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Abstract

In order to study functorial changes caused by homotopy localizations on the fun-
damental group of unbased simplicial sets, it is convenient to use groupoids instead
of groups, and therefore localizations of groupoids become useful. In this article we
develop homotopy localization techniques in the model category of groupoids, with
emphasis on the relationship with homotopy localizations of simplicial sets and also
with discrete localizations of groups.

Introduction

When studying the effect of homotopy localizations of spaces on the fundamental group,

it was observed in [7] that, for each map f and each path-connected space X, there

is a natural group homomorphism π1(LfX) → Lϕπ1(X), where ϕ is induced by f on

fundamental groups. However, this statement is only correct if a basepoint is chosen,

or if one works with simplicial sets with a single vertex, since π1 cannot be regarded

as a functor otherwise. Thus, the extension of this result to unbased spaces or unbased

simplicial sets requires that a theory of homotopy localizations of groupoids be developed.
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One of our specific motivations was the need to ensure the validity of results in [9] for

arbitrary simplicial sets, not only for reduced ones.

The background to carry out such a project was already available in the literature, since

homotopy localizations are known to exist in simplicial model categories satisfying certain

assumptions [12], and the category of groupoids admits such a structure, as explained by

Anderson [2] and Bousfield [4]. This model structure happens to be a common restriction

of several known model structures on the category Cat of small categories. The weak

equivalences of groupoids are the equivalences of categories, and the fibrations of groupoids

are the morphisms with the “source lifting property”, as described by Brown in [5]. If G

and H are groupoids, the simplicial set map(G, H) is the nerve of the groupoid Fun(G, H)

whose objects are functors G → H and whose morphisms are natural transformations.

A remarkable feature of homotopy functors on groupoids is that they are automatically

continuous; that is, as shown in Section 2 of this article, for each functor L on groupoids

sending weak equivalences to weak equivalences there is a natural map of simplicial sets

map(G, H) → map(LG,LH) for all G, H, preserving composition and identity.

Another of our observations is that, if f : G → H is a group homomorphism and X is

a group, then f induces a bijection Hom(H, X) ∼= Hom(G, X) if and only if f induces a

weak equivalence map(H, X) ' map(G, X). Thus, “homotopy f -local groups” are just

f -local groups in the discrete sense, as defined in [7]. A slightly more general version of

this result is given in Theorem 1.3 below. This observation provides, among other things,

a convincing explanation of the (apparently unnatural) fact that discrete localizations of

groups commute with finite direct products. This was proved by different authors using

ad hoc arguments in various situations [8], [15], [18], [20]. In Section 3 we give a short

proof of this fact by means of groupoids, using the natural isomorphism

Fun(A×B, H) ∼= Fun(A, Fun(B, H)).

In [11] it was shown in a similar way that homotopy localizations of spaces commute with

finite direct products.

In the last section we show that, if f is any map of simplicial sets and ϕ denotes the

induced morphism of fundamental groupoids, then for every X we have

LϕπX ∼= LϕπLfX.
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This is quite useful in practice, since it relates the fundamental groupoids πX and πLfX

up to a certain homotopy localization in the model category of groupoids. It implies, for

instance, that if X is 1-connected, then πLfX is annihilated by Lϕ. It is still an open

problem to decide if πLfX is necessarily contractible when X is 1-connected; see [17], [21].

1 Small categories and groupoids

A category is small if its objects and morphisms form sets. We denote by Cat the

category whose objects are small categories and whose morphisms are functors between

them. A groupoid is a small category in which all morphisms have inverses. We denote by

Gpd the category of groupoids and view it as a full subcategory of Cat. In its turn, the

category Grp of groups embeds into Gpd as a full subcategory, by viewing each group

as a groupoid with only one object. We denote by {0} the trivial group, and by I the

groupoid with two objects 0, 1 and two nonidentity arrows 0 → 1, 1 → 0.

For a simplicial set X, we denote by πX the fundamental groupoid of X, whose set

of objects is the set X0 of vertices of X, and whose morphisms are equivalence classes of

edge paths, defined as follows: a morphism from p to q is a finite sequence of composable

arrows y: d1y → d0y for y ∈ X1 and their formal inverses, starting at p and ending at q,

subject to the relations d1z = d0z ◦ d2z for each z ∈ X2 and s0x = idx for each x ∈ X0.

The functor π is left adjoint to the nerve functor N from groupoids to simplicial sets,

and the natural morphism of groupoids πNG → G is an isomorphism for every G. For

each groupoid G, the nerve NG is a Kan simplicial set and its homotopy groups vanish

except possibly in two dimensions, namely π0(NG) is naturally isomorphic to the set

π0(G) of connected components of G, and, for each object x of G, the fundamental group

π1(NG, x) is naturally isomorphic to the group π1(G, x) of automorphisms of x in G.

Several model category structures (in the sense of Quillen [19]) have been considered

on Cat in the literature. In the model structure described by Thomason [22], a functor

f : C → D is a weak equivalence if and only if the associated map Nf : NC → ND of nerves

is a weak equivalence of simplicial sets, and f is a fibration if and only if Ex2Nf is a Kan

fibration, where Ex denotes the Kan functor [14], which is right adjoint to the barycentric

subdivision functor Sd on simplicial sets. There is another well-known model structure

on Cat, which was treated with greater generality in [13]. Namely, weak equivalences are
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equivalences of categories, fibrations are functors having the right lifting property with

respect to the inclusion {0} ↪→ I, and cofibrations are functors which are injective on the

sets of objects.

It is remarkable that these two model structures on Cat restrict to the same model

structure on the full subcategory Gpd of groupoids, which is in fact the model structure

described in [2] and [4]. In order to verify this claim, and for other arguments in the

article, we need to recall that a functor f : C → D is an equivalence of categories if and

only if it is fully faithful and each object of D is isomorphic to some object in the image

of f . If we use, in addition, that natural transformations of functors yield simplicial

homotopies of maps on the nerves, we find that the following statements are equivalent

for a morphism of groupoids f : G → H.

(1) The map of nerves Nf : NG → NH is a weak equivalence.

(2) f induces a bijection π0(G) ∼= π0(H) and an isomorphism of groups π1(G, x) ∼=
π1(H, f(x)) for each object x of G.

(3) f is an equivalence of categories.

For brevity, we use the term equivalence to denote a morphism of groupoids satisfying

any of these statements. These are the weak equivalences of the model structure on Gpd

that we will use.

A fibration of groupoids is a morphism with the following properties.

Proposition 1.1. For a morphism of groupoids f : G → H, the following statements are

equivalent:

(1) The morphism f has the right lifting property with respect to the inclusion {0} ↪→ I.

(2) The map Nf is a Kan fibration.

(3) The map ExiNf is a Kan fibration for some i ≥ 0.

(4) The map ExiNf is a Kan fibration for all i ≥ 0.
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Proof. Use the adjointness between ExiN and πSdi to transform the statement that

ExiNf is a Kan fibration into the statement that f has the right lifting property with

respect to jn,k: πSdiΛk[n] ↪→ πSdi∆[n] for n ≥ 1 and 0 ≤ k ≤ n, where Λk[n] ↪→ ∆[n] are

the standard generating trivial cofibrations of simplicial sets. The morphism jn,k is an

isomorphism for i = 0, n ≥ 2, and it is the inclusion {0} ↪→ I for i = 0, n = 1. It is an

inclusion of contractible groupoids for all i, n, k. The right lifting property with respect

to jn,k is equivalent to the right lifting property with respect to {0} ↪→ I if i ≥ 1. Hence,

(1) ⇒ (4) ⇒ (3) ⇒ (1), and (1) ⇔ (2). 2

Therefore, by part (1), a morphism of groupoids f : G → H is a fibration if and only

if it has the source lifting property, i.e., for every object x ∈ G, each arrow β of H with

source f(x) may be lifted to an arrow α with source x, such that f(α) = β. If the lifting

is unique, then f is called a covering morphism; cf. [4], [5].

The star StC(x) of a category C at an object x is the set of all arrows with source x.

Using this language, the fibrations of groupoids are the star-surjective morphisms, that

is, morphisms f : G → H such that the induced map StC(x) → StD(f(x)) is surjective

for all x. The covering morphisms are the star-bijective morphisms. The trivial fibra-

tions between groupoids are the equivalences that are surjective on objects. A covering

morphism is an equivalence if and only if it is bijective on objects (in fact, it is then

an isomorphism, since an equivalence of categories is an isomorphism if and only if it is

bijective on objects).

All groupoids are fibrant and cofibrant. Since the cofibrations of groupoids are the

morphisms that are injective on the sets of objects, all group homomorphisms are cofibra-

tions. However, a group homomorphism is a fibration if and only if it is an epimorphism;

hence, the model structure on Gpd does not restrict to a model structure on Grp.

If C and D are small categories, then one defines a simplicial set map(C, D) as the

nerve of the small category Fun(C, D) whose objects are the functors C → D and whose

morphisms are the natural transformations. If G and H are groupoids, then Fun(G, H)

is also a groupoid, since natural transformations are invertible. Therefore map(G, H) is

fibrant. We shall denote by Hom(G, H) the set of morphisms G → H, which is precisely

the set of vertices of the simplicial set map(G, H).

The category of groupoids is a simplicial model category with these function complexes,
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tensored over simplicial sets as G ⊗K = G × πK and cotensored as GK = Fun(πK,G);

cf. [4]. This simplicial structure is also inherited from Cat.

For a groupoid G, let i0 and i1 denote the two inclusions of G into I×G. If f and g are

morphisms from G to another groupoid H, then a homotopy from f to g is a morphism

∆: I × G → H with ∆ ◦ i0 = f and ∆ ◦ i1 = g. Such a morphism yields a natural

transformation from f to g, since

Fun(I×G, H) ∼= Fun(G, Fun(I, H)),

and a morphism η: G → Fun(I, H) is just a natural transformation between the morphisms

ev0 ◦ η and ev1 ◦ η. (Here ev0 and ev1 are the evaluation maps Fun(I, H) → H.) More

explicitly, a natural transformation η from f to g corresponds to the homotopy I×G → H

sending (0 → 1, α) to g(α)◦ηx = ηy◦f(α) for every α: x → y in G. Thus, for morphisms of

groupoids, no distinction will be made between natural transformations and homotopies.

Theorem 1.2. If f : G → H is a morphism of groupoids which is bijective on objects,

then for every groupoid X the induced morphism

f ∗: Fun(H, X) → Fun(G, X)

is a covering morphism.

Proof. Since f is a cofibration, the morphism f ∗ is a fibration of groupoids, according

to the axioms of a simplicial model category. Hence, f ∗ is star-surjective. In fact the

assumption that f is bijective on objects implies directly that f ∗ is star-bijective, as the

next argument shows. For a morphism g: H → X, an element of the star StFun(H,X)(g) is a

morphism η: H → Fun(I, X) with ev0 ◦η = g, and is uniquely determined by the choice of

a morphism ηb ∈ StX(g(b)) for each object b of H. Hence, given a natural transformation

ξ in StFun(G,X)(g ◦ f), the natural transformation η defined as ηb = ξf−1(b) for all objects

b of H is the unique element of StFun(H,X)(g) with f ∗(η) = ξ. 2

As a special case, note that, if f : G → H is a group homomorphism and X is any

group, then the covering morphism Fun(H, X) → Fun(G, X) simply sends each element

x ∈ X in the star of Fun(H, X), at any H → X, to x itself.
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Theorem 1.3. Suppose that a morphism of groupoids f : G → H is bijective on objects.

Then, for a groupoid X, the following statements are equivalent:

(1) f induces a bijection of sets Hom(H, X) ∼= Hom(G, X), that is, every morphism

G → X can be factored through f in a unique way.

(2) f induces an equivalence of groupoids Fun(H, X) ' Fun(G, X).

(3) f induces an isomorphism of groupoids Fun(H, X) ∼= Fun(G, X).

(4) f induces a weak equivalence of simplicial sets map(H, X) ' map(G, X).

(5) f induces an isomorphism of simplicial sets map(H, X) ∼= map(G, X).

Proof. In order to prove that (1) ⇔ (2), use the fact that a covering morphism is an

equivalence if and only if it is bijective on objects. Now (1) and (2) together imply (3),

since an equivalence of categories which is bijective on objects is an isomorphism, and

clearly (3) implies both (1) and (2). Statements (4) and (2) are equivalent because the

equivalences of groupoids are the morphisms inducing weak equivalences of nerves; and

(5) and (3) are also equivalent, since πNY ∼= Y for all Y . 2

For two groups G, H, the simplicial set map(G, H) has a well-known homotopy type.

Its only possibly nonzero homotopy groups are π0map(G, H), which is isomorphic to

the set Rep(G, H) of group homomorphisms G → H modulo conjugation in H, and

π1(map(G, H), α) at each vertex α: G → H, which is the centralizer of the image of α in

H, that is, the subgroup of H consisting of the elements x such that x−1α(y)x = α(y) for

every y ∈ G. A homotopy between two group homomorphisms α, β from G to H can be

identified with an element x ∈ H such that β(y) = x−1α(y)x for all y ∈ G; that is, two

group homomorphisms are homotopic if and only if they are conjugate.

2 Homotopy idempotent functors

An idempotent functor on a category C is a functor L: C → C equipped with a natural

transformation η: Id → L such that ηLX = LηX for all X, and LηX : LX → LLX is an

isomorphism for all X. The pair (L, η) is more commonly called an idempotent monad
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on C; see e.g. [8]. The natural transformation η will be omitted from the notation whenever

possible and appropriate. Thus we speak of an idempotent functor L or (L, η) depending

on the context.

Objects isomorphic to LX for some X are called L-local, and morphisms f such that

Lf is an isomorphism are called L-equivalences. Thus, the natural map ηX : X → LX is

an L-equivalence into an L-local object for every X. In fact, it is a terminal L-equivalence

with domain X, and it is initial among morphisms from X into L-local objects. This is

a “discrete” version of the following more general concept.

A homotopy idempotent functor on a model category M is a functor L:M → M
sending weak equivalences to weak equivalences, taking fibrant values, and equipped with

a natural transformation η: Id → L such that ηLX ' LηX for all X, and LηX : LX → LLX

is a weak equivalence for all X, where ' is the homotopy relation in M. Thus L defines

an idempotent monad on the homotopy category derived from M. As above, the natural

transformation η will sometimes be omitted from the notation.

Fibrant objects that are weakly equivalent to LX for some X are called L-local, and

morphisms f such that Lf is a weak equivalence are called L-equivalences. If the model

category structure on M is discrete, that is, the weak equivalences are the isomorphisms

and all morphisms are fibrations and cofibrations, then homotopy idempotence is just

ordinary idempotence.

Theorem 2.1. A homotopy idempotent functor (L, η) on the category Gpd of groupoids

is idempotent if ηX is bijective on objects for every X.

Proof. By assumption, for every X, the morphisms ηLX and LηX are equivalences of

groupoids. Since ηLX is bijective on objects, it is an isomorphism. Since η is a natural

transformation, we have LηX ◦ ηX = ηLX ◦ ηX , showing that LηX is also bijective on

objects, and hence an isomorphism as well. As shown in [8, Proposition 1.1], if both ηLX

and LηX are isomorphisms, then they coincide. 2

The converse of Theorem 2.1 is obviously false, as the functor L that sends all

groupoids to the trivial group is idempotent.

It is clear that every functor L:Gpd → Gpd preserves equivalences between groups,

since these are just isomorphisms. However, it need not preserve equivalences between
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groupoids. For example, neither the functor that sends each groupoid G to the free

product of its automorphism groups π1(G, xi) at all objects xi of G, nor the functor

that sends each groupoid to the discrete groupoid with the same set of objects, preserve

equivalences.

Suppose L:Gpd → Gpd is a functor that sends equivalences to equivalences. For a

groupoid G, let p: I × G → G be the projection. Since p is an equivalence, Lp is also an

equivalence by assumption, and therefore the morphism

(Lp)∗: Fun(X, L(I×G)) → Fun(X, LG) (2.1)

is an equivalence, hence fully faithful, for every X.

As a first use of this fact, take X = LG. Since p ◦ i0 and p ◦ i1 are both the identity of

G, and therefore Lp ◦Li0 and Lp ◦Li1 are both the identity of LG, one infers using (2.1)

that there is a unique homotopy

hG: I× LG → L(I×G)

from Li0 to Li1 such that Lp ◦hG is the constant homotopy at the identity. To show that

hG is natural in G, consider any morphism f : F → G and take X = LF in (2.1). Then

L(id × f) ◦ hF and hG ◦ (id × Lf) coincide, since both are homotopies from L(i0 ◦ f) to

L(i1 ◦ f) that give the constant homotopy at Lf on applying the faithful functor (Lp)∗.

Theorem 2.2. Let L:Gpd→ Gpd be any functor sending equivalences to equivalences.

Then L induces a natural morphism lG,H : Fun(G, H) → Fun(LG,LH) for all G, H.

Proof. This morphism lG,H is defined on objects as f 7→ Lf , and it is defined on arrows

∆: I × G → H as ∆ 7→ L∆ ◦ hG. Naturality in H is clear, and naturality in G follows

from the naturality of hG. Checking that lG,H is a morphism of groupoids takes however

more work. Let J be the groupoid with three objects 0, 1, 2 and two arrows between each

pair of distinct objects. The projection p:J×G → G yields, as in (2.1), an equivalence

(Lp)∗: Fun(LG,L(J×G)) → Fun(LG,LG). (2.2)

Using three times the fact that (2.2) is an equivalence, we obtain a natural morphism

jG:J× LG → L(J×G)
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consisting of homotopies Li0 → Li1, Li1 → Li2, and their composition, each of which is

sent to the constant homotopy at the identity by (Lp)∗. A pair of composable homotopies

Φ and Ψ between morphisms G → H is represented by a morphism Γ:J × G → H, and

the composite LΓ ◦ jG demonstrates that lG,H(Ψ ◦ Φ) = lG,H(Ψ) ◦ lG,H(Φ). 2

In other words, if we regard the category of groupoids as a 2-category, where the 2-cells

are the natural transformations, then we have shown that each functor of groupoids that

sends equivalences to equivalences extends to a 2-functor in a canonical way.

This is a remarkable property. It shows, for example, that the functor sending each

group G to the free product G ∗Z does not extend to any functor on groupoids that pre-

serves equivalences, since conjugate group homomorphisms G → H do not yield conjugate

homomorphisms G ∗ Z→ H ∗ Z.

It also follows from Theorem 2.2 that, if a functor L:Gpd → Gpd preserves equiv-

alences and sends the trivial group to itself, then L is automatically equipped with a

natural transformation η: Id → L. This follows by taking G = {0} in Theorem 2.2.

Proposition 2.3. Let L:Gpd→ Gpd be a functor sending equivalences to equivalences

and equipped with a natural transformation η: Id → L. Then the following hold for all

groupoids G and H:

(1) (ηG)∗ ◦ lG,H = (ηH)∗.

(2) lG,H ◦ (ηG)∗ = (LηG)∗ ◦ lLG,H .

(3) (ηH)∗ ◦ (ηG)∗ = (ηG)∗ ◦ (ηH)∗.

Proof. Statements (2) and (3) are checked easily, using the naturality of lG,H and the

bifunctoriality of Fun(G, H). For statement (1) we have to prove that the composite

Fun(G, H)
lG,H−→ Fun(LG,LH)

(ηG)∗−→ Fun(G, LH)

equals (ηH)∗. For each object f : G → H of Fun(G, H), this amounts to the equality

(Lf)◦ηG = ηH ◦f , which is a consequence of the naturality of η. To check the same thing

for morphisms, observe that Lp ◦ hG ◦ (id× ηG) = Lp ◦ ηI×G, hence hG ◦ (id× ηG) = ηI×G

by the faithfulness of (2.1). Now, for any morphism ∆: I×G → H in Fun(G, H), we have

L∆ ◦ hG ◦ (id× ηG) = L∆ ◦ ηI×G = ηH ◦∆, as required. 2
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The property stated in Theorem 2.2 is analogous to the “continuity” property discussed

by Farjoun in [10]. Indeed, it yields, by taking nerves, a natural map

map(G, H) → map(LG,LH)

for all groupoids G and H, preserving composition and identity. As in [10], the continuity

property implies the following theorem.

Theorem 2.4. Let (L, η) be a homotopy idempotent functor on the category of groupoids.

Let X be L-local and G any groupoid. Then the map

map(LG,X) → map(G, X)

induced by ηG is a weak equivalence of simplicial sets.

Proof. The morphism ηX : X → LX is an equivalence since X is L-local. Therefore, the

induced morphism

(ηX)∗: Fun(LG,X) → Fun(LG,LX)

is an equivalence. Let ξ be a homotopy inverse of (ηX)∗. Let us check that

ξ ◦ lG,X : Fun(G, X) → Fun(LG,X)

is a homotopy inverse of (ηG)∗. Using Proposition 2.3 and the fact that ηLG ' LηG, we

have

ξ ◦ lG,X ◦ (ηG)∗ = ξ ◦ (LηG)∗ ◦ lLG,X ' ξ ◦ (ηLG)∗ ◦ lLG,X = ξ ◦ (ηX)∗ ' id,

and

(ηG)∗ ◦ ξ ◦ lG,X ' ξ ◦ (ηX)∗ ◦ (ηG)∗ ◦ ξ ◦ lG,X =

ξ ◦ (ηG)∗ ◦ (ηX)∗ ◦ ξ ◦ lG,X ' ξ ◦ (ηG)∗ ◦ lG,X = ξ ◦ (ηX)∗ ' id,

as needed. 2

Corollary 2.5. Let (L, η) be a homotopy idempotent functor on the category of groupoids.

A morphism f : G → H is an L-equivalence if and only if f ∗: map(H, X) → map(G, X)

is a weak equivalence for all L-local groupoids X. Similarly, a groupoid X is L-local if

and only if f ∗: map(H, X) → map(G, X) is a weak equivalence for every L-equivalence

f : G → H.
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Proof. Use the previous theorem and the commutative square

map(H, X) −→ map(G, X)

↑ ↑
map(LH, X) −→ map(LG,X),

as follows. If X is L-local, then, by Theorem 2.4, the vertical arrows are weak equivalences.

If G → H is an L-equivalence, then it yields an equivalence LG ' LH and therefore

the bottom arrow is a weak equivalence, hence proving that the upper arrow is a weak

equivalence as well. Conversely, if f ∗: map(H, X) → map(G, X) is a weak equivalence for

every L-local groupoid X, then by taking π0 it follows that π0(f
∗): [H, X] → [G, X] is

bijective for every L-local groupoid X. Therefore, we have

[LH, LG] ∼= [H, LG] ∼= [G, LG]

and this yields a map LH → LG which is a homotopy inverse of Lf , hence showing that

f : G → H is an L-equivalence. The second statement is proved in a similar way. 2

In any simplicial model category, a morphism f : G → H of cofibrant objects and a

fibrant object X are called simplicially orthogonal if f ∗: map(H, X) → map(G, X) is a

weak equivalence of simplicial sets. This is an enriched version of the usual orthogonality

in categories. Recall e.g. from [1] that an object X and a morphism f : A → B in a

category C are orthogonal if the function C(B, X) → C(A, X) induced by f is bijective.

Thus, Corollary 2.5 states that, for each homotopy idempotent functor L on groupoids,

the L-equivalences and the L-local groupoids form a pair of simplicially orthogonal classes,

each of which is precisely the complement of the other. Note that simplicially orthogonal

classes are, a fortiori, orthogonal in the homotopy category, since π0map(H, X) ∼= [H, X]

for all H and X.

A functor on the category of groupoids will be termed homotopically trivial if every

non-empty groupoid in its image is contractible.

Theorem 2.6. A homotopy idempotent functor L on the category of groupoids is homo-

topically trivial if and only if there is an L-equivalence that is not bijective on connected

components.
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Proof. If an L-equivalence G → H is not bijective on connected components, then it

has a retract of the form p: {0, 1} → {0}, j: {0} ↪→ {0, 1}, or k: ∅ ↪→ {0}. Since every

retract of an L-equivalence is an L-equivalence, in the first case we have p∗: X ' X ×X

for every L-local groupoid X, which implies that X is contractible or empty. In the other

cases, we obtain j∗: X ×X ' X or k∗: X ' {0}, leading to similar conclusions.

Conversely, we suppose that all L-equivalences are bijective on components and exhibit

a non-contractible non-empty L-local groupoid. It is enough to pick the discrete groupoid

{0, 1}; this is simplicially orthogonal to all morphisms G → H that are bijective on

components, since Fun(G, {0, 1}) is a discrete groupoid with 2|π0(G)| objects, and similarly

for H. 2

Note that, for any homotopy idempotent functor L on groupoids, either L(∅) = ∅ or

L(∅) is contractible, in which case L is homotopically trivial.

The following is an important source of homotopy idempotent functors. For every

morphism of groupoids f : G → H, there is a homotopy idempotent functor Lf on Gpd,

called f -localization, which can be constructed as in [3], [11] or [12], since the category

Gpd is left proper, cofibrantly generated, and locally presentable (in fact, presentable).

The Lf -local groupoids (called f -local for simplicity) are those X such that

f ∗: map(H, X) → map(G, X)

is a weak equivalence. Therefore, f itself is an Lf -equivalence. (We speak of f -equival-

ences, instead of Lf -equivalences, also for simplicity.) Thus, for each groupoid A, the

f -localization morphism A → LfA is an f -equivalence into an f -local groupoid.

Theorem 2.7. A morphism of groupoids f : G → H is bijective on connected components

if and only if every f -equivalence is bijective on connected components.

Proof. One implication is easy, since f is itself an f -equivalence. For the converse,

note that if f is bijective on connected components then {0, 1} is f -local (as in the proof

of Theorem 2.6) and hence f -localization is not homotopically trivial. The result then

follows from Theorem 2.6. 2

Hence, for every morphism f of groupoids, Lf preserves the set π0 of connected compo-

nents, unless it is homotopically trivial. However, Lf need not preserve the set of objects
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in general. Thus, the f -localization of a group need not be a group, although it is always

homotopy equivalent to a group since it is necessarily a connected groupoid.

3 Localizing groups

Idempotent functors on groups have been considered by several authors, also in the context

of homotopy localizations of spaces. For a group homomorphism ϕ: A → B, a group X

was called ϕ-local in [7] if the induced map of sets Hom(B, X) → Hom(A, X) is a bijection.

A group homomorphism f : G → H is a ϕ-equivalence if f ∗: Hom(H, X) → Hom(G, X)

is bijective for every ϕ-local group X. A ϕ-localization of a group G is a ϕ-equivalence

G → LϕG into a ϕ-local group. The existence of such localizations can be proved by

standard arguments, as in [1] or in [3]. These localizations are idempotent functors on

the category of groups.

Theorem 3.1. Let L be any idempotent functor on the category of groups. Then, for a

group homomorphism f : G → H, the following statements are equivalent:

(1) f induces an isomorphism of groups LG ∼= LH.

(2) f induces a bijection of sets Hom(H, LX) ∼= Hom(G, LX) for every X.

(3) f induces an equivalence of groupoids Fun(H, LX) ' Fun(G, LX) for every X.

(4) f induces an isomorphism of groupoids Fun(H, LX) ∼= Fun(G, LX) for every X.

(5) f induces a weak equivalence map(H, LX) ' map(G, LX) for every X.

(6) f induces an isomorphism map(H, LX) ∼= map(G, LX) for every X.

Proof. The equivalence of (1) and (2) amounts to the well-known orthogonality between

L-equivalences and L-local objects when L is an idempotent functor in any category; see

e.g. the survey article [8]. The other equivalences follow from Theorem 1.3. 2

Hence, by regarding the category of groups as a full subcategory of the category of

groupoids, we find that the concepts of orthogonality and simplicially enriched orthogo-

nality coincide on groups. This observation was one of the starting points of this article.
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These two concepts do not coincide on groupoids; for example, let f : {0} → {0, 1} be the

inclusion. Then the groupoids that are orthogonal to f are precisely those with only one

object, i.e., the groups. However, by Theorem 2.6, the groupoids that are simplicially

orthogonal to f are the contractible groupoids.

Let G, H be groups and (L, η) an idempotent functor on Grp. Then LG × LH

is L-local, since every inverse limit of L-local groups is L-local. Using the fact that

ηG×H : G×H → L(G×H) is initial among homomorphisms into L-local groups, we find

a unique group homomorphism

θG,H : L(G×H) → LG× LH

such that θG,H ◦ ηG×H = ηG × ηH .

The following result was proved independently by several authors in special cases [8],

[15], [18], [20]. Its proof is shorter and most natural using groupoids. This is a worthwhile

achievement of the use of a simplicial enrichment in the study of group localizations.

Theorem 3.2. If L is any idempotent functor on groups, then the natural homomorphism

θG,H : L(G×H) → LG× LH is an isomorphism for all groups G, H.

Proof. It suffices to show that θG,H is an L-equivalence. This is inferred, using Theo-

rem 3.1, from the following isomorphisms of groupoids, where X is any L-local group:

Fun(L(G×H), X) ∼= Fun(G×H, X) ∼= Fun(G, Fun(H, X)) ∼=
Fun(G, Fun(LH, X)) ∼= Fun(G× LH, X) ∼= Fun(LH, Fun(G, X)) ∼=
Fun(LH, Fun(LG,X)) ∼= Fun(LG× LH, X),

as claimed. 2

Exactly the same argument shows that, if L is a homotopy idempotent functor on the

category Gpd of groupoids, then there is a natural equivalence

L(G×H) → LG× LH

for all groupoids G and H. Hence, homotopy idempotent functors on groupoids preserve

finite products, up to homotopy.
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Let f : A → B be any morphism of groupoids that is bijective on connected compo-

nents. We next describe LfG for each groupoid G in terms of discrete group localizations,

using the fact that each groupoid is equivalent to a disjoint union of groups.

Specifically, given a groupoid G, choose an object vi at each connected component Ci

of G, and, for each object v of Ci, choose an arrow av from vi to v, with avi
equal to the

identity. Let Ki be the subgroupoid of Ci generated by all these arrows. Thus, Ki has

only one arrow awa−1
v from any v to another w. Then the morphism π1(G, vi)×Ki → Ci

which is defined as (vi, v) 7→ v on objects and sends each arrow (x, awa−1
v ) to awxa−1

v

is an isomorphism of groupoids, for all i. Hence, G is isomorphic to the disjoint union

∪i(π1(G, vi)×Ki), where each Ki is contractible and i runs through the set π0(G). Using

this notation, we prove the next result.

Theorem 3.3. Let f : A → B be any morphism of groupoids that is bijective on connected

components. Choose an object vi in each connected component of A, and let fi be the

group homomorphism from Ai = π1(A, vi) to Bi = π1(B, f(vi)) induced by f . Let Φ be

the free product of the homomorphisms fi. Then, for each groupoid G, the f -localization

morphism ηG: G → LfG is bijective on connected components and induces a Φ-localization

of the group π1(G, v) at every object v.

Proof. The fact that ηG: G → LfG is bijective on connected components is implied

by Theorem 2.7. Now fix any object v of G and consider the group homomorphism

π1(G, v) → π1(LfG, ηG(v)) induced by ηG. Our aim is to prove that it is a Φ-localization.

First we need to show that a group H is f -local as a groupoid if and only if it is Φ-local

as a group. Thus, let H be any group. If we write A ∼= ∪i(Ai ×Xi) and B ∼= ∪i(Bi × Yi)

where all Xi and Yi are contractible, we have

map(B, H) ∼= map(∪i(Bi × Yi), H) ∼=
∏

i

map(Bi × Yi, H) '
∏

i

map(Bi, H),

and similarly with A. Therefore, map(B, H) → map(A, H) is a weak equivalence if and

only if map(Bi, H) → map(Ai, H) is a weak equivalence for all i, since homotopy groups

commute with products. This shows that, indeed, H is f -local as a groupoid if and only

if it is fi-local as a group for all i, by Theorem 3.1, or equivalently Φ-local, as Φ is the

coproduct of the group homomorphisms fi.
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Now let C be the connected component of G which contains v, and D the connected

component of LfG which contains ηG(v). Hence, D ∼= π1(LfG, ηG(v)) × K where K is

a contractible groupoid. Since each connected component of LfG is f -local and K is

contractible, we infer that π1(LfG, ηG(v)) is f -local as a groupoid, and therefore it is

Φ-local as a group.

Finally, observe that the restriction C → D is a retract of ηG: G → LfG and thus it is

also an f -equivalence. Therefore, if H is any Φ-local group, hence f -local as a groupoid,

we infer that ηG induces

map(π1(LfG, ηG(v)), H) ' map(D, H) ' map(C, H) ' map(π1(G, v), H).

This shows that π1(G, v) → π1(LfG, ηG(v)) is a Φ-equivalence, as needed. 2

Hence, localizing a groupoid G with respect to a morphism of groupoids f can be

expressed, up to homotopy, as a localization of each member of a set of groups (one

representative of each connected component of G) with respect to a group homomorphism

(the free product of a set of representatives of f at connected components).

Example 3.4. Let f be the disjoint union of the homomorphisms fp:Z/p → {0} where

p takes values in a set of primes P . Then, if ηG: G → LfG denotes the f -localization of a

groupoid G and v is any vertex of G, the group π1(LfG, ηG(v)) is obtained from π1(G, v)

by factoring out the smallest normal subgroup for which the quotient is P -torsion-free.

4 Interaction with the fundamental groupoid

Every homotopy idempotent functor L on the category of simplicial sets gives rise to

a distinguished class of groupoids, namely the class of groupoids G whose nerve NG is

L-local. If L = Lf for some map f (which is always the case if we assume the validity

of Vopěnka’s principle in set theory, according to [9]), then, as we next show, the corre-

sponding distinguished class of groupoids is precisely the class of ϕ-local groupoids, where

ϕ = πf is the morphism induced by f on fundamental groupoids. This and other results

of the present article were used in Section 6 of [9].

Proposition 4.1. Let f : X → Y be any map of simplicial sets and let ϕ = πf . Then a

groupoid G is ϕ-local if and only if NG is f -local.
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Proof. By definition, NG is f -local if and only if the map of simplicial sets induced

by f ,

map(Y,NG) → map(X,NG),

is a weak equivalence, where “map” denotes the simplicial function complex. But the

space map(X, NG) is a 1-type by [6], whose representing groupoid is Fun(πX, G), and

the same happens with map(Y,NG). 2

Corollary 4.2. Let f be any map of simplicial sets, and let ϕ = πf . If a map g: X → Y

is an f -equivalence of simplicial sets, then the morphism πg: πX → πY is a ϕ-equivalence

of groupoids. 2

This result extends [7, Proposition 3.3] from groups to groupoids. We record the

following immediate consequences.

Corollary 4.3. Let f be any map of simplicial sets, and let ϕ = πf . Then the natural

morphism πX → πLfX is a ϕ-equivalence for all X.

Proof. This follows from Corollary 4.2, since the localization map ηX : X → LfX is an

f -equivalence for all X. 2

Thus, we obtain a natural morphism of groupoids

LϕπX → πLfX, (4.3)

which is a ϕ-equivalence and hence yields an isomorphism

LϕπX ∼= LϕπLfX, (4.4)

for all maps f of simplicial sets and every X. This is in fact a special case of a more

general phenomenon relating localizations in model categories by means of adjunctions,

which will be discussed in more detail elsewhere.

It follows from Theorem 2.6 and Corollary 4.3 that f -localizations of simplicial sets

preserve connectivity. This is a well-known fact; see e.g. [21]. However, it is not yet known

whether f -localizations preserve 1-connectivity or not. Note that, if πX is contractible,

then it follows from (4.4) that πLfX is annihilated by Lϕ. Thus, the open question is

whether πLfX is necessarily contractible when X is 1-connected.
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Dubreil, Lecture Notes in Math. vol. 740, Springer-Verlag, Berlin Heidelberg New York,
1978, 444–456.

[21] J.-Y. Tai, On f -localization functors and connectivity, in: Stable and Unstable Homotopy
(Toronto, 1996), Fields Inst. Commun. vol. 19, Amer. Math. Soc., Providence, 1998, 285–
298.

[22] R. W. Thomason, Cat as a closed model category, Cahiers Topologie Géom. Différentielle

21 (1980), no. 3, 305–324.

20
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