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Abstract

Given a monad (also called a triple) T on an arbitrary category, an idempotent
approximation to T is defined as an idempotent monad T̂ rendering invertible pre-
cisely the same class of morphisms which are rendered invertible by T. One basic
example is homological localization with coefficients in a ring R, which is an idem-
potent approximation to R-completion in the homotopy category of CW-complexes.
We give general properties of idempotent approximations to monads using the ma-
chinery of orthogonal pairs, aiming to a better understanding of the relationship
between localizations and completions.

0 Introduction

A monad on a category C consists of a functor T : C → C together with two natural

transformations µ:T 2 → T and η: Id → T satisfying the conditions of a multiplication

and a unit; see [18, Ch. VI]. A monad is called idempotent if µ is an isomorphism.

Idempotent monads are also called localizations, although the latter term is sometimes

used with a more restrictive meaning.

It has long been known that, under suitable assumptions on the category C, it is

possible to universally associate with any given monad T an idempotent monad T̂. We

propose to call T̂ an idempotent approximation to T; this terminology is similar to the one

used by Lambek and Rattray in [17]. The first construction of idempotent approximations

was described by Fakir in [13], assuming that C is complete and well-powered. A similar

idea, with different hypotheses, was exploited by Dror and Dwyer in [12]. In [7], the
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authors used Fakir’s construction of idempotent approximations in order to extend P -

localization of nilpotent groups over all groups in a universal (terminal) way.

We have observed that most of the properties of idempotent approximations to mon-

ads do not depend on the particular construction carried out, but turn out to be con-

sequences of one primary property: A monad T and its idempotent approximation T̂

render invertible the same class of arrows. This suggests that one could get rid of any

technical assumptions on C, and study idempotent approximations to monads in arbitrary

categories, whenever such approximations exist.

In Section 1 we prove that, indeed, if one defines an idempotent approximation to a

monad T as an idempotent monad T̂ inverting the same class of arrows as T, then when-

ever T̂ exists there is a unique morphism of monads λ: T̂→ T, which is terminal among

all morphisms from idempotent monads into T. However, λ need not be a monomor-

phism in general, although it is so in categories which are complete and well-powered. We

exhibit counterexamples in Section 3.

Our counterexamples arose from one of the motivations of our approach. Bousfield

and Kan constructed, in the pointed homotopy category of simplicial sets, for each com-

mutative ring R with 1, a monad called R-completion, which fails to be idempotent [5].

The class of maps rendered invertible by R-completion is the class of ordinary homology

equivalences with coefficients in R. Now, although the pointed homotopy category is not

complete, it is well known that there is an idempotent monad which renders invertible

precisely the ordinary homology equivalences with coefficients in R, namely R-homology

localization [2]. Hence, R-homology localization should be viewed as an idempotent ap-

proximation to R-completion in the pointed homotopy category. Some consequences of

this fact are discussed in Section 3.

In Section 2 we prove that, if an idempotent approximation to a monad exists, then

it can be constructed as the codensity monad of a suitable embedding. The codensity

monad of a full embedding E:A → C is also called A-completion. In fact we give a

necessary and sufficient condition for a full subcategory A in order that A-completion be

idempotent, assuming its existence.

The basic tool that we use in discussing idempotent approximations in arbitrary cat-

egories is the concept of orthogonality between classes of arrows and classes of objects.

This terminology is due to Freyd and Kelly [15]; see also [8], where the term orthogonal

pair was introduced, inspired in earlier work by Adams [1]. The present paper also aims

to illustrate further, along the lines marked in [7], the power and simplicity of the use of

orthogonal pairs in the study of monads.
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1 Idempotent approximation and its properties

A monad or triple on a category C consists of a functor T : C → C together with natural

transformations η: Id→ T and µ:T 2 → T such that µ·Tµ = µ·µT and µ·ηT = µ·Tη = Id.

Morphisms of monads are defined in the obvious way (but see Lemma 1.4 below). A monad

(T, η, µ) is called idempotent if µ is an isomorphism or, equivalently, if Tη = ηT ; see [9].

We recall that a category C is called complete if limits of diagrams over small categories

exist in C, and it is called well-powered if for every object X in C the isomorphism classes

of monic arrows Y → X form a set. The following result was obtained by Fakir in [13].

Theorem 1.1 Assume that the category C is complete and well-powered. Then for every

monad T = (T, η, µ) on C there exists an idempotent monad T̂ = (T̂ , η̂, µ̂) with the

following properties.

(1) There is a unique morphism of monads λ: T̂ → T, and this morphism is terminal

among all morphisms from idempotent monads into T.

(2) Both T η̂:T → T T̂ and η̂T :T → T̂ T are isomorphisms.

(3) For morphisms f in C, T̂ f is an isomorphism if and only if Tf is an isomorphism.

(4) λ is a monomorphism. ]

The idempotent monad T̂ was constructed pointwise in [13] by means of an inverse

limit procedure. However, there are plenty of monads T on categories which are not com-

plete or well-powered, still associated with an idempotent monad T̂ satisfying properties

(1), (2), and (3) above. In fact, as we shall prove, properties (1) and (2) are consequences

of (3). This motivates the following definition.

Definition 1.2 Given a monad T = (T, η, µ) on a category C, an idempotent approxima-

tion to T is an idempotent monad T̂ = (T̂ , η̂, µ̂) on C such that T̂ f is an isomorphism if

and only if Tf is an isomorphism, for morphisms f in C.

Before proceeding to show that our definition entails that T̂ satisfies properties (1) and

(2) above, we recall some terminology from [7] and [8]. Let C, C ′ be any two categories.

For a functor T : C → C ′, we denote by S(T ) the class of morphisms f in C such that

Tf is an isomorphism, and call such morphisms T -equivalences . The class of objects

in C ′ which are isomorphic to TX for some X will be denoted by D(T ). By a standard

abuse of terminology, we often denote by the same letter D a class of objects and the full

subcategory with these objects.
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As in [15], we say that a morphism f :A → B and an object X in C are orthogonal ,

denoted f ⊥ X, if the function

C(f,X): C(B,X)→ C(A,X)

is bijective. For a class of morphisms S (resp. a class of objects D), we denote by S⊥ the

class of objects X such that f ⊥ X for all f in S (resp. by D⊥ the class of morphisms

f such that f ⊥ X for all X in D). We call a class of objects D saturated if D⊥⊥ = D.

Similarly, a class of morphisms S will be called saturated if S⊥⊥ = S. We warn the reader

that this concept of saturation is not the same as the one used in earlier papers on Adams

completion [10]. The extent to which the two notions are distinct is discussed in [6].

The proof of the following proposition is omitted; the first statement can be found

in [15, 1.2.1].

Proposition 1.3 Every saturated class of objects D in a category C is closed under all

limits which exist in C. Every saturated class of morphisms S is closed under colimits,

in the following sense: For any natural transformation of functors α:F1 → F2 from

a category A to C where αA is in S for every object A in A, the induced morphism

colimF1 → colimF2 is in S, provided that these colimits exist. ]

We say that two classes (S,D) form an orthogonal pair if S⊥ = D and D⊥ = S. Then

both S and D are saturated.

If T = (T, η, µ) is any monad on C, then, by [7, Theorem 1.3],

D(T )⊥ = S(T ).

This implies that the class S(T ) is saturated. On the other hand, in general, we have

only an inclusion D(T ) ⊆ S(T )⊥. If the monad T is idempotent, then D(T ) = S(T )⊥,

so that (S(T ),D(T )) is in fact an orthogonal pair; cf. [1]. However, as pointed out in [7],

the equality D(T ) = S(T )⊥ does not imply the idempotence of T.

The following technical observation was made by the authors in [7, (1.6)], in a slightly

more restrictive form. Since it turns out to be quite useful in practice, we have adapted

the proof to our current situation.

Lemma 1.4 Let R = (R, ν, ζ) and T = (T, η, µ) be monads on C, with R idempotent.

Suppose given a natural transformation of functors θ:R→ T such that θ · ν = η. Then θ

defines a morphism of monads, i.e., the relation θ · ζ = µ · Tθ · θR also holds.
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Proof. Since T is a monad, we have µ · Tη = Id. This gives

θ · ζ = µ · Tη · θ · ζ = µ · T (θ · ν) · θ · ζ = µ · Tθ · Tν · θ · ζ.

Now the fact that θ is a natural transformation tells us that Tν · θ = θR · Rν. But

Rν · ζ = Id, since R is assumed to be idempotent. Therefore,

µ · Tθ · Tν · θ · ζ = µ · Tθ · θR ·Rν · ζ = µ · Tθ · θR,

which yields the equation stated. ]

Theorem 1.5 Let R = (R, ν, ζ) be an idempotent monad and T = (T, η, µ) any monad.

Suppose that a morphism of monads θ: R→ T exists. Then:

(a) νT :T → RT is an isomorphism.

(b) Tν:T → TR is an isomorphism.

(c) D(T ) ⊆ D(R) and S(R) ⊆ S(T ).

Proof. To prove (a), observe that µ · θT · νT = µ · ηT = Id, and hence νT is split monic.

Since R is idempotent, this implies that νT is an isomorphism; cf. [11, Lemma 2.8]. What

we have just proved tells us that D(T ) ⊆ D(R), and it follows that S(R) = D(R)⊥ ⊆
D(T )⊥ = S(T ), as claimed in (c). Finally, in order to prove (b), observe that, for every

object X, the arrow νX is in S(R), since R is idempotent. By (c), νX is in S(T ). But

this means that TνX is invertible for all X, so that Tν is also an isomorphism. ]

A trivial instance of Theorem 1.5 is, of course, the case where R is the identity monad.

Theorem 1.6 Any two morphisms from an idempotent monad R to any monad T nec-

essarily coincide.

Proof. Let θ1, θ2 be two morphisms from R = (R, ν, ζ) to T = (T, η, µ), where R is

assumed to be idempotent. Then θ1 · ν = η = θ2 · ν. Since R is idempotent, νX is in S(R)

for every object X. By part (c) of Theorem 1.5, S(R) is contained in S(T ). Therefore,

for all objects X, we have νX ⊥ TX, and this forces (θ1)X = (θ2)X , as claimed. ]

Now we can prove our claim that, in any category, if an idempotent approximation

exists (in the sense of Definition 1.2), then it has the properties (1) and (2) stated in

Theorem 1.1.
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Theorem 1.7 Let T = (T, η, µ) be any monad for which an idempotent approximation

T̂ = (T̂ , η̂, µ̂) exists. Then:

(1) There is a unique morphism of monads λ: T̂ → T, and this morphism is terminal

among all morphisms from idempotent monads into T.

(2) Both T η̂:T → T T̂ and η̂T :T → T̂ T are isomorphisms.

Proof. If X is any object, then η̂X is in S(T̂ ), and hence in S(T ). Since TX is in

D(T ), there is a unique arrow λX : T̂X → TX such that λX ◦ η̂X = ηX . Moreover, by

the same argument, λ is a natural transformation of functors. By Lemma 1.4, λ is in

fact a morphism of monads. Now let θ: R → T be any morphism of monads with R

idempotent. Then, using Theorem 1.5 we have S(R) ⊆ S(T ) = S(T̂ ), and this yields a

unique morphism of monads φ: R→ T̂; cf. [7, Proposition 1.6]. The fact that λ · φ = θ is

a consequence of Theorem 1.6. This proves Part (1). Then Part (2) follows as a special

case of (a) and (b) in Theorem 1.5. ]

Theorem 1.7 implies that if T̂1 and T̂2 are two idempotent approximations to a

monad T, then there is a unique isomorphism of monads T̂1
∼= T̂2. Hence, we may

speak of “the” idempotent approximation to T, provided that it exists.

Our last result in this section aims to enlighten further the applications to homotopy

theory discussed in Section 3.

Theorem 1.8 Suppose that the monad T = (T, η, µ) has an idempotent approximation

T̂ = (T̂ , η̂, µ̂), and let λ: T̂→ T be the unique morphism. Then, for a given object X, the

following statements are equivalent:

(a) ηX :X → TX is a T̂ -equivalence.

(b) ηTX :TX → T 2X is an isomorphism.

(c) λX : T̂X → TX is an isomorphism.

Proof. Under the assumption made in (b), we have ηTX = TηX = (µX)−1. Hence, the

assertion in (b) is equivalent to the assertion that ηX is a T -equivalence, which is in turn

equivalent to (a). Next, since η̂ is a natural transformation, we have

η̂T · λ · η̂ = η̂T · η = T̂ η · η̂.

As T̂ is idempotent, it follows that η̂T · λ = T̂ η. By Theorem 1.5, η̂T is an isomorphism.

Hence, for an object X, the arrow λX is invertible if and only if T̂ ηX is invertible. This

shows that (a) and (c) are equivalent. ]
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2 Idempotent approximations as codensity monads

We recall that, for a full embedding E:A → C, if the right Kan extension RanEE of

E along itself exists, then it is part of a monad, called the codensity monad of E. The

subcategory A (or the embedding E) is called codense if RanEE is the identity functor.

The codensity monad of E exists pointwise if the limit of the functor EQX exists for all

objects X in C, where QX : (X ↓ E)→ A is the projection sending X → EA to A.

The codensity monad of an embedding E:A → C will also be called A-completion. For

example, if E is the embedding of the full subcategory of finite p-groups into the category

of groups, where p is a prime, then the codensity monad of E is the usual p-profinite

completion.

The next theorem may be viewed both as an existence criterion for idempotent ap-

proximations and a general abstract method to construct them when they exist.

Theorem 2.1 For a monad T = (T, η, µ) on C, the following statements are equivalent:

(a) T admits an idempotent approximation T̂.

(b) The full subcategory S(T )⊥ is reflective in C, that is, the embedding E:S(T )⊥ → C
has a left adjoint.

(c) The codensity monad of the embedding E:S(T )⊥ → C exists pointwise.

Moreover, if these equivalent conditions hold, then T̂ is the codensity monad of E.

Proof. Statements (a) and (b) are equivalent as they both state that there is an idem-

potent monad T̂ = (T̂ , η̂, µ̂) on C with D(T̂ ) = S(T )⊥. The equivalence of (b) and (c) is

shown in Theorem 1.10 of [7]; see also [18, X.7.2]. ]

Necessary and sufficient conditions for a codensity monad to be idempotent have been

discussed in the literature; see [9], [16]. We next give a new criterion, which implies,

as a special case, that if A is full and saturated then the associated codensity monad is

idempotent.

Theorem 2.2 Let E:A → C be a full embedding for which R = RanEE exists pointwise.

Then R is part of an idempotent monad if and only if A is codense in A⊥⊥.

Proof. Denote by R = (R, ν, ζ) the codensity monad of E. Since A is full, we may

assume that RE = E. Hence, A embeds in D(R). By Lemma 1.9 in [7],

A⊥ = S(R) = D(R)⊥.
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Let us label all the embeddings as follows:

A E1−→ D(R)
E2−→ C, A E3−→ A⊥⊥ E4−→ C.

Assume first that E3 is codense. Let X be any object in A⊥⊥, and denote by

(Q3)X : (X ↓ E3) → A the projection. By assumption, limE3(Q3)X = X. Hence, us-

ing the fact that A⊥⊥ is closed under limits (Proposition 1.3), we obtain

limE(Q3)X = limE4E3(Q3)X = E4(limE3(Q3)X) = E4X,

that is, RanE3E = E4. Then, by [14, Lemma 1.2],

RanEE = RanE4(RanE3E) = RanE4E4.

Now, since A⊥⊥ = S(R)⊥, it follows from Theorem 2.1 that R is its own idempotent

approximation.

Conversely, if R is idempotent, then D(R) is saturated, and hence A⊥⊥ = D(R)⊥⊥ =

D(R). Therefore, we are led to showing that A is codense in D(R). Observe that, for an

arbitrary object X in D(R), we have a natural isomorphism (X ↓ E1) ∼= (E2X ↓ E), since

E2 is full. Hence, if we denote the corresponding projection by (Q1)X : (X ↓ E1)→ A, we

have

E2X = RE2X = (RanEE)E2X = limE(Q1)X =

limE2E1(Q1)X = E2(limE1(Q1)X) = E2(RanE1E1)X.

This implies that RanE1E1 = Id, as desired. ]

3 Homological localization and completion

Given any category C and a full embedding E:A → C for which A-completion exists,

the A-completion monad T need not be idempotent. If it admits an idempotent approx-

imation T̂, then T̂ is precisely a localization onto the class A⊥⊥; cf. [7, Lemma 1.9]. An

illuminating example in the category of groups was discussed in [7].

In spite of the lack of limits in the pointed homotopy category C of CW-complexes (or

simplicial sets), examples of idempotent approximations to monads are encountered in

practice. We next discuss a basic example. Let R be a subring of the rationals or a finite

cyclic ring Z/n. Then the Bousfield–Kan R-completion functor R∞ is part of a monad

T = (R∞, η, µ) on C, which is described in [5, I.5.6]. This monad is not idempotent.
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Indeed, µX :R∞R∞X → R∞X is not a homotopy equivalence if X is a wedge of two

circles S1 ∨ S1 and R = Z/p where p is a prime; see [4, §11].

According to [5, I.5.5], the class S(R∞) of maps f such that R∞f is a homotopy equiva-

lence is the class of all R-homology equivalences. Thus, the R-homology localization func-

tor ER of [2] is part of an idempotent monad T̂ = (ER, η̂, µ̂) satisfying S(ER) = S(R∞);

that is, R-homology localization is the idempotent approximation to R-completion.

Now the theorems of Section 1 apply to this particular situation. For example, the

equality D(R∞)⊥ = S(R∞) tells us that a map f :A→ B induces bijections

[B,R∞X] ∼= [A,R∞X]

for all spaces X if and only if f is an R-homology equivalence.

Theorem 1.5 generalizes the well-known fact that the natural maps

R∞X → ERR∞X and R∞X → R∞ERX

are homotopy equivalences for all spaces X. Theorem 1.8 generalizes the statement that

the following conditions are equivalent for a space X.

• The natural map X → R∞X is an R-homology equivalence.

• The natural map R∞X → R∞R∞X is a homotopy equivalence.

• The natural map ERX → R∞X is a homotopy equivalence.

Spaces X for which these equivalent conditions hold were called R-good in [5]. Thus,

R-completion restricts to an idempotent monad on the class of R-good spaces, where it

coincides in fact with R-homology localization. By [5, VII.1], all simply connected spaces

are R-good for any R, and so are many other classes of spaces, including nilpotent spaces,

spaces with finite homotopy groups, and spaces X such

hat H1(X;R) = 0.

We next show that the morphism λ: T̂ → T from the idempotent approximation to

a monad need not be a monomorphism in general, although we know from Theorem 1.1

that it is necessarily a monomorphism in categories which are complete and well-powered.

Thus, part (4) in Theorem 1.1 need not hold for idempotent approximations in arbitrary

categories.

In fact we prove that the natural map λX :ERX → R∞X need not be a monomorphism

in the pointed homotopy category. Suppose it were. Then, for any CW-complex A, the
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induced function [A, λX ]: [A,ERX] → [A,R∞X] of pointed homotopy classes of maps

would be injective. In particular, the induced homomorphism of fundamental groups

[S1, λX ]: π1(ERX)→ π1(R∞X)

would be injective for all spaces X. But this is not the case if X is, for example, a wedge

of two circles and R is the ring of integers; see [3, Proposition 4.4] and [5, IV.5.3].

We conclude with one last example. Let Σ denote the reduced suspension functor and

Ω the loop space functor. Then ΩΣ is part of a monad in the pointed homotopy category of

connected CW-complexes, which is not idempotent. The class of maps rendered invertible

by this monad is the same as the class of maps rendered invertible by Σ (this happens

for all adjoint pairs; see [7, Theorem 1.3]). This class of maps is precisely the class of all

integral homology equivalences. Hence, it admits an idempotent approximation, which

is in fact Z-homology localization. Thus, the theorems of Section 1 also particularize to

this example. Observe that the natural map λX :EZX → ΩΣX is not a monomorphism

in general; indeed, if we apply the fundamental group functor to λX we obtain precisely

the abelianization homomorphism from π1(EZX) onto H1(X), if X is connected.

References

[1] J. F. Adams, Localisation and Completion, Lecture Notes by Z. Fiedorowicz, Univer-

sity of Chicago, 1975.

[2] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14

(1975), 133–150.

[3] A. K. Bousfield, Homological localization towers for groups and π-modules, Mem.

Amer. Math. Soc. vol. 10, no. 186 (1977).

[4] A. K. Bousfield, On the p-adic completions of nonnilpotent spaces, Trans. Amer.

Math. Soc. 331 (1992), 335–359.

[5] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations,

Lecture Notes in Math. vol. 304, Springer-Verlag, Berlin Heidelberg New York, 1972.

[6] C. Casacuberta and A. Frei, On saturated classes of morphisms, in preparation.

[7] C. Casacuberta, A. Frei, and G. C. Tan, Extending localization functors, J. Pure

Appl. Algebra 103 (1995), 149–165.

10



[8] C. Casacuberta, G. Peschke, and M. Pfenniger, On orthogonal pairs in categories and

localisation, in: Adams Memorial Symposium on Algebraic Topology, vol. 1, London

Math. Soc. Lecture Note Ser. vol. 175, Cambridge University Press, Cambridge, 1992,

211–223.

[9] A. Deleanu, Idempotent codensity monads and the profinite completion of topological

groups, London Math. Soc. Lecture Note Ser. vol. 86, Cambridge University Press,

Cambridge, 1983, 154–163.

[10] A. Deleanu, A. Frei, and P. Hilton, Generalized Adams completion, Cahiers Topologie
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