ∈ N̂ and

check that ν satisfies the property that characterizes the automorphism γn: N̂ → N̂ , namely

gD(ν(x)) = fD(n) gD(x) fD(n)−1 = τfD(n)(gD(x)) = gn,D(x)

for all x ∈ N̂ , as needed. 2

As we saw in Section 1, this implies that completion functors admit relative versions.

This enlightens and generalizes the construction made by Bousfield and Kan in [7, IV.5.6],

dealing with completion with respect to a ring.

Since localizations are special cases of completions, Theorem 2.2 applies to localizations

as well. However, the proof of Theorem 2.2 is much simpler in the case of localizations, since

we may then use their universal property to infer the result from the equation

n · l(m) = l(n) l(m) l(n)−1

for n,m ∈ N , as done in earlier articles about localization at primes.
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3 Universal property of relative localizations

In this section we make explicit the universal property of relative group localizations, hence

generalizing substantial parts of [5], [9], [12], and [14].

Given a localization L in the category of groups, we say that a relative groupN � G � Q

is L-local if N is an L-local group. A morphism of relative groups is an L-equivalence if it

is orthogonal to all L-local relative groups.

Proposition 3.1 If a morphism of relative groups

N � G � Q
α ↓ β ↓ γ ↓
N ′ � G′ � Q′

is an L-equivalence, then β is an L-equivalence of groups and γ is an isomorphism.

Proof. This is proved precisely as in [9, Proposition 1.3]. First use that (α, β, γ) is orthog-

onal to D � D � 1, where D is any L-local group, and then choose 1 � E � E, where E

is any group. 2

Our main result in this section is the following. It includes the statement that the middle

map in a relative L-localization is an L-equivalence of groups, which is of great importance

for the applications. Note the analogy with fibrewise localization in homotopy theory, by

comparing it with [13, Theorem 1.F.3].

Theorem 3.2 Let N � G � Q be any extension of groups, and let (L, l) be any localization

in the category of groups. Then there is a commutative diagram

N � G � Q
l ↓ f ↓ id ↓
LN � E � Q

(3.1)

which is an L-equivalence of relative groups, and where f is an L-equivalence of groups.

Proof. Theorem 2.2 tells us that localization functors are compatible with conjugation, and

this suffices to obtain (3.1) with the property that the action of G on LN given via f agrees

with the action given by functoriality of L, as shown in Section 1. Now we want to prove

that the morphism (l, f, id) is an L-equivalence of relative groups. Suppose given a group

extension N ′ � G′ � Q′ where N ′ is L-local, and a morphism (α, β, γ) from N � G � Q

to N ′ � G′ � Q′. Since l:N → LN is an L-localization of groups, there is a unique

α′:LN → N ′ such that α′ ◦ l = α.
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We first view E as (LN oG)/S, using the notation of Section 1, and define

β′:E → G′, β′((n, g)S) = α′(n) β(g).

Then β′ is a well-defined group homomorphism. In order to check this, the following equality

is needed, as in [14, Theorem 1.2]:

α′(g · x) = β(g)α′(x) β(g)−1 for all g ∈ G and all x ∈ LN. (3.2)

This is proved by picking first x ∈ im l and then using the universal property of L.

Alternatively, we may view E as an extension of LN by Q classified by (L ◦ ϕ, l ◦ c),
where (ϕ, c) is a 2-cocycle classifying N � G � Q. Then we define a function β′:E → G′ as

follows, where E is written as a twisted product LN ×Q with the multiplication described

in (1.5):

β′(x, q) = (α′(x), 1) β(1, q).

In order to show that β′ is a group homomorphism, one needs that

α′(((L ◦ ϕ)(q))(x)) = β(1, q) (α′(x), 1) β(1, q)−1,

and this follows again from the universal property of L, by checking it first for x ∈ im l.

In either case, we find that (α′, β′, γ) is a morphism of relative groups, and it satisfies

(α′, β′, γ) ◦ (l, f, id) = (α, β, γ).

There only remains to prove the uniqueness of (α′, β′, γ). Suppose that (α′′, β′′, γ′′) satisfies

(α′′, β′′, γ′′) ◦ (l, f, id) = (α, β, γ).

Then γ′′ = γ, and we also have α′′ = α′ by the universal property of L. Finally,

β′′((n, g)S) = β′′((n, 1)S) β′′((1, g)S) = α′′(n) β′′(f(g)) = α′′(n) β(g),

so β′′ = β′. This proves that (l, f, id) is an L-equivalence of relative groups. The fact that f

is then an L-equivalence of groups follows from Proposition 3.1. 2

Corollary 3.3 A morphism (α, β, γ) of relative groups is an L-equivalence if and only if α

is an L-equivalence of groups and γ is an isomorphism.

Proof. This is seen by applying relative L-localization to both the domain and the

codomain of the morphism (α, β, γ). 2
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Note that the converse of Proposition 3.1 is not true in general (although it is true in

some special cases, such as in [14, Theorem 2.5]). For example, if we consider the diagram

Z/3 � Σ3 � Z/2
α ↓ β ↓ id ↓
1 � Z/2 � Z/2,

where Σ3 denotes the symmetric group on three elements, and choose L to be localization at

the prime 3, then β is an L-equivalence of groups, yet the diagram is not an L-equivalence

of relative groups.

4 Dividing out group radicals

In this section we analyze the extent to which dividing out radicals preserves exactness or

half-exactness of group extensions. Relative localization is used at a few key places.

We recall from [11] that a radical R in the category of groups is a subfunctor of the

identity (i.e., a functor assigning to each group G a subgroup RG in such a way that every

homomorphism G → K induces a homomorphism RG → RK by restriction), with the

property that RG is normal in G and R(G/RG) = 1. The functoriality of R implies that

RG is a characteristic subgroup of G for every group G; therefore, if G embeds as a normal

subgroup into some group K, then RG is also normal in K.

A radical R is idempotent if RRG = RG for all groups G. To every radical R one can

associate an idempotent radical R∞ as follows; cf. [11, Proposition 1.2]. For each group G,

let R∞G be the product of all subgroups H of G such that RH = H. Then RR∞G = R∞G,

and R∞G is maximal with this property. We have R∞G ⊆ RG for all groups G. In fact, R∞

is the largest idempotent radical that is a subfunctor of R. It can alternatively be defined

as the inverse limit of the following series of radicals: R0 = R; Rα = RRα−1 for every

successor ordinal α, and Rα is the intersection of Rβ for all β < α if α is a limit ordinal. An

illuminating example is RG = [G,G], the commutator radical, for which R∞G = PG, the

perfect radical, which is the intersection of the (transfinite) derived series.

If (L, l) is any localization functor in the category of groups, then we may associate with

it a radical, by defining RG to be the kernel of the localizing homomorphism l:G → LG.

However, such radicals need not be idempotent in general; for instance, [G,G] is the kernel

of the abelianization homomorphism.

A localization functor (L, l) is called an epireflection if, for every group G, the natural

map l:G → LG is an epimorphism. If R is any radical in the category of groups, then

LG = G/RG defines an epireflection. Thus, there is a bijective correspondence between

11



radicals and epireflections. An epireflection is called a reduction if the corresponding radical

is idempotent.

Among localization functors, it is possible to characterize epireflections and reductions in

terms of closure properties of the class of L-local groups. The following result, whose proof

uses relative localization, generalizes Theorem 6 in [23].

Theorem 4.1 Let (L, l) be a localization in the category of groups. Then L is an epire-

flection if and only if the class of L-local groups is closed under taking subgroups, and L is

a reduction if and only if the class of L-local groups is closed under taking subgroups and

forming extensions.

Proof. Suppose that L is an epireflection. Let G be an L-local group, and S a subgroup

of G. Then, by assumption, l:S → LS is surjective. Since the inclusion S ↪→ G factors

through LS, l:S → LS is also injective, so S is L-local. Conversely, suppose that the

class of L-local groups is closed under subgroups. Let G be any group and l:G → LG its

localization. We may factor l as G � im l ↪→ LG and, by assumption, im l is L-local. Since

every homomorphism from G to an L-local group factors uniquely through im l, the arrow

G � im l is an L-equivalence. Hence, the inclusion im l ↪→ LG is also an L-equivalence and

therefore it is an isomorphism. This shows that l:G→ LG is surjective.

Now suppose that L is a reduction. This means that LG = G/RG where RRG = RG for

all groups G. As this is an epireflection, the class of L-local groups is closed under subgroups.

Let N � G � Q be a group extension where N and Q are L-local. Thus, RN = 1 and

RQ = 1. Since RG maps into RQ, we have RG ⊆ N . Then RG = RRG ⊆ RN implies

that RG = 1, so G is L-local as well. Finally, suppose that the class of L-local groups is

closed under subgroups and formation of extensions. Then L is an epireflection and hence

LG = G/RG for some radical R and all groups G. Hence, it is enough to show that RRG

equals RG for all G. This is the same as proving that L(RG) = 1 for all G. Take any group

G and consider the relative localization

RG � G � LG
l ↓ f ↓ id ↓
L(RG) � E � LG,

where, by Theorem 3.2, the map f is an L-equivalence. Since the composite of f with the

surjection E � LG is an L-equivalence, we may infer that the latter is also an L-equivalence.

Since we are assuming that the class of L-local groups is closed under extensions, the group

E is L-local. Therefore, the surjection E � LG is an isomorphism, and this implies that

L(RG) = 1, as needed. 2
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Let R be any radical in the category of groups, and consider the epireflection given by

LG = G/RG for all G. In this situation, relative L-localization of any group extension

N � G � Q yields a short exact sequence

N/RN � G/RN � Q, (4.1)

since RN is normal in G. Examples include

N/[N,N ] � G/[N,N ] � Q and N/IN � G/IN � Q,

where IN is the isolator subgroup of N , that is, the smallest normal subgroup of N such

that N/IN is torsion-free.

Furthermore, we can consider the commutative diagram

RN
Ri
� RG

Rp→ RQ

↓ ↓ ↓
N

i
� G

p
� Q

↓ ↓ ↓

LN
Li→ LG

Lp
� LQ

where the upper and lower rows need not be exact in general, although the restriction Ri

is necessarily injective, and Lp is necessarily surjective. It is also clear that the composites

Rp ◦Ri and Lp ◦ Li are trivial, by functoriality.

Proposition 4.2 Let N
i

� G
p
� Q be any group extension. Let R be any radical, and let

LG = G/RG be the associated epireflection. Then the following assertions hold.

(i) imRi = kerRp if and only if Li is injective.

(ii) imLi = kerLp if and only if Rp is surjective.

(iii) The sequence 1 → RN → RG → RQ → 1 is exact if and only if the sequence

1 → LN → LG→ LQ→ 1 is exact.

Proof. This is a standard diagram-chase argument. In fact, the Nine-Lemma, as stated

e.g. in [24, p. 98], holds in the category of groups as well. 2

In other words, an epireflection L preserves exactness of a group extension if and only if

the associated radical does. Now the following result extends [23, Proposition 5].
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Theorem 4.3 Let N � G � Q be any group extension and let (L, l) be an epireflection. If

Q is L-local, then the sequence LN → LG→ Q→ 1 is exact. Moreover, if L is a reduction,

then the sequence 1 → LN → LG→ Q→ 1 is exact.

Proof. The assumption that Q is L-local tells us that RQ = 1, hence the first claim,

by Proposition 4.2. To prove the second statement, apply relative L-localization to the

extension N � G � Q and recall from Theorem 4.1 that the class of L-local groups for any

reduction is closed under extensions. 2

5 Word radicals and plus-constructions

Recall from [21] that, given any set W of elements of a free group F∞ on a countably infinite

set of generators (called words), the variety defined by W is the class of groups G such

that every homomorphism f :F∞ → G satisfies f(w) = 1 for all w ∈ W . For an arbitrary

group G, the verbal subgroup with respect to W is the subgroup of G generated by all the

images of elements of W through homomorphisms F∞ → G. Thus, the variety defined by W

consists precisely of the groups whose verbal subgroup with respect to W is trivial. Factoring

out the verbal subgroup is an epireflection, which is called the projection onto the variety.

As proved in [21], a class of groups forms a variety if and only if it is closed under taking

subgroups and forming quotients and direct products.

Let V be any variety of groups, and denote by RG the corresponding verbal subgroup of

a group G. Then R is a radical. Radicals of this kind will be called word radicals. Examples

are RG = [G,G] (the commutator subgroup); RG = ΓiG (the ith term of the lower central

series); RG = DiG (the ith term of the derived series); or RG = Gn (the subgroup generated

by all nth powers). In fact, as shown in [21], every variety can be defined by a set of words

W = {xn, c1, c2, c3, . . .} where each ci is an iterated commutator and n is a nonnegative

integer, which is called the exponent of the variety.

We emphasize that, if R is a word radical and G � Q is any group epimorphism, then

the restriction RG → RQ is necessarily surjective. Therefore, we may use Proposition 4.2

to conclude that, for any word radical R, every group extension N � G � Q yields a

four-term exact sequence

1 → (N ∩RG)/RN → N/RN → G/RG→ Q/RQ→ 1.

The perfect radical P is not a word radical. For the perfect radical, a group extension

N � G � Q in which the restriction PG → PQ is surjective was called an “extension
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preserving perfect radicals” in [2]. Thus, by Proposition 4.2, an extension N � G � Q

preserves perfect radicals if and only if the sequence

1 → (N ∩ PG)/PN → N/PN → G/PG→ Q/PQ→ 1

is exact.

As we said in Section 4, the perfect radical may be viewed as R∞ where R is the com-

mutator radical. The next proposition gives sufficient conditions under which, for a radical

R and a group epimorphism G � Q, the restriction R∞G → R∞Q is surjective. This

generalizes Proposition 2.3 of [2].

Proposition 5.1 Let N � G � Q be any group extension and R a radical. Then the

sequence

1 → (N ∩R∞G)/R∞N → N/R∞N → G/R∞G→ Q/R∞Q→ 1

is exact in each of the following cases:

(i) The extension N � G � Q splits.

(ii) R is a word radical and RmG ⊆ N ·R∞G for some finite m.

(iii) R is a word radical and RnN ⊆ R∞G for some finite n.

Proof. Part (i) and part (ii) follow as in the proof of [2, Proposition 2.3]. In the course of

the proof of (ii), one uses the fact that the restriction RmG→ RmQ is surjective for all m,

since R is a word radical. Part (iii) uses the fact that, if J is the inverse image of R∞Q

in G, then RnJ = Rn+1J , where n is the integer given by the assumption made in (iii). The

details are as in [2, Lemma 2.1]. 2

Certain results about Quillen’s plus-construction remain valid if one replaces the com-

mutator radical by any word radical R. Recall that the plus-construction associates to each

connected topological space X, by attaching cells, another space X+ with the same inte-

gral homology groups as X and such that the fundamental group π1(X
+) is isomorphic to

the quotient of π1(X) by its perfect radical Pπ1(X). This construction was introduced by

Quillen in [22] and plays an important role in algebraic K-theory.

An analogue of the plus-construction with respect to any word radical was defined in [11]

as follows. For every word radical R there is a locally free group ΦR with the property that,

given any group G, the subgroup R∞G is generated by the images of all homomorphisms

ΦR → G. As in [3], we say that ΦR sweeps the radical R∞. The group ΦR was constructed
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by refining the technique used in [3, Example 5.3] to obtain a locally free group sweeping

the perfect radical.

Now, for each connected space X and each word radical R, the plus-construction X+
R of

X with respect to R is defined as the f -localization of X, in the sense of Farjoun [13], with

respect to the map f :K(ΦR, 1) −→ ∗, where K(ΦR, 1) is an Eilenberg–Mac Lane space with

fundamental grup ΦR, and ∗ is a point. Thus, there is a natural map l:X −→ X+
R which is

universal in the homotopy category with the property that the space X+
R is K(ΦR, 1)-null.

Recall from [13] that this means that every map ΣnK(ΦR, 1) −→ X+
R is nullhomotopic for

all n ≥ 0 (where Σ denotes suspension), or, equivalently, that the pointed mapping space

map∗(K(ΦR, 1), X+
R )

is weakly contractible (that is, it is path-connected and all its homotopy groups are trivial).

Hence, the plus-construction with respect to R assigns to X, in a universal way, a space X+
R

which is “invisible” from K(ΦR, 1).

If R is the commutator radical, then X+
R is homotopy equivalent to Quillen’s plus-

construction, as proved in [3]. If R is any word radical, then the map l:X −→ X+
R induces an

epimorphism π1(X) � π1(X
+
R ) factoring out precisely the radical R∞π1(X). Moreover, this

map l induces an isomorphism in homology with Z/n coefficients if the variety associated

with R has exponent n > 1; see [11, Theorem 4.1]. In particular, if R corresponds to the

words xn and [x, y], then X+
R is a plus-construction for homology with mod n coefficients, in

the sense of [20], also called a partial Z/n-completion in [7, VII.6].

Proposition 5.2 Let N � G � Q be any group extension and R any radical. If R∞Q = 1,

then the sequence 1 → N/R∞N → G/R∞G→ Q→ 1 is exact.

Proof. This is a direct consequence of Theorem 4.3 and the fact that dividing out R∞ is

a reduction because R∞ is idempotent. 2

The following homotopy-theoretical version of Proposition 5.2 extends [1, Theorem 1.1]

to arbitrary word radicals. See also [4].

Theorem 5.3 Let F −→ E −→ B be a homotopy fibre sequence of connected spaces, and let

R be any word radical. If B+
R ' B, then F+

R −→ E+
R −→ B+

R is a homotopy fibre sequence.

Proof. Apply the plus-construction fibrewise,

F −→ E −→ B
l ↓ f ↓ id ↓
F+
R −→ X −→ B,
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and recall from [13, Theorem 1.F.3] that f induces a homotopy equivalence E+
R ' X+

R . Now,

if ΦR is a locally free group sweeping the radical R∞, we have that B and F+
R are both

K(ΦR, 1)-null, so X is also K(ΦR, 1)-null and this implies that X+
R ' X. 2

We end the article by showing that, if the radical R corresponds to a variety of exponent

zero, then the condition that B+
R ' B is equivalent to the condition that R∞π1(B) be trivial.

For varieties of nonzero exponent, this is not true, as we prove by means of a counterexample.

Before displaying it, we need to analyze more closely the effect of plus-construction with

respect to any radical R. Recall from [7] that an abelian group A is called Ext-p-complete,

where p is a prime, if Hom(Z[1/p], A) = 0 and Ext(Z[1/p], A) = 0.

Theorem 5.4 Let Φ be the direct limit of any sequence of free groups indexed by the first

infinite ordinal. Then a connected space X is K(Φ, 1)-null if and only if the following

conditions hold:

(i) Hom(Φ, π1(X)) is trivial.

(ii) Hom(H1(Φ), πi(X)) = 0 and Ext(H1(Φ), πi(X)) = 0 for i ≥ 2.

Proof. Write Φ as the direct limit of

F1
ϕ1−→ F2

ϕ2−→ F3
ϕ3−→ · · · (5.1)

where each Fi is free on a set {xji} of free generators. Let Fg be the free product of all

the groups Fi, and let Fr be another free group with a set of generators rji corresponding

bijectively with the generators xji of Fg. Consider the homomorphism ψ:Fr → Fg defined as

ψ(rji ) = (xji )
−1ϕi(x

j
i ) for all i, j. Thus, the normal closure N of the image of ψ in Fg is the

kernel of a free presentation of Φ,

N � Fg � Φ,

yielding, by abelianization, a sequence

Fr/[Fr, Fr] � Fg/[Fg, Fg] � Φ/[Φ,Φ] (5.2)

which is a free abelian presentation of the abelianization of Φ, hence exact.

In homotopy-theoretical terms, we may consider a wedge of circles Wi with fundamental

group Fi, for every i, and consider the homotopy colimit of the sequence of maps corre-

sponding to (5.1). This space is a 2-dimensional K(Φ, 1), since it is an ascending union of

2-dimensional K(Fi, 1) spaces. (In the case of sequences indexed by ordinals bigger than
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the first infinite ordinal, the homotopy colimit could fail to be 2-dimensional.) The cell

decomposition of this homotopy colimit is described by a homotopy cofibre sequence

Wr −→ Wg −→ K(Φ, 1), (5.3)

inducing precisely (5.2) on H1. The spaces Wr and Wg are wedges of circles with fundamental

groups Fr and Fg, respectively.

Now a connected space X is K(Φ, 1)-null if and only if the sets of pointed homotopy

classes of maps [ΣnK(Φ, 1), X] are trivial for all n ≥ 0. Hence, the long exact sequence

· · · → [ΣK(Φ, 1), X] → [ΣWg, X] → [ΣWr, X] → [K(Φ, 1), X] → [Wg, X] → [Wr, X]

obtained from (5.3) proves the statement, since

[ΣnWg, X] ∼= [Wg,Ω
nX] ∼= Hom(Fg, πn+1(X))

for all n, and similarly with Wr. 2

Corollary 5.5 Let R be a word radical associated with a variety of groups V, and let X be

a connected space.

(i) If V has exponent zero, then X+
R ' X if and only if R∞π1(X) is trivial.

(ii) If V has a prime exponent p, then X+
R ' X if and only if R∞π1(X) is trivial and, for

each i ≥ 2, the group πi(X) is Ext-p-complete.

Proof. Let ΦR be a locally free group sweeping R∞, constructed as in [11, Theorem 3.3].

We recall that ΦR is a free product of countable locally free groups, which is perfect if V has

exponent zero, and

H1(ΦR) ∼=
⊕
i∈I

Z[1/p] (5.4)

for some set of indices I if V has exponent p. Since X+
R ' X if and only if X is K(ΦR, 1)-null,

both statements (i) and (ii) are consequences of Theorem 5.4. 2

Corollary 5.6 Let R be a word radical corresponding to a variety of prime exponent p. Let

X be a connected space such that π1(X) is abelian and p-divisible. Then X+
R is homotopy

equivalent to the p-completion of X.
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Proof. It follows from Theorem 5.4 and the isomorphism (5.4) that, if π1(X) is abelian,

then X is K(ΦR, 1)-null if and only if it is K(Z[1/p], 1)-null, since Z[1/p] is also locally

free. Hence, X+
R is homotopy equivalent to the localization of X with respect to the map

K(Z[1/p], 1) −→ ∗, where ∗ denotes a point. The assumption that π1(X) is p-divisible is

equivalent to imposing that Z[1/p] sweeps π1(X), and this guarantees that X+
R is homotopy

equivalent to the p-completion of X, by [10, Theorem 4.4]. 2

Using this result, we show that the assumption that B+
R ' B cannot be replaced with the

assumption that R∞π1(B) = 1 in Theorem 5.3 if the variety associated with R has nonzero

exponent. The homotopy fibre sequence

K(Z, 1) −→ K(Z/2, 1) −→ K(Z, 2)

corresponding to a nonzero element in H2(Z/2;Z) is transformed by the plus-construction

with respect to any word radical of exponent p, where p is any odd prime, into the sequence

K(Z, 1) −→ ∗ −→ K(Ẑp, 2),

where Ẑp denotes the p-adic integers. This is of course not a homotopy fibre sequence.
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Paule Malliavin, Lecture Notes in Math. vol. 1029, Springer-Verlag, Berlin Heidelberg New
York, 1983, 311–324.

[16] I. Llerena, Localization of fibrations with nilpotent fibre, Math. Z. 188 (1985), 397–410.

[17] S. Mac Lane, Homology, Grund. math. Wiss. Einz. Band 114, Springer-Verlag, Berlin Heidel-
berg New York, 1975.

[18] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. vol. 5,
Springer-Verlag, Berlin Heidelberg New York, 1975.

[19] J. P. May, Fibrewise localization and completion, Trans. Amer. Math. Soc. 258 (1980),
127–146.

[20] W. Meier and R. Strebel, Homotopy groups of acyclic spaces, Quart. J. Math. Oxford Ser. (2)
32 (1981), 81–95.

20



[21] H. Neumann, Varieties of Groups, Ergeb. Math. Grenzgeb. Band 37, Springer-Verlag, Berlin
Heidelberg New York, 1967.

[22] D. Quillen, Cohomology of groups, Actes du Congrès International des Mathématiciens, tome 2
(Nice, 1970), 47–51.

[23] J. L. Rodŕıguez and D. Scevenels, Universal epimorphic equivalences for group localizations,
J. Pure Appl. Algebra 148 (2000), 309–316.

[24] J. R. Strooker, Introduction to Categories, Homological Algebra and Sheaf Cohomology, Cam-
bridge University Press, Cambridge, 1978.

[25] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100
(1974), 1–79.
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