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Abstract

We prove that, under suitable restrictions, an idempotent monad t

defined on a full subcategory A of a category C can be extended to an

idempotent monad T on C in a universal (terminal) way. Our result ap-

plies in particular to the case when t is P -localization of nilpotent groups

(where P denotes a set of primes) and C is the category of all groups.

The corresponding monad T on C is, in a certain precise sense, the best

idempotent approximation to the usual ZP -completion of groups; it turns

out to be a (strict) epimorphic image of Bousfield’s HZP -localization.

0 Introduction

Most constructions which are called “localizations” in any branch of algebra or

geometry share a common feature, namely they are idempotent functors, or,

more properly, part of an idempotent monad. Category theorists have studied

this concept extensively (see [2, ch. 3], [23, ch. VI], or [27, §21]).

When localization techniques (at a set of primes P ) first became available

in algebraic topology in the early seventies, the homotopy category of nilpotent

CW-complexes was found to be the most natural setting in which to develop

the theory, and, indeed, the setting where the main applications were discovered

(see e.g. [7], [21], [28]). During the past two decades, several functors have

appeared in the literature extending the classical P -localization over all groups
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and all spaces. Some of these functors were idempotent (for example, the ones

described by Bousfield in [8] or by Ribenboim in [25]), while others were not (see

Bousfield–Kan [7]). In general, “completion” functors fail to be idempotent, yet

restrict to idempotent functors in sufficiently nice subcategories.

In [11], an attempt was started to understand the interrelations between the

various localization and completion functors which exist in several subcategories

of groups and spaces. It was observed that Bousfield’s homological localization

with ZP coefficients (where ZP denotes the ring of integers localized at P ) is

terminal among all idempotent extensions of P -localization of nilpotent spaces

over all spaces. It was also observed that Ribenboim’s localization turns out to

be initial among all idempotent extensions of P -localization of nilpotent groups

over all groups. These observations prompt two natural questions:

(1) Is there an initial idempotent extension of P -localization of nilpotent

spaces over all spaces?

(2) Is there a terminal idempotent extension of P -localization of nilpotent

groups over all groups?

In Section 3 of the present paper we answer affirmatively the second question.

The same result has simultaneously been obtained with different techniques by

Berrick and Tan ([5]).

Our approach is based on a procedure allowing to associate with a given

monad an idempotent monad in a universal way, which works in categories

which are complete and well-powered. It was first described by Fakir in [15]

(see also [27, 21.8.9]). In fact, the two first sections of our paper contain results

which hold in a very broad setting. We start by recalling from [11] the notion

of orthogonal pair , and analyze the interplay between monads, adjunctions and

orthogonal pairs in general. Orthogonal pairs are a quite useful tool to study the

relationship between localization functors and other standard concepts, such as

Kan extensions. Certain arguments become simpler by using that terminology.
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Among other things, we prove that if C is complete and well-powered, D is any

full subcategory of C, and K : D → C is the inclusion, then the existence of the

right Kan extension of K along itself suffices to ensure that the orthogonal pair

generated by D admits a localization functor (Corollary 2.3 below); in other

words, the saturation of D, in the appropriate sense, is reflective in C. This was

also shown by Pfenniger in [24] under the assumption that D be small.

When particularizing to the category of groups, by choosing D to be the full

subcategory of P -local nilpotent groups, this result ensures the existence of a

functor LP which is terminal among all idempotent extensions of P -localization

of nilpotent groups over all groups. One may think of LP as obtained “by

approximating ZP -completion by an idempotent monad” (for a group G, the

ZP -completion ĜP is the inverse limit of the tower {(G/ΓiG)P}, where ΓiG

denotes the ith term of the lower central series of G).

The class of homomorphisms rendered invertible by LP coincides with the

class of homomorphisms rendered invertible by the ZP -completion functor (The-

orem 3.5 below). In fact, LPG is isomorphic to ĜP in many cases, namely for

all groups G for which ĜP
∼= (ĜP )̂P . This includes all finitely generated groups

and, more generally, all groups G for which H1(G; ZP ) is finitely generated as

a ZP -module.

The functor LP is not equivalent to theHZP -localization functor of Bousfield

—for example, their effect on a free group on two generators is different. This

fact may be surprising, since it breaks the analogy with homotopy theory. In-

deed, if one considers the Bousfield–Kan ZP -completion of spaces (which is not

idempotent) and looks for an idempotent monad having the same class of equiv-

alences in the pointed homotopy category of spaces, then one finds precisely the

H∗( ; ZP )-localization functor, contrary to what we have found in the category

of groups. See [14] to get a closer picture of the homotopy-theoretical case.

The referee has kindly indicated that the problem of universally extending

an idempotent monad can (and should) be formulated, more generally, in the

setting of 2-categories (see [19] for a review of this concept). It is well-known
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that monads and adjunctions can be defined in any 2-category, and, in fact, some

of the results presented in Sections 1 and 2 below hold in suitably restricted

2-categories. We are also indebted to Max Kelly for bringing to our attention

the papers [6], [18], which discuss the existence of suprema and infima in the

partially ordered set of reflective subcategories of sufficiently good categories

(here the word “set” does not have the same meaning as in the rest of this

paper, which implicitly uses the classical Gödel–Bernays theory).

We acknowledge useful discussions with Jon Berrick and Markus Pfenniger,

as well as the hospitality of the Universitat Autònoma de Barcelona, which the

second-named author was visiting during the work on this paper. The first-

named author was supported by a DGICYT grant PB91–0467.

1 Monads, orthogonal pairs

and Kan extensions

This section contains a survey of the basic categorical ingredients needed in the

paper. The main source is [23], but some terminology has been borrowed from

[11], [13], [17]. Results stated without a reference are new, to our knowledge.

Monads and adjunctions

Let A and B be two categories. To any functor F : A → B we may associate

the class S(F ) of morphisms of A rendered invertible by F , which will be called

F -equivalences. Also, we denote by D(F ) the class of objects in B which are

isomorphic to FX for some X in A.

We often use the same letter to denote a class of objects in a category and

the full subcategory with those objects. Thus,

A F−→ D(F )
K−→ B (1.1)

is the enlarged canonical factorization of F (cf. [13]), where K is the inclusion.
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Recall that a monad or triple T = (T, η, µ) on a category C consists of

a functor T : C → C together with two natural transformations η : Id → T ,

µ : T 2 → T , such that µ · Tµ = µ · µT and µ · ηT = µ · Tη = Id. Any pair

of adjoint functors F : C → C ′, G : C ′ → C, with unit η and counit ε, gives

rise to a monad (T, η, µ) on C by setting T = GF and µ = GεF . Conversely,

every monad is induced by some pair of adjoint functors, which is not uniquely

determined in general. Indeed, among all adjoint pairs inducing a given monad,

there is an initial one (supplied by the Kleisli construction) and a terminal one

(supplied by the Eilenberg–Moore construction); see [2, ch. 3] or [23, ch. VI].

For a monad (T, η, µ), the following facts are equivalent (see e.g. [12]).

(a) µ: T 2 → T is a natural equivalence of functors.

(b) For every object X in C, ηX ∈ S(T ).

(c) Tη = ηT .

The monad is called idempotent if any of these equivalent conditions is satisfied.

Other characterizations of idempotent monads were given in [13]. We recall that,

if T is idempotent, then the factorization (1.1)

C T−→ D(T )
K−→ C

is in fact an adjoint pair inducing T. Moreover, the full subcategory D(T ) is

isomorphic to the Eilenberg–Moore category of T (cf. [13, Theorem 2.7]), and,

in addition, it is equivalent to the Kleisli category of T, by [16, Corollary 2.3].

In fact, the latter is isomorphic to the category of fractions of C with respect to

the class S(T ) (see [13, Theorem 2.6]).

Orthogonal pairs

A morphism f : A → B and an object X in a category C are called orthogonal

(cf. [17], [30]) if the map

C(f,X): C(B,X)→ C(A,X)
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is a bijection. For a class of morphisms S, the class of objects orthogonal to all

f in S is denoted by S⊥ (objects in S⊥ were called left closed for S in [13]).

Analogously, given a class of objects D, we denote by D⊥ the class of morphisms

orthogonal to all X in D. As in [11], we say that a class of morphisms S and a

class of objects D form an orthogonal pair if S⊥ = D and D⊥ = S.

Proposition 1.1 ([1]) If the monad (T, η, µ) is idempotent, then (S(T ),D(T ))

is an orthogonal pair. 2

Furthermore, if (T, η, µ) is idempotent, then D(T ) coincides with the class of

objects X in C such that ηX : X ∼= TX. Given an orthogonal pair (S,D) on C,
there is an idempotent monad (T, η, µ) such that S(T ) = S, D(T ) = D if and

only if, for every object X, there is a morphism ϕ: X → Y in S with Y in D.

If this is the case we say that T is a localization functor associated with (S,D),

and also that objects in D are T -local; see [1], [11].

For a monad (T, η, µ) which is not idempotent, the interplay between the

classes S(T ) and D(T ) is less satisfactory. However, the following holds.

Lemma 1.2 Let C, C ′ be two categories and F : C → C ′ be left adjoint to

G: C ′ → C. Then S(F ) = D(G)⊥.

Proof. Given a morphism f : A → B in C and an object X in C ′, there is a

commutative diagram

C(B,GX)
C(f,GX)−→ C(A,GX)

∼= ↓ ↓ ∼=

C ′(FB,X)
C′(Ff,X)−→ C ′(FA,X),

(1.2)

from which the result follows immediately. 2

Theorem 1.3 Let T = (T, η, µ) be any monad on a category C. Let F : C → C ′,
G : C ′ → C be an adjoint pair of functors inducing T. Then S(T ) = S(F ),

D(T )⊥⊥ = D(G)⊥⊥, and

S(T ) = D(T )⊥.
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Proof. Since T = GF , we have D(T ) ⊆ D(G) and S(F ) ⊆ S(T ). Now assume

that f : A→ B is a T -equivalence. Then, if we set ψ = (Tf)−1 ◦ ηB, we obtain

a commutative diagram

A B

TA TB

-f

-Tf
?

ηA

?

ηB
�

�
�	

ψ (1.3)

which corresponds under the adjunction to a commutative diagram

FA FB

FA FB

-Ff

-Ff
?

Id

?

Id
�
�
�	

ϕ (1.4)

showing that f is an F -equivalence. This gives the equality S(T ) = S(F ); cf.

[27, 21.8.8]. Similarly, if f : A→ B is orthogonal to all objects in the image of T ,

then there is a (unique) morphism ψ : B → TA rendering the upper triangle

in (1.3) commutative. Then (Tf) ◦ ψ ◦ f = (Tf) ◦ ηA = ηB ◦ f , and hence the

whole diagram (1.3) commutes. Then (1.4) also commutes, and this gives

D(T )⊥ ⊆ S(F ) = S(T ). (1.5)

On the other hand, by Lemma 1.2, D(G)⊥⊥ = S(F )⊥ = S(T )⊥. Hence, S(T ) ⊆
S(T )⊥⊥ = D(G)⊥⊥⊥ = D(G)⊥ ⊆ D(T )⊥. In view of (1.5), this shows that

S(T ) = D(T )⊥. The equality D(T )⊥⊥ = D(G)⊥⊥ follows as well. 2

As a consequence of Theorem 1.3, we have

D(T ) ⊆ S(T )⊥.

That is, for any monad (T, η, µ), objects of the form TX (or isomorphic to

these) are orthogonal to all T -equivalences, but S(T )⊥ might be strictly larger

if the monad (T, η, µ) is not idempotent. It would be interesting to determine

precisely the class S(T )⊥ in general. We point out the following fact, omitting

the easy proof.
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Proposition 1.4 Let T = (T, η, µ) be a monad. If, for a given object X,

ηX : X → TX is split monic (i.e., there is a morphism ξ : TX → X such that

ξ ◦ ηX = IdX), then X ∈ S(T )⊥. 2

It seems natural to ask if for every monad T = (T, η, µ), the class S(T )⊥

coincides with the class of objects X such that ηX : X → TX is split monic.

(This class is contained in S(T )⊥, by Proposition 1.4, and contains D(T ), be-

cause µ · ηT = Id.) However, the following example shows that it is not the

case.

Example Let C be the pointed homotopy category of path-connected topolog-

ical spaces having the homotopy type of a CW-complex, and C ′ the full subcate-

gory of simply-connected spaces. Let F = Σ be the reduced suspension functor

and G = Ω the loop space functor. Then F : C → C ′, G: C ′ → C form an adjoint

pair. Let T = (T, η, µ) be the associated monad. The class S(T ) = S(F ) is

precisely the class of integral homology equivalences. Therefore, S(T )⊥ is the

class of path-connected Bousfield H∗( ; Z)-local spaces ([8]). Now let X be

a K(G, 1) where G is a noncommutative HZ-local group. Then X ∈ S(T )⊥,

yet the natural map ηX : X → ΩΣX is not split monic (suppose it were; then

the identity of G would factor through π1(ΩΣX), which is commutative, hence

contradicting our choice of G).

One could also be tempted to ask whether the equality S(T )⊥ = D(T )

implies that the monad T is idempotent. In other words, if (S(T ),D(T )) is an

orthogonal pair, does it follow that T is idempotent? Again, the answer is no,

as the following counterexample shows.

Example Let C be the category of countably infinite sets and C ′ the category of

countably infinite vector spaces over the field F2. Let F : C → C ′ be the functor

which assigns to every set X the vector space spanned by X, and G: C ′ → C the

forgetful functor. Then F is left adjoint to G. Let T = (T, η, µ) be the induced

monad. The class S(T ) = S(F ) is the class of all bijections in C. Moreover,
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any two objects in C are isomorphic, so that D(T ) = C = S(T )⊥. On the other

hand, for every set X, the map ηX : X → TX is strictly injective, and hence T

is not idempotent.

Extensions of monads and orthogonal pairs

Let C be a category, A a full subcategory, and K : A → C the inclusion. If

t = (t, ν, ζ) is a monad on A and T = (T, η, µ) is a monad on C, then we

say that T extends t if there is a natural equivalence φ : Kt → TK which is

compatible with the monad structure; that is, φ satisfies ηK = φ · Kν and

φ ·Kζ = µK · Tφ · φt. If t is idempotent (so that tν · ζ = Id), then the second

equality is a consequence of the first, as the following computation shows:

φ ·Kζ = (µ · Tη)K · φ ·Kζ = µK · TηK · φ ·Kζ = (1.6)

µK · T (φ ·Kν) · φ ·Kζ = µK · Tφ · TKν · φ ·Kζ =

µK · Tφ · φt ·Ktν ·Kζ = µK · Tφ · φt ·K(tν · ζ) = µK · Tφ · φt.

In the sequel, we shall drop K from most expressions if there is no risk of

confusion.

If (s, d) is an orthogonal pair on A and (S,D) is an orthogonal pair on C,
we say that (S,D) extends (s, d) if s ⊆ S and d ⊆ D.

Proposition 1.5 Let A be a full subcategory of C. Assume given idempotent

monads t = (t, ν, ζ) on A and T = (T, η, µ) on C. Then T extends t if and

only if the orthogonal pair (S(T ),D(T )) extends (S(t),D(t)). 2

In any category, orthogonal pairs can be partially ordered by setting

(S1,D1) ≤ (S2,D2) ⇔ D1 ⊆ D2. (1.7)

Proposition 1.6 Let T1 = (T1, η1, µ1) and T2 = (T2, η2, µ2) be idempotent

monads on C. Then (S(T1),D(T1)) ≤ (S(T2),D(T2)) if and only if there is a

morphism of monads T2 → T1, which is then unique.
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Proof. Assume first that (S(T1),D(T1)) ≤ (S(T2),D(T2)). Then for every

object X in C there is a unique commutative diagram

X T1X

T2X

-
(η1)X

?

(η2)X

�
�
��
λX

(1.8)

as (η2)X ∈ S(T2) and T1X ∈ D(T2). The compatibility of λ with µ1 and µ2

(i.e., λ · µ2 = µ1 · T1λ · λT2) follows from the fact that T2 is idempotent, as in

(1.6).

Conversely, assume given a natural transformation λ : T2 → T1 such that

λ · η2 = η1. Let X be any object of D(T1). Then (η1)X : X → T1X is an

isomorphism. Hence, (1.8) shows that λX is epic. As T2 is idempotent,

T2(η2)X is an isomorphism, and hence so is T2λX , by (1.8). Now we have

T2λ · η2T2 = η2T1 · λ (by naturality of η2) and, since both T2λX and (η2)T2X

are isomorphisms, λX is split monic. Therefore, λX is an isomorphism and, by

(1.8), (η2)X is also an isomorphism, which implies that X is in D(T2). This

shows that (S(T1),D(T1)) ≤ (S(T2),D(T2)). 2

As observed in [11, Proposition 2.2], every orthogonal pair (s, d) on a full

subcategory A of C has a minimal and a maximal extension to C (with respect

to the partial order defined in (1.7)); namely, for every extension (S,D) of (s, d),

the following holds:

(d⊥, d⊥⊥) ≤ (S,D) ≤ (s⊥⊥, s⊥), (1.9)

where, of course, orthogonality is meant in C. Note that, even assuming that the

pair (s, d) is associated with some idempotent monad on A, the pairs (d⊥, d⊥⊥)

and (s⊥⊥, s⊥) need not correspond to idempotent monads on C. Hence, it does

not follow from (1.9) that every idempotent monad on A has an initial extension

and a terminal extension over C. However, we can state a weaker fact. From

(1.9) and Proposition 1.5 we obtain the following:

Theorem 1.7 Let A be a subcategory of C. Assume given an idempotent monad
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t = (t, ν, ζ) on A and an idempotent monad T = (T, η, µ) on C extending t.

(a) If (S(T ),D(T )) = (D(t)⊥,D(t)⊥⊥), then T is terminal among all idem-

potent extensions of t over C, meaning that if T̂ is any idempotent monad

on C extending t, then there is a unique morphism of monads T̂→ T.

(b) If (S(T ),D(T )) = (S(t)⊥⊥,S(t)⊥), then T is initial among all idempotent

extensions of t over C (in the same sense as above). 2

Kan extensions

Let K : A → C and F : A → M be functors. If the category M is complete

and for any object X in C the comma category (X ↓ K) has a small initial

subcategory, then the right Kan extension R = RanKF of F along K can be

computed as a pointwise limit (see [23, ch. X]):

RX = lim
←

FQX , (1.10)

where QX : (X ↓ K)→ A is the projection sending X → KA to A. If K is a full

embedding and R is constructed as in (1.10), then RK is naturally equivalent

to F . Actually, R can be so chosen that RK = F ([23, X.3.3 and X.3.4]).

If K : A → C has a left adjoint L : C → A, then for every F : A → M and

each X ∈ C one finds that lim
←

FQX = FLX. Hence, the right Kan extension

of F along K exists pointwise and is given by

RanKF = FL. (1.11)

This says, in particular, that if T = (T, η, µ) is the monad induced by the

adjoint pair L, K, then T = RanKK. More generally, the following holds.

Proposition 1.8 Let K : A → C be a functor and t = (t, ν, ζ) be a monad

on A. Let F : A → B, G : B → A be any pair of adjoint functors inducing t.

Then RanKKt = RanKGKG.
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Proof. Since G has a left adjoint, we may infer from (1.11) that

RanGKG = KGF = Kt.

Hence, RanKKt = RanK(RanGKG) = RanKGKG. 2

The right Kan extension of a functor E along itself (if it exists) is always

part of a monad. It is called the codensity monad of E (see [23, p. 246]);

cf. also [12], [22].

Proposition 1.8 tells us that, in order to study extensions of idempotent

monads over larger categories via Kan extensions, it suffices to consider coden-

sity monads of certain embeddings. Indeed, if we assume that the monad t is

idempotent, then it is induced by an adjoint pair

A F→ D(t)
G→ A,

where F = t and G is the inclusion. If in addition we suppose that K : A → C is

a full embedding, then the right Kan extension R of Kt along K in the diagram

A K−→ C
t ↓
A K−→ C

is part of the codensity monad R = (R, η, µ) of the embedding of D(t) in C,
by Proposition 1.8 (provided that R exists). Moreover, R is an extension of t

over C.
The next observation will be useful in the sequel.

Lemma 1.9 Let K : D → C be a full embedding. Assume that R = RanKK

exists pointwise. Then S(R) = D⊥.

Proof. If a morphism f : X → Y is in D⊥, then f induces an isomorphism

of categories (Y ↓ K) ∼= (X ↓ K) and hence it follows from (1.10) that f is an

R-equivalence. To prove the converse, note that R is the identity on objects of
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D, so that D ⊆ D(R). Thus it follows from Theorem 1.3 that S(R) = D(R)⊥ ⊆
D⊥. 2

As a consequence, we obtain an alternative proof of the following special

case of [23, X.7.2].

Theorem 1.10 Let C be any category, (S,D) an orthogonal pair on C, and

K : D → C the inclusion. Then (S,D) admits a localization functor if and only

if RanKK exists pointwise. If this is the case, then RanKK is the localization

functor associated with (S,D).

Proof. If T is a localization functor for (S,D), then T = RanKK, by (1.11).

Conversely, if R = RanKK exists pointwise, then Lemma 1.9 tells us that

S = D⊥ = S(R). Furthermore, D ⊆ D(R) and D(R) ⊆ D(R)⊥⊥ = S(R)⊥ =

S⊥ = D, so that D = D(R) as well. Only the idempotence of R remains to

be established. For an object X, the object RX is in D(R) and hence in D.

Therefore, R2X = RX, as desired. 2

A class of objects D is called saturated if D⊥⊥ = D. Theorem 1.10 says

precisely that, if D is saturated, then the existence of a localization functor for

(D⊥,D⊥⊥) is equivalent to the existence of RanKK. For an arbitrary class D,

not necessarily saturated, one implication is true, under suitable restrictions on

the category C (cf. Corollary 2.3).

2 Extending idempotent monads

Suppose given a category C which is complete and well-powered, i.e., for every

object X the isomorphism classes of monic arrows Z → X form a set. Then

there is a general procedure to associate with any monad on C an idempotent

monad in a universal way. Specifically,

Theorem 2.1 ([15]) Let C be complete and well-powered. Let R = (R, η, µ) be

a monad on C. Then there is an idempotent monad R∞ = (R∞, η∞, µ∞) on C
and a monomorphism of monads λ: R∞ → R with the following properties:
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(i) λ is universal, in the sense that, given a morphism φ : R̂ → R with R̂

idempotent, there is a unique morphism φ∞ : R̂→ R∞ with λφ∞ = φ.

(ii) η∞R : R→ R∞R is an isomorphism.

(iii) A morphism f : X → Y in C is an R∞-equivalence if and only if it is an

R-equivalence. 2

We recall the construction of R∞ for future use. Set (R0, η0, µ0) = (R, η, µ).

For a successor ordinal α + 1, define Rα+1 to be the equalizer of Rαηα and

ηαRα, together with the unique natural transformations ηα+1, µα+1 rendering

commutative the diagrams

Id

Rα+1 Rα
-

κα+1

�
�
�	

@
@
@R

ηα+1 ηα

(Rα+1)
2 RαRα+1 (Rα)2

Rα+1 Rα

-

-

-

? ?

κα+1Rα+1 Rακα+1

κα+1

µα+1 µα

If ω is a limit ordinal, set

Rω = lim
←

Rα,

where the limit is taken over all ordinals α < ω. Thus we obtain, for each

object X, an inverse system of monic arrows which must stabilize at some

ordinal because C is well-powered. We denote by R∞X the object obtained

upon stabilization. The functor R∞ is part of a monad R∞ = (R∞, η∞, µ∞).

Furthermore, R∞η∞ = η∞R∞, which means that the monad R∞ is indeed

idempotent.

We can now state the main result of this section.

Theorem 2.2 Let C be a complete well-powered category, A a full subcategory,

and K : A → C the inclusion. Let t = (t, ν, ζ) be an idempotent monad on

the subcategory A. Assume that R = RanKKt exists pointwise. Then R is

part of a monad R = (R, η, µ) on C, and the associated idempotent monad

R∞ = (R∞, η∞, µ∞) satisfies:
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(i) R∞ extends t over C.

(ii) (S(R∞),D(R∞)) = (D(t)⊥,D(t)⊥⊥).

(iii) R∞ is terminal among all idempotent extensions of t over C.

Proof. By the remarks made after Proposition 1.8, the functor R is part of

a monad R = (R, η, µ) on C extending t. Let R∞ be the idempotent monad

obtained by applying Theorem 2.1 to R. We can choose R so that the natural

equivalence Kt → RK is the identity. Thus, if A is any object of A, then

RηA = tνA = νtA = ηRA, since t is idempotent. It follows from the construction

of R∞ that R1A = RA, and hence

R∞A = RA = tA, (2.1)

so that R∞ extends t as well. By Lemma 1.9 and part (iii) of Theorem 2.1,

we have D(t)⊥ = S(R) = S(R∞), so that the two orthogonal pairs in (ii) are

identical. Finally, Theorem 1.7 guarantees that R∞ is the terminal idempotent

extension of t over C. 2

We record the following consequences of Theorem 2.2.

Corollary 2.3 Assume that C is complete and well-powered. Let D be any full

subcategory of C, and denote by K : D → C the inclusion. If RanKK exists

pointwise, then the orthogonal pair (D⊥,D⊥⊥) admits a localization functor.

Proof. Take A = D and t = Id in Theorem 2.2. Then D(t) is the closure of

D under isomorphisms, and hence (S(R∞),D(R∞)) = (D⊥,D⊥⊥). This tells us

that R∞ is a localization functor associated with the pair (D⊥,D⊥⊥). 2

An important special case of this result is Theorem 3.2 below, where C is the

category of groups, and D is the full subcategory of P -local nilpotent groups. In

that situation, RanKK is ZP -completion and the localization functor associated

with (D⊥,D⊥⊥), which we denote by LP , will be the subject of our discussion

in Section 3.
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Recall from Theorem 1.10 that, if D is saturated, then the existence of a

localization functor for (D⊥,D) is in fact equivalent to the existence of RanKK.

Moreover, in that special case, RanKK is idempotent.

For an arbitrary class of objects D, we say, as in [11], that the orthogonal

pair (D⊥,D⊥⊥) is generated by D. With this terminology, we have

Corollary 2.4 If C is complete and well-powered, and (S,D) is an orthogonal

pair on C generated by a set of objects, then (S,D) admits a localization functor.

Proof. Let D0 be a full small subcategory of C whose objects generate (S,D).

Let K : D0 → C be the inclusion. Then, for each object X in C, the comma cat-

egory (X ↓ K) is small and therefore RanKK can be computed on X by (1.10).

Now the result follows from Corollary 2.3. 2

This result was first obtained by Pfenniger ([24]). It should be compared with

[10, Theorem 3.4], where a similar conclusion was derived in certain cocomplete

categories.

We end this section with a remark which is immediate in view of Theo-

rem 2.1, and gives some additional insight on the problem of characterizing the

class S(T )⊥ for a nonidempotent monad T = (T, η, µ) (see the discussion before

and after Proposition 1.4).

Proposition 2.5 Let C be complete and well-powered. Let T = (T, η, µ) be any

monad on C. Then S(T )⊥ = D(T∞). 2

3 Applications to localization of groups

Let G denote the category of groups, N the full subcategory of nilpotent groups,

and Nc the full subcategory of nilpotent groups of class ≤ c; that is, objects in

Nc are groups G such that Γc+1G is trivial (we denote by Γ2G the commutator

subgroup [G,G] and ΓiG = [G,Γi−1G] for each i > 2).

16



Throughout this section, tP = (tP , ν, ζ) stands for the idempotent monad

on N corresponding to P -localization, where P is a fixed set of primes (see

[21]). This monad restricts to an idempotent monad on Nc for each c, and

we shall denote the restrictions by the same letter tP . The usual notation for

νN : N → tPN is in fact l: N → NP .

Our aim is to discuss the initial and terminal idempotent extensions of tP

over the category of all groups. The answer depends on whether we view tP as

a monad on N or on Nc for some c. Let us consider first the latter case, which

is much easier.

Theorem 3.1 The monad tP on Nc has a terminal idempotent extension TP

over G, which is given by TPG = (G/Γc+1G)P .

Proof. The inclusion K : Nc → G has a left adjoint F : G → Nc; namely,

FG = G/Γc+1G.

Hence, by (1.11),

RanKKtP = KtPF ;

if we call it TP , then TPG = (G/Γc+1G)P . This functor TP is part of a

monad TP on G, which is idempotent. By Proposition 1.8 and Lemma 1.9,

S(TP ) = D(tP )⊥. Hence, by Theorem 1.7, the monad TP is terminal among all

idempotent extensions of tP over G. 2

In other words, among all idempotent monads extending tP over G, the one

given by Theorem 3.1 has as few local objects as possible, and turns as many

arrows as possible into isomorphisms.

On the other hand, by [11, Example 3.3], Ribenboim’s localization, which

will be denoted by l: G→ GP , is initial among all idempotent extensions of tP

over G. Recall that a group G is P -local in Ribenboim’s sense if the qth power

map x 7→ xq is bijective in G for all primes q 6∈ P . Thus, among all idempotent

extensions of tP over G, the latter one has as many local objects as possible and

renders invertible as few arrows as possible.
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We now consider the same situation when Nc is replaced by the whole cat-

egory N of nilpotent groups. The initial idempotent extension of tP over G is

again Ribenboim’s localization, by the same argument given in [11]. However,

in this case the inclusion K : N → G fails to have a left adjoint, and hence it

is not obvious, in principle, that a terminal idempotent extension should exist.

We next exploit our results in the previous sections to show that such a terminal

extension indeed exists.

Let D be a full subcategory of G such that, for every group G, the comma

category (G ↓ K) has a small initial subcategory, where K : D → C denotes the

inclusion. Then, by (1.10), RanKK exists and is called the D-completion func-

tor. We specialize to the class D(tP ) of P -local nilpotent groups. In this case,

for a group G, the category (G ↓ K) has a small initial subcategory consisting

of the compositions

G→→G/ΓiG
l−→
(
G/ΓiG

)
P

1 ≤ i <∞.

Thus R = RanKK exists and is given by

RG = lim
←

(
G/ΓiG

)
P

which is usually denoted by ĜP , and called the P -local nilpotent completion or

the ZP -completion of the group G. The corresponding monad R = (R, η, µ) is

not idempotent on the category of groups. This statement requires some com-

ment: in [7, IV.5.4] a proof of the nonidempotence of R is given for P containing

all primes (i.e., ZP = Z), and mention is made that it should be possible to

prove it for any set P . In [29, III.1.4], a detailed proof for arbitrary P is given.

To the nonidempotent monad R above we associate an idempotent monad

R∞ as described in Section 2, which is terminal among all idempotent extensions

of tP over G, by Theorem 2.2. We shall use the notation LP instead of R∞.

Thus we have proved

Theorem 3.2 The monad tP on N has a terminal idempotent extension

LP = (LP , η, µ) over the category G. 2
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For a group G, the localization LPG is a subgroup of ĜP which is constructed

as follows (cf. the procedure explained after Theorem 2.1). Let ηG : G→ ĜP be

the ZP -completion homomorphism. Let R1 denote the equalizer of Rη and ηR,

i.e.,

R1G ĜP (ĜP )̂P .- -
-

RηG

ηRG
(3.1)

Then ηG factors through R1G, and we can use the same letter to denote the

homomorphism ηG : G → R1G. This process can be iterated by transfinite

induction. The tower {RαG} must stabilize at some ordinal and in this way

we obtain a subgroup LPG = ∩αRαG of ĜP still containing the image of

ηG : G→ ĜP .

Theorem 3.3 The natural transformation η induces isomorphisms

ĜP
∼= LP (ĜP ) and ĜP

∼= (LPG)̂P .

Proof. The first isomorphism is given by part (ii) of Theorem 2.1. To prove

the second isomorphism, observe that ηG : G→ LPG is an LP -equivalence, and

hence also an R-equivalence, by part (iii) of Theorem 2.1. 2

Proposition 3.4 Let C be any category and R = (R, η, µ) a monad on C. Let

X be an object of C for which ηX : X → RX is split monic. Then for every G

the map C(ηG, X) : C(RG,X) → C(G,X) is onto. Moreover, if ηG factorizes

as G
π→ Q→ RG with π epic, then C(π,X): C(Q,X) ∼= C(G,X). 2

Of course, if X ∈ D(R), then ηX is split monic. Hence, Proposition 3.4 tells us

that every morphism of the form f : G→ RK factors through ηG, possibly not

in a unique way. In our context, if we let R be the ZP -completion monad in

the category of groups, then every homomorphism f : G→ K̂P factors through

ηG : G→ ĜP , possibly not in a unique way; cf. [5, Lemma 2.4].

Moreover, the second part of Proposition 3.4 tells us that the surjection

π: G→→Im ηG is orthogonal to all groups in D(R) and hence it is an R-equival-

ence, by Theorem 1.3. That is, ĜP
∼= (Im ηG)̂P .
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Theorem 3.5 For a group homomorphism ϕ: G→ H, the following assertions

are equivalent.

(a) ϕ∗ : LPG ∼= LPH.

(b) ϕ∗ : ĜP
∼= ĤP .

(c) ϕ is orthogonal to K̂P for every group K.

(d) ϕ∗ : (G/ΓiG)P ∼= (H/ΓiH)P for 1 ≤ i <∞.

Proof. Part (iii) of Theorem 2.1 tells us that (a) and (b) are equivalent.

The equivalence between (b) and (c) is precisely the equality S(R) = D(R)⊥

obtained in Theorem 1.3. Now, by choosing K = G/ΓiG in (c) for a fixed i, we

obtain a homomorphism ψ: H → (G/ΓiG)P such that ψ ◦ϕ is the natural map

G → (G/ΓiG)P . Now ψ factors to a map ψ̄ : (H/ΓiH)P → (G/ΓiG)P which is

right and left inverse to ϕ∗ : (G/ΓiG)P → (H/ΓiH)P . Hence, (c) implies (d).

Finally, (d) implies (b) by passing to the inverse limit. 2

The equivalence between (b) and (d) in Theorem 3.5 is remarkable, for it

tells us that if a group homomorphism ϕ: G→ H induces an isomorphism of the

inverse limits of the towers {(G/ΓiG)P} and {(H/ΓiH)P}, then it induces in fact

a stepwise isomorphism of the whole towers. As a special case, ηG : G → LPG

induces

(ηG)∗ : (G/ΓiG)P ∼= (LPG/Γ
iLPG)P for 1 ≤ i <∞.

In particular, for i = 2, this gives an isomorphism

(ηG)∗ : H1(G; ZP ) ∼= H1(LPG; ZP ). (3.2)

We next analyze the relationship of LP with the HZP -localization functor

EZP of Bousfield ([8], [9]). If (S,D) is an orthogonal pair on any category, then

the class D is closed under inverse limits. Therefore, since ĜP is an inverse

limit of P -local nilpotent groups, it is LP -local, and hence also T -local for any
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idempotent monad T = (T, η, µ) extending tP over G. The HZP -localization

functor EZP is part of such an idempotent monad. Hence, there is a natural

homomorphism

ρ: EZPG→ ĜP , (3.3)

which factors through LPG and fits into a commutative diagram

G

EZPG LPG ĜP ,

�������) ?

PPPPPPPq
- -

(3.4)

where all groups in the bottom row are HZP -local.

Now recall from [9, Corollary 2.13] that a homomorphism f : X → Y

between HZP -local groups is onto if and only if the induced homomorphism

f∗ : H1(X; ZP ) → H1(Y ; ZP ) is onto. Since the arrows in the left-hand trian-

gle in (3.4) become isomorphisms after applying H1( ; ZP ), it follows that the

map EZPG → LPG in (3.4) is onto for all groups G. In other words, LPG is

precisely the image of ρ. Also, the following assertions are equivalent:

(i) LPG = ĜP .

(ii) The maps RηG and ηRG in (3.1) are isomorphisms and hence coincide (in

particular, (ĜP )̂P is isomorphic to ĜP ).

(iii) ρ: EZPG→ ĜP is onto.

(iv) ρ∗ : H1(E
ZPG; ZP )→ H1(ĜP ; ZP ) is onto.

(v) (ηG)∗ : H1(G; ZP )→ H1(ĜP ; ZP ) is onto.

(vi) (ηG)∗ : H1(G; ZP ) ∼= H1(ĜP ; ZP ).

(A circle of ideas which is easy to follow is (ii) ⇔ (i) ⇒ (vi) ⇒ (v) ⇒ (iv) ⇒
(iii) ⇒ (i).)
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By the comment preceding Theorem 3.2, condition (ii) —and hence all the

equivalent conditions (i) to (vi)— fail to hold in general; they do fail e.g. if G

is a free group on a countably infinite number of generators.

On the other hand, the above equivalent conditions are satisfied whenever

H1(G; ZP ) is finitely generated as a ZP -module, by [9, Theorem 13.3]. In par-

ticular, if G is finitely generated, then LPG = ĜP . However, for a free group on

two generators, EZPG is not isomorphic to ĜP , at least if 2 ∈ P ([9, Proposi-

tion 4.4]). This shows that the functors EZP and LP are distinct. In fact, they

coincide on very restricted classes of groups. For example, on those groups for

which the tower {(G/ΓiG)P} stabilizes; indeed, in that case, if we denote by

(G/ΓsG)P the first stable term, then EZPG = (G/ΓsG)P by [8, Lemma 7.5],

and ĜP = (G/ΓsG)P is nilpotent, so that LPG = (G/ΓsG)P as well. This

happens for all perfect groups (for which, of course, LPG = {1}) and all finite

groups, among others (e.g. all polycyclic-by-finite groups when P = ∅; see [9,

Theorem 4.9]).

The following fact is a direct consequence of the universality of LP .

Theorem 3.6 Let (T, λ, ξ) be any idempotent monad on G extending P -local-

ization of nilpotent groups. If ηG : G→ LPG is injective, then λG : G→ TG is

also injective. If ηG : G→ LPG is surjective, then the natural homomorphism

TG→ LPG is also surjective. 2

Theorem 3.7 The map ηG : G→ LPG is injective if and only if G is residu-

ally P ′-torsion-free nilpotent (where P ′ denotes the complement of P ).

Proof. Both assertions are equivalent to ηG : G→ ĜP being injective. 2

In particular, Theorems 3.6 and 3.7 give an elementary proof of the fact

that the P -localization homomorphism l: F → FP in the sense of Ribenboim is

injective when F is a free group. This is an old result of Baumslag [3]; see also

[20, Corolario 2.1.7] and [26, Proposition 9.4].
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We do not know if the natural homomorphism FP → LPF is injective when

F is free. This question is related to an open problem proposed by Baumslag in

[4]; namely, it is not known if free P -local groups are residually P ′-torsion-free

nilpotent.
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