
Publicacions Matemàtiques, Vol 36 (1992), –.

ON FINITE GROUPS ACTING ON
ACYCLIC COMPLEXES OF DIMENSION TWO

Carles Casacuberta and Warren Dicks

Abstract
We conjecture that every finite group G acting on a contractible
CW -complex X of dimension 2 has at least one fixed point. We
prove this in the case where G is solvable, and under this additional
hypothesis, the result holds for X acyclic.

Dedicat a la memòria d’en Pere Menal

0. Introduction

Let G be a group and A an abelian group. Dicks and Dunwoody
([4, Chapter IV]) proved that for each element ζ of H1(G; AG) there
exists a G-tree T with finite edge stabilizers, with the property that for
each subgroup H of G, the restriction of ζ to H is zero if and only if H
fixes a point of T . It is natural to look for analogous geometric expla-
nations of elements of higher cohomology groups; thus, for example, one
can ask if for each element ζ of H2(G; AG) there exists a contractible
2-dimensional CW -complex X admitting an action of G with finite sta-
bilizers for 2-cells, with the property that for each subgroup H of G,
the restriction of ζ to H is zero if and only if H acts trivially on X in
some sense, perhaps leaving invariant a subtree of the 1-skeleton of X .
The restriction of ζ to any finite subgroup of G is zero, but if a finite
group leaves a subtree invariant then it fixes a point. With this motiva-
tion, we optimistically conjecture that every finite group G acting on a
contractible 2-dimensional CW -complex X has at least one fixed point.

In this note we prove this conjecture in the case where G is solv-
able. Our argument is based on a classical result of P.A. Smith ([8],
[9]), stating that every action of a finite p-group on a finite dimensional
Z/p-acyclic CW -complex has a Z/p-acyclic fixed-point set (see [2, Chap-
ter III] and further developments e.g. in [1], [3], [7]).
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In our context, the hypothesis that X has no cells above dimension 2
is essential. It is known that any finite nilpotent group whose order is
not a prime power acts on some contractible 3-dimensional CW -complex
without fixed points ([1]).

On the other hand, we shall prove that for a finite solvable group
G acting on a 2-dimensional CW -complex X , in order to ensure the
existence of a fixed point it suffices to assume that X is acyclic. For X
acyclic, however, the condition that G be solvable cannot be removed,
because the alternating group A5 acts on the 2-skeleton of the Poincaré
sphere –which is acyclic– without fixed points ([6]). Recall that the
1-skeleton of the Poincaré sphere is the complete graph on 5 vertices,
and the 2-skeleton is obtained by adding 6 pentagonal faces so as to
extend the natural action of A5 on the set of vertices. The fundamental
domain of the action is a triangle with angles π/2, π/5, 3π/10, and the
60 copies of this fundamental domain triangulate the 2-skeleton, from
which it follows that there are no fixed points. The fundamental group
of this space is isomorphic to SL2(F5).

Since X being contractible is equivalent to X being simply-connected
and acyclic, the question that remains open is: If we add the condition
that X be simply-connected, can we delete the condition that G be
solvable?

1. Statement and proof of the result

Let G be a finite group acting on a CW -complex X of dimension 2,
and denote by XG the set of fixed points under the action of G. We
shall assume that the action is cellular ([5]); that is, each translation of
an open cell is an open cell, and, if a cell is invariant, then it is pointwise
fixed. Thus XG is a subcomplex of X . For a subcomplex Y ⊆ X , we
denote by Cn(X, Y ) the group of relative cellular n-chains of the pair
(X, Y ).

Given a nonzero abelian group A, a space X is said to be A-acyclic
if H̃k(X ; A) = 0 for all k, where H̃ denotes reduced homology. Recall
that the condition H̃−1(X ; A) = 0 is equivalent to the augmentation
homomorphism C0(X) ⊗ A → A being surjective, and hence equivalent
to X being nonempty.

We prove

Theorem 1.1. Let G be a finite solvable group acting on a CW -
complex X of dimension 2. If H̃∗(X ;Z) is finite, and the orders of G,
H1(X ;Z) are coprime, then the natural map H̃∗(XG;Z) → H̃∗(X ;Z) is
injective.
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Proof: Under our assumptions, the graded group H̃∗(X ;Z) is neces-
sarily concentrated in degree 1, since it is free abelian in all other degrees.
Moreover, H1(X ;Z/p) = 0 (and hence X is Z/p-acyclic) for every prime
p dividing the order of G.

Since G is solvable, we can find a series of subgroups

(1.1) {1} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gk = G

in which each Gi−1 is normal in Gi and Gi/Gi−1
∼= Z/pi, where pi is

a prime. Then the action of G on X induces an action of Gi/Gi−1 on
XGi−1 and

(1.2) XGi =
(
XGi−1

)Gi/Gi−1
.

We prove inductively that the map H̃∗(XGi ;Z) → H̃∗(X ;Z) is a
monomorphism for all i = 0, . . . , k. This is trivial for G0. Thus suppose
that it has been established for Gi−1. Then XGi−1 is Z/p-acyclic for
every prime p dividing the order of G. Since the order of Gi/Gi−1 is
a prime pi, applying Smith’s Theorem ([9]) to the action of Gi/Gi−1

on XGi−1 we obtain, by (1.2), that XGi is Z/pi-acyclic. This tells us
in particular that XGi is nonempty and connected. Further, for every
abelian group A we have an exact sequence

(1.3) 0 −→ H2(XGi ; A) −→ H2(X ; A) −→ H2(X, XGi ; A) −→
−→ H1(XGi ; A) −→ H1(X ; A) −→ H1(X, XGi ; A) −→ 0,

from which we infer that H2(X, XGi ;Z/pi) = 0. But, since X has no
cells above dimension 2, the group H2(X, XGi ;Z) embeds in the free
abelian group C2(X, XGi) and hence it is free abelian itself. This forces
H2(X, XGi ;Z) = 0, showing that H1(XGi ;Z) embeds in H1(X ;Z).

Corollary 1.2. Every action of a finite solvable group G on a
Z-acyclic CW -complex X of dimension 2 has at least one fixed point.

Proof: It follows from Theorem 1.1 that the fixed-point set XG is
Z-acyclic, so in particular it is nonempty.

Note. Robert Oliver has kindly informed us that an, as yet unpub-
lished, paper by Yoav Segev contains a different proof of Corollary 1.2,
with the additional assumption that X be finite.
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