ON THE EXTENDED GENUS
OF FINITELY GENERATED ABELIAN GROUPS

by Carles CASACUBERTA and Peter HILTON

0. INTRODUCTION

In [9], Guido Mislin introduced the idea of the genus of a finitely
generated nilpotent group N. This was defined as the set of isomor-
phism classes of finitely generated nilpotent groups M such that, for
all primes p, the p-localizations of M and N are isomorphic,

M, = N, all primes p. (0.1)

My =

Interesting examples have been given, by Milnor, Mislin, Hilton and
others [4, 7, 9], of non-isomorphic groups M, N satisfying (0.1). Howe-
ver, it is easy to prove that no such examples are possible if N (and
hence also M) is abelian. On the other hand, it would be reasonable
to expect interesting examples, even in the abelian case, if only N is
required to be finitely generated. Indeed, such examples, in the special
case N = Z, are analyzed in [5]. Thus we are led to formulate the con-
cept of the extended genus of N, written EG(N), where we no longer
require that the groups in question be finitely generated — but we still
require them to be nilpotent.

In this paper we are concerned primarily with the case when N is
a given finitely generated abelian group A. In Section 1 we discuss the
general case, but we soon confine attention to this special situation and
prove that one may then in fact restrict oneself to the case A = ZF, the
free abelian group of rank k. We say that an abelian group B is A-like
if its isomorphism class is in EG(A). Then, if A = Z*, the group B is
a torsionfree group of rank k&, and such abelian groups have been
extensively studied (see [, 2, 3, 10]). However, the requirement that B
be Z'-like imposes strong restrictions on B: for example, B cannot
contain a non-zero element which, for some prime p, is divisible by
arbitrarily high powers of p. Thus we are able to bring to bear on the
study of B methods which do not seem to be applicable to the broad
class of torsionfree abelian groups of finite rank. In particular, we
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obtain, in Section 2, representations of such a group B by means of a
sequence M« of matrices in GL,(Q), one for each prime P, and we are
able to relate properties of B to properties of the sequence M.

In Section 3 we show how to impose an important restriction on the
representing sequences M« — without in any way restricting the Z*-
like group B — and thus obtain a better insight into the group B itself.
In particular, if the representing sequence is thus restricted — or, as
we say, reduced — then we obtain an embedding Z* = B = Q" and a
convenient set of generators for B, so embedded. This enables us to
give an effective criterion for when B ~ Z*.

This, and other, applications of the reduced representations R« are
given in Section 4. In particular, we obtain necessary and sufficient
conditions for B to be completely decomposable and almost completely
decomposable (see [1]). We also calculate Ext (B, Z) which may be said
to measure the extent to which B departs from freeness.

It is to be expected that, in those parts of homotopy theory suscep-
tible to the methods of localization, the advantages of assuming that
the groups entering the discussion — principally, homotopy and
homology groups — are finitely generated are shared if we merely
assume that the groups are Jike finitely generated groups. This optimis-
tic expectation has already been borne out in [6], where Z is replaced
by an arbitrary Z-like group B, called a group of pseudo-integers, and
thus the role of the circle (eg, in the study of circle bundles) 1s replaced
by that of the ‘ pseudo-circle’ K(B, 1) (in the study of K(B, 1)-bun-
dles). We hope to return to this aspect in a subsequent paper.

The authors wish to thank Dolors Herbera and Pere Menal for pro-
viding them with Lemma 3.2. The first-named author would also like
to express his appreciation to the Department of Mathematical Scien-
ces, SUNY, Binghamton for its hospitality during the preparation of
this paper, and to the Comissi6 Interdepartamental de Recerca i Inno-
vacid Tecnologica (CIRIT) for its partial support.

1. A-LIKE ABELIAN GROUPS

We may consider a fixed nilpotent group N and describe a nilpotent
group M as N-like if M, = N, for all primes p. We may further consi-
der the set of isomorphism classes of N-like groups and call this the
extended genus of N, written EG(N). The justification for this termino-
logy is that the (Mislin) genus is confined to finitely generated nilpo-
tent groups, and we certainly wish in this article to remove the restric-
tion that our groups be finitely generated. By this generalization we
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render the concept of extended genus significant even when N is abe-
lian.

We have already discussed the case N = Z in [5]; a Z-like group
is there called a group of pseudo-integers. Note that a nilpotent group
which is Z-like is necessarily abelian. This follows from the proposition
(compare [7]) :

ProrosiTioN 1.1. — If M, N are nilpotent groups and M is N-like,
then nil M = nil N,

PrOOF. — We know that, for nilpotent groups, nil N, < nil N. Thus
[T N, is nilpotent and niif[[ N, < nil N. On the other hand N embeds
P o

in T1 N,, so that nil N <[] N,. Thus nil N = nil [ N,. However, if M is
r r ?
N-like then [IM, =~ IIINP; thus nil M = nil N.
» p

REMARK. — Of course, we are not claiming that a group M such
that M, = N, for all p, with N nilpotent, is itself necessarily nilpotent.
There are examples of non-trivial groups M such that M, is trivial for
all primes p. It is to be understood that our discussion is confined to
the category of nilpotent groups. Indeed, we will shortly confine it to
the category of abelian groups.

The following proposition shows that the extended genus of a tor-
sion nilpotent group is trivial.

ProrosiTion 1.2, — If M, N are nilpotent groups and M is N-like,
and if' N is a torsion group, then M = N.

ProoF. — Since M, = N, and N, is trivial, M, is trivial, so M is a
torsion group. Now for a torsion nilpotent group N, we know that N
is the restricted direct product of its p-torsion subgroups: and the
p-torsion subgroup of N is N,. Thus M = Qs M, N= r[;lS N, and
M, = N, so that M = N.

We now show that we may reduce the study of EG(N) to the case
of torsionfree nilpotent groups, together with a group extension pro-
blem. We write TN for the torsion subgroup of N and FN = N/TN.

Prorosimion 1.3, — Ler M, N be nilpotent groups and let M be
N-fike. Then TM = TN and FM is FN-like.

Proor. — We know that (TN), = T(N,): for the exact sequence
TN > N — FN p-localizes to the exact sequence (TN), — N, = (FN),
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and (TN), is a torsion group while (FN), is torsionfree. Thus we may
suppress parentheses and write, unambiguously, TN,, FN, for (TN),
(= T(N,)), (FN), (= F(N,)), respectively.

We have, for each p, an isomorphism 8,: M, = N,. Then 6, restricts
to an isomorphism &,: TM, =~ TN,. and induces an isomorphism g
FM, = FN,. This shows that TM is TN-like and FM is FN-like. The
proposition now follows from Proposition 1.2.

We can solve the extension problem in an important special case.
We confine ourselves now to abelian groups and we call the abelian
group A almost torsionfree if A, = 0 for almost all primes p ; of course,
a finitely generated abelian group is almost torsionfree.

THEOREM 1.4. — Let B, A he abelian groups and let B be A-like. If
A is almost torsionfree, then there exists an isomorphism @ :
Ext (FB, TB) = Ext (FA, TA) such that 0[B] = [A]. (Here [A] is the
equivalence class of the extension TA > A —» FA.)

We [irst quote a lemma whose proof may be found in [7].

LemMa 1.5. — If P is a family of primes and if K. L are abelian
groups with L P-local, then the P-localization e : K — Ky induces e* :
Ext (Kp, L) 2 Ext (K, L).

REMARK. — This lemma plays an important role in the proof of the
fact that, if K is only assumed nilpotent, then ¢*:
H'(K,; L) = H'(K ; L).

PrOOF OF THEOREM 1.4. — Since A is almost torsionfree,
TA =®TA, = IITA
r P
Thus

e

EX(FATA) = Ex(FAIITA,) = [1 EX(FA,TA,) <[l EXt(FA,, TA,).
P Vi n

Moreover, under the isomorphism above, [A] corresponds to the ele-

ment ([A,]). Now since TB = TA, B is also almost torsionfree. so

Ext (FB, TB) = I1 Ext (FB,, TB,) under an isomorphism sending [B] to
1

(IB,]). We have (see the proof of Proposition 1.3) a commutative dia-
gram, for each p,

TB — B - FB,

P P
A 16, Loy
TAP — AF —» FA,
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It follows that (¢, ', #) induces an isomorphism 8, :

Ext (FB,, TB,) = Ext (FA,, TA)

such that #[B,] = [A,]. Thus J = 1;10,, is an isomorphism
0: 1l Ext (FB,, TB) = [1 Ext (FA,, TA,)

such that g([Bp]) = ([A,]). Tt follows that # induces an isomorphism & :
Ext (FB, TB) = Ext (FA, TA)
under which 4[B] = [A].

COROLLARY 1.6. — Let B, A be abelian groups and let B be A-like.
If A is finitely generated, then

B ~ TBPFB,

TB = TA and FB is FA-like. Moreover, any group TOF, where
T = TA and F is FA-like, is A-like.

ProOF. — A is almost torsionfree and Ext (FA, TA) = 0 since FA
is free. :

Thus to study EG(A), where A is finitely generated, it suffices to
consider the case A = ZF, the free abelian group of rank k. This then
is the focus of our attention in the remainder of this paper.

2. SEQUENTIAL REPRESENTATION OF A Z*-LIKE-GROUP

Throughout the rest of this paper k& will be a fixed positive integer
and B will denote a given Z*-like group, that is, an abelian group such
that

B, = Z, for all primes p. 2.1)

Such a group B is torsionfree of rank & ; hence it can be embedded in
Q". However, we prefer not to assume from the outset that it is so
embedded, since we will be interested more in the isomorphism class
of B rather than in B itself. The collection of isomorphism classes of
groups B satisfying (2.1) we call the extended genus of Z* and write
EG(Z5).

The (easy) case k = 1 was fully analysed in [5]. There we saw that
if, indeed, we assume, as we may, that Z = B = Q, then we may
represent B by the sequence of non-negative integers (n, na, ..., 1, ...)
in the following sense. We suppose the primes enumerated as p,, ps, ...,
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. . 1
Di» -.-, and then B is generated by the set of rationals {n_ i L= L }
Pl

Moreover, if also B’ is represented by the sequence (n], n5, ..., nl, ...),
then B = B’ if and only if the corresponding sequences are almost
equal, that is, if and only if », = n} for almost all i. It turns out to be
more consistent with the generalization to arbitrary k¥ = 1 to regard
the representing sequence for B as actually consisting of the rationals

1 . . . .
—. and this is the point of view we will adopt.

Thus, to generalize the representing sequence of a Z-like group, we
start by choosing isomorphisms

for'By =2, foreach prme ps 1 By Q5 (2.2)
We will often write (2.2), for the sake of brevity,
{fop =0}, 23)
Now B, is naturally embedded in By, so f,/, ' is a monomorphism,
A0k (2.4)

We take the canonical basis {e, e, ..., ¢,} for Z*, Z}, Q* ; with respect
to this basis, f;f, ' is represented by a matrix M, ; explicitly,

jG .f;l(ej) = %—ra}peis Mp = (a}p)a a}p € Q (25)

Since f; f,' is a monomorphism, M, e GL(Q) ; since we will never
alter the bases of Z*, Zj, QF, we may even write M, : Z > QF, instead
of (2.4).

DermNiTION 2.1, — We write M= for the sequence of matrices {M,}
and call it the sequential representation (or, briefly, representation) of
B associated with (2.3). We may regard M= as an element of T GL,(Q).

P

Notice that this definition is evidently consistent with our termino-
logy in the case k& = 1. For if the representing sequence in that case

then we may take f, = Id, f,, = multiplic-

a3
i

5 : |
consisted of the rationals —
14

. . o o
ation by p7’ so that M, is the (1 x 1)-matrix — .
P

Suppose now that
{,p=0} (2.3°)

is another set of isomorphisms f,": B, = Z}, f,": B, = Q*. Then if M%
is the sequence of matrices associated with (2.3"), let N € GL,(Q) be the
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matrix of f,;,™': Q° = Q° and C,eGLy(Z,) the matrix of £/,
Q} = Z}. Since £, ™' = (1fa” W £y W, ™"), we have

M, = NM,C,, for all p, N € GL(Q), C, € GL(Z,). (2.6)

Conversely, if M is a representation of B and M¥ is related to M= by
(2.6), then Mj% is also a representation of B we snnply define
£ =Gl B, = I}, fy = Nfy: By = Q.

Let us thercfore declarc two sequences of matrices M+ and M% to
be equivalent, and write M ~ Mk, if they are related as in (2.6). The
equivalence classes may be regarded as constituting the set of double
cosets

4 = GL(Q)\ I GL(Q) / 11 GL(Z,), (2.7)

where GL,(Q) is embedded diagonally in IT GL(Q).
7

Now suppose that ¢: B’ =~ B ; and let Mx be the representation of
B associated with { f,, p = 0}. It is then plain that M is the represen-
tation of B’ assouated with {f,¢,, p = 0}. The argument thus far esta-
blishes that the association of Ms with B sets up a function

& : EG(ZY - 4 (2.8)
THEOREM 2.1. — The function @ : EG(Z") — A is injective.

Proor, — The injectivity of @ follows from the following proposi-
tion which enables us to recover the isomorphism class of B from a
representation Ms of B.

PrOPOSITION 2.2. — If M= is a representation of B, then
B~ N ImM,
P

PROOF OF PROPOSITION. — We have Im M, = f,(B,) = (/,B),. Now,
for any torsionfree abelian (') group A, where we may regard any loca-
lization A, as embedded in A,, we have

NA, = A (2.9)

(" It would suffice that A be nilpotent ; see [7].
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Thus M Im M, = f£;B. This shows that f; restricts to an isomorphism
r

B=NiImM,.
P

Proposition 2.2 immediately leads to the conclusion of the proof
of Theorem 2.1. For if B, B’ are Z*like groups yielding equivalent
representations Mz, M% then Msx represents B and B, so
B=B ~ ﬂ Im M,. We will write H for ﬂ Im M,

On the other hand, the function @ of (2.8) is certainly not surjec-
tive. Indeed, Proposition 2.2 immediately suggests the following crite-
rion. We consider a sequence Ms of matrices M, e GL(Q).

THEOREM 2.3. — The equivalence class of M= is in the image of @
if and only if H = ﬁ Im M, has rank k.

Proor. — If Mx is a representation of B, then /1) Im M, = H = B,
P

so H has rank k. Assume conversely that H has rank k. We will show
that H is Z*-like and that M is a representation of H. The first objec-
tive is achieved by the following lemma.

LemMA 2.4. — The following statements are equivalent

(i) rank H = k
(11) Im M, = H,, for all p;
(i) Im M, = H,, for some p.

PROOF OF LEMMA. — Obviously (i) = (iii). Now M, : Z& - Q" is
monomorphic, so (iii) implies that H, has rank k for some p. But rank
H = rank H, so (iii) = (i). It remains to show that (i) = (i1). Consider
the mcluszon J+H = ImM,. Since Im M, is p-local, it suffices to show
that ; is p-surjective.

Since rank H = k, there exists a Q-basis {h,, h,, ..., h} for Q* con-
sisting of elements of H. Let xelIm M, and set x = X 1A, 4,eQ.
Write 4; = _'% , where p f b, and b, > 0. Set n = bb, ... by, so that n

p : i
is a p'-number, Then

. |
nx =Y mA)h, and nieZ L—)] cZ,.q#p.
Thus nxelImM,, since H < Im M, and Im M, is g-local. But, of

course, nx € Im M, so that nxe H and hence j is p-surjective. This
completes the proof of the lemma.
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We now complete the proof of the theorem by observing that, since
M,: Z} = H, we may take /, = M, ' : H, = Z£, f, = 1d: H, = Q" and
then the representation of H associated with { f,, p = 0} is Mx.

We say that Mx is realizable if it is the representation of some
group B. We have identified, through Theorem 2.3, the subset of A
consisting of equivalence classes of realizable sequences. We give an
example to show that not all sequences are realizable.

ExampLE 2.1. — Let k = 1 and M, = p, forall p. If%I were a reduced

fraction in H = (" Im M,,, then p |, for all p, which is absurd. Thus
P

H = 0 and M= is not realizable. This accords with the fact (see [5])

. ) 1
that every group of psecudo-integers has a representation <—, n; = 0.
P

PP

1
Thus we would need ? = NM,C,, for all p and this would imply that,
o pka phb
— a, .
7b P P

The criterion of realizability given by Theorem 2.3 is not very effec-
tive in practice. A more useful criterion, as we shall later demonstrate,
is provided by the following theorem.

for almost all p, M, would be expressible as

THEOREM 2.5. — The sequence Mx is realizable if and only if M,
has entries in Z,, for almost all p.

Proor. — In fact, the following statements are all equivalent (recall
that H = NImM,):
P

(i) M= is realizable (i.e., the equivalence class of Mx is in the image
of @ (2.8));

(ii) rank H = k;
(iii) H contains a Q-basis {h,, f, ..., k) for Q°;
(iv) there is a Q-basis {h,, f,, ..., i} for Q and, for cach p and each
i, an element ¢;, € Z such that 4, = M,c,, ;
(v) therc exists a matrix J € GL,(Q) such that M, 'J has entries in Z,
for all p;
(vi) M, ! has entries in Z, for almost all p;
(vii) there exists an integer n > 1 such that #M, ' has entries in Z, for
all p.
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For Theorem 23 asserts that (i)< (ii); the implications
(i) = (iii) = (iv) <= (v) are clear; likewise the implications
(V) = (vi) = (vil) = (v).

In fact, we will also use criterion (vii) above in an essential way in
the sequel.

ReEMARK. — Had we been content to consider subgroups of QF
which are Z*-like, we could have eliminated the factor N in the equiva-
lence relation (2.6). We would thus have set up a one-one correspon-
dence between the set of such subgroups and a subset of the coset
space E}l GL(Q) / I;IGLA.(Z!,); moreover the subset would have been

determined by the criteria of Theorems 2.3 or 2.5. However, this for-
mulation would, of course, have been inadequate to handle the isomor-
phism problem. Nevertheless, we should remember that we may always
take f, = Id in (2.3) when a specific subgroup of Q* is in question.

Our final observation in this section shows us how to recognize,
given two Z'-like groups B and B, that there exists a monomorphism
j: B> B.

THEOREM 2.6. — Let Mx, M% be sequences representing B, B’ and
associated with {f,, p = 0}, {f,/, p = 0} respectively. Then there exists
J: B B with fy' = fuj, if and only if M, "M has entries in Z, for
each p.

Proor. — Suppose j exists. Then there exists, for each P, a mono-
morphism y,: Z} — Z% such that the diagram

5 Iy 1o
Z, & B ey B, — Q*
L7 Vi Lo I
. I Jo
z, & B, — B, — o

commutes. Then fif, 'y, = fi'f;’ "', so that the matrix of 7, is M, 'M,,.
This ensures that M, 'M, has entries in Z,.
Conversely, if M,”'M,, has entries in Z, it determines a monomor-

phism p, : Z:j > Z; and hence a monomorphism f(p) : B, B, such that
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the diagram

i 7 Ji
4 & B, s B — Q"

17 [ i) | commutes.
= Jp fo
ZP = Bp — BO — Q.i.'

Set j(0) = f,"'fy’: B; > > B,. Then the diagram

B, - B

) | o)

B, - B,

commutes for each p. We may then invoke (2.9) to infer the existence
of a monomorphism j: B">—= B with j, = j(p). p = 0.

We remark that if ; exists, then j, is an isomorphism, so we may
always choose f;, f’ so that £’ = fj,. In particular, if j is an inclusion,
we take f; = f,’.

3. REDUCED REPRESENTATIONS

To obtain finer results on Z*-like groups, it is convenient to pick
out, among the representations M« of a given group B, certain special
representations, which we call reduced representations and which are
characterized by generalizations of important properties of the sequen-
ces associated with groups of pseudo-integers (the case k& = 1). We will
now make the key definition.

DEeFINITION 3.1. — A sequence R« €11 GL(Q) is reduced if
y4

: 1
(i) R, e GLk(ZI:;:D for each p; and
(i) R, ' has entries in Z for each p.
Notice that a reduced sequence is certainly realizable, by Theorem

2.5. We prove the converse :

THEOREM 3.1. — Every equivalence class of realizable sequences con-
tains a reduced sequence.
We first need a lemma.
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LEMMA 3.2. — Let {P, Q} be an arbitrary partitioning of the set of
primes. Then any matrix M € GL(Q) is expressible as M = RS, where
R e GLW(Z,), Se GL(Zy).

PROOF. — Choose a positive integer n so that #M has integer
entries. We may then find matrices U,VeSL(Z) so that
k

D = UmM)V is diagonal, say D = @ (n). Write n = rs, R = FS;,
i=1

where r, r; are P-numbers and s, 5, are Q-numbers, and set
o, 1 ,
R - : U {® (ra')]% S =R [@ (S‘:)]V £
21 i Ny
Plainly R € GL,(Z,), S € GL,(Z,) and RS = M.

ReEmMARKS. — 1. Clearly we can generalize the lemma to any finite
partitioning of the set of primes. We can even generalize it to an infi-
nite partitioning, if suitably interpreted.

2. It is obvious, but important for the sequel, that if M were origi-
nally diagonal, we may assume R and S diagonal.

We now proceed to

PrOOF OF THEOREM 3.1. — Let M« be a realizable sequence. Then,
according to Theorem 2.5 (formulation (vii)) we know that there exists
m 2 1 such that mM, ! has entries in Z, for all p. Consider the matrix
m~'M, e GL(Q). By Lemma 3.2. we may write

I
m™'™, = R,S,, R,eGL, (ZL—)D S, EGL(Z):

14

Then, according to (2.6), M« ~ Rs. Moreover,
R, = S,(mM,")

1
and thus has entries in Z,. Since R, 'e GL,(ZI::D, this implies that
P

R, ' has entries in Z.

REMARK. — We follow up Remark 2 by pointing out that if, for
some p, M, is diagonal then we may take R, to be diagonal.

We will give a number of applications of reduced sequences in the
next section. These are based on the facility which reduced sequences
give us actually to describe a ZF-like group in terms of a reduced repre-
sentation. We express the result as follows.
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TuroreM 3.3. — Let the group B have the reduced representation Ry,
where R, = (a}p ), for all p. Then B is isomorphic to H = (N Im R, and
H is generated by the set £

i=

'
{ Y @ =12 w0k a.’lp}. 3.1)
= B

PrOOF. — We have only to show that, if K is the group generated
by the elements (3.1.), then, for each prime p, K, is the image of g, :
Z: - QF, given by ge = R, Since g(Z") < K it follows that
gP(Zﬁ) < K,. Thus it remains to show that K, = g(Z}) or, equivalen-
tly, that K < g,(Z}). We proceed as follows :

k
(i) Obviously Y ajeelmg, j=1,2,..,k;
i=1
(i) e;elmg, i =1, 2, .., k, because R, ! has integer entries ;
L ; . ; 1
(iii) if ¢ is a prime different from p, then ¢y e Z| — | = Z,,
K ' q
so . deelmg, which is p-local.
Fi=l

Thus K, = Im g,, and the theorem is proved.

REMARKS. — 1. This result generalizes the fact that a group B of

" L] .
pseudo-integers, represented by the sequence § -, ¢ , is generated by the
P'i

, 1
rationals {— ¢ .
pi

2. Since e, ¢, ... e, H, we see that we have an embedding
7ZF = H < QF, that is, each Z’-like group B may be so embedded as
a suitable H. This also generalizes an elementary remark in the case
k=1

Let us now give an example.

ExaMpLE 3.1. — Let £ = 2 and

(=]

=
N — e e




64 CARLES CASACUBERTA and PETER HILTON

Then it e 1 =
P i O pl ?

80 M is reduced and represents the subgroup of Q2 generated by the

1 1
clements <e,, — ¢, + — e, all pp.
P P
The following may be viewed as a counterexample.

1
EXAMPLE 3.2, — Letk = 1 and M, = _+_T Then Mx is realizable
4

but not reduced. Indeed, it is plain that Im M,=Z, so that
N Im M, = Z. On the other hand, the group generated by
2

1
{pﬂ’al]p}

is certainly not finitely generated, so that the conclusion of Theo-
rem 3.3 fails,

We now proceed to give several applications of the idea of reduced
representations Rs, and of Theorem 3.3, As will be seen, reduced
representations are considerably more useful than arbitrary (realizable)
representations.

4. APPLICATIONS OF REDUCED REPRESENTATIONS

A. Groups isomorphic to ZF.

If B is Z*-like then we know that B = 7% if and only if B is finitely
generated. This enables us to prove

THEOREM 4.1. — Let B pe Z'-like ; then B ~ Z* if and only if, for
all representations Ms of B, M, has entries in Z, for almost all p.

PROOF. — Suppose B =~ Z*. Then My ~ Lx, where I, = I for all p.
Thus M, = NC,. Ne GL(Q), C,e GLY(Z,), so that M, has entries in
Z, for almost all p.

Conversely, suppose B is Z*-like and that, for any representation Ma
of B, M, has entries in Z, for almost all p. Choose a reduced representa-
tion R+ of B. Then R, has entries in Z, for p¢ X, where X is a finite

; 1 o
set of primes. But R, e GL, (Z !:—:D so R, has entries in Z for pEX.
P
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The conclusion of Theorem 3.3 now implies that B = H, where
H = {&y &y 0s ity 2881 = 1,244 k; pell.

Thus H, and hence B, is finitely generated, so that B =~ Z*,

REMARK. — It is, in any case, easy to see that if any representation
M of B has the property that M, has entries in Z, for almost all p,
then all representations of B have this property.

B. Completely decomposable and almost completely decomposable
groups.

We say that a torsionfree group B of rank k is completely decompo-
sable (cd) if

B= @&B

I=

b (4.1)
where B; has rank 1. Of course, if B is Z*-like and (4.1) holds then each
B, is a group of pseudo-integers. We further say that B is almost com-
pletely decomposable (acd) if there exists ¢ = 1 such that

£
¢qBc ®B,cB. (4.2)
i=1
Once again, (4.2) implies that each B, is a group of pseudo-integers, in
the case that B is Z*like. The following example shows that a Z*-like
group may fail to be acd.

ExampLE 4.1. — Let A}, A,, ..., A, be groups of pseudo-integers
such that

(i) Hom (A, A;) = 0if j # j; and
1

(i) — ¢ A, for all i, j.
Py

Let B be the subgroup of the vector space Q <xy, x,, ..., X, > generated

Xk 20 e 050 1t then fol-
Dy

lows, by an easy extension of the argument given in [l ; Example 2.2. ;

p. 21] that B is not acd. On the other hand, it is also easy to see that

B is Z*-like. For the basis {x,, x,, ..., x;} provides an obvious embed-

ding

by A x;, A,x,, ..., A.x, and the elements

fr ey By
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and it is plain that

! .Zﬁ = B, if p = pyyy,
'
Z,— B, »Z/pif p=p,
so that, in any case, Z} = B.
We may, however, use our sequential representations to characte-
rize those Z*-like groups which are cd (acd).

PROPOSITION 4.2. — Let B be Z*like and let | + m = k. Then
B = B'® B", where B’ is Z!-like, B" is Z"-like, if and only if B admits
a representation Msx  where M, =M, &M, M, e GL(Q),
M e GL,(Q), for all p.

PROOF. — Let B = B'@ B". Then we may choose isomorphisms f, :
B, > Z}, p = 0 of the form L' @7, where £ : B, 27, B z).
This gives a representation M« of the desired form.
Conversely, if B admits a representation of the given form, then
BH=NIm M,= N (ImM,®Im M;)= NImM,® N Im M,
P P P 4

Now rank M Im M, < I, rank NImM; <m, rank H=k =/ + m.
” P
Thus rank M Im M, = [, rank M Im M, = m, so that M%, M¥ are rea-
P P
lizable by H' = M Im M), H' = N Im M)’ (sce the proof of Theorem
P P

2.3). Since H = H'@H”, and H' is Z'-like, H'" is Z"-like, the proposi-
tion is proved.
An easy extension of Proposition 4.2. yields

Tueorem 4.3. — Let B be Z*-like. Then B is cd if and only if’ B
admits a representation D= where each D, is a diagonal matrix.

The corresponding result for acd groups is the following.

THeOREM 4.4, — Let B be Z'-like. Then B is acd if and only if B
admits a representation M« where M, is diagonal for almost all p.

PROOF. — Suppose (4.2) holds. Choose, according to Theorem 4.3,
a family of isomorphisms {/fys p = 0}, yielding a diagonal representa-
k

tion D« of © B, Choose a family of isomorphisms g,: B, ~ Z&
i=1

. k
P =0, such that g, = f; (this is possible since (gB), = @ B, = B,).
i=1
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; 1 1 .
Since ;: gB B, g, (E) 1 (gB), = Z’;. Thus we may choose isomor-
P

phisms 7, : (¢B), = Zfﬁ, p = 0, with
1
h, =gp(—>,p¢0;hﬂ=j}).
4/»

If the isomorphisms g,, p > 0, yield the representation M% of B, then
it is plain that the isomorphisms 4, p > 0, yield the representation
gM3% of ¢B; and by Theorem 2.6, the matrices M;,“DP and ¢D, 'M,
have entries in Z, for all p.

Now define

D, ifprg
M,=4{.72 .

» M, if pla. (4.3)
Since D, 'M; has entries in Z, if p } ¢ it follows that M 'D, € GLy(Z,)
if p 4 g. Thus, by (4.3), M+ ~ M% and M, is diagonal for almost all
p.

Conversely, suppose B admits a representation M+, which is almost
diagonal. By the Remark following the proof of Theorem 3.1., we may
suppose this representation reduced. If M, = (a},) then, by Theorem
3.3, B @ H, where H is generated by the set

"
{z, aye, j=1,2, .., k;al p}

Let 2 be the finite set of primes p such that M, fails to be diagonal.
Then it is obvious that H is generated by certain subgroups B,, B, ...,
B,. together with the finite set of e¢lements

{

where B, is a group of pseudo-integers containing ¢, i = 1, 2, ..., k. If
g is the lcm of the denominators of the entries aj, i,j =1, 2, ..., k,
pel, then ¢yH = B, @& B, D ... BB, so that

gH € B,®B,®.. DB, < H,

[N e I

o i W k;pez},

and H, and hence B, is acd.

REMARK. — We may incorporate Theorem 4.3 into Theorem 4.4 by
observing that if B is acd, then Mx may be chosen to be diagonal
except at the prime divisors of ¢. Conversely, if £ (in the proof of
Theorem 4.4) is empty, then plainly B is cd.
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We give an example of a group provable by Theorem 4.4 not to be
acd ; in fact, we revert to an earlier example.

ExaMpLE 4.2. — The (reduced) sequence My, where

represents a group B which is not acd. Let us suppose that there exist
matrices N € GLy(Q), C, € GL,(Z,) such that D, = NM,C, is diagonal
for almost all p. If D, is diagonal for pe I, set

_ P z . a, 0
N:(y f)’D‘P :(0 b),PEH
Then

1
a@x Eap(px+z)\

-1 eGLy(Z,), pell (4.4)

1
by  =blpy+1t
By 7 (DY ),

We prove that (4.4) must fail. We note first that, if p € /I, then

1
detC,' = - a,b(xt — yz)is a unit in Z,

Let v, be the usual p-valuation in Q. Since there exist infinitely
many p such that v,(xt — yz) = 0, it follows that there exist infinitely
many p such that v,(a,) + v,(b,) = 2; we confine attention to these p,
which constitute an infinite subset /7, of 1.

Now z # 0 or  # 0; by symmetry we may assume z 3 0. Then
there exists an infinite subset [f, of I, such that v(px + z) =0 if
pell;; and there exists an infinite subset I7, of /I, such that
vpy + < 1if pell,

1
Let p € IL,. Since — a,(px + z)e Z, v,(a,) = 2. Hence v,(b,) <0, so
14

1 1
that vp(; b(py + t)) < — 1, contradicting ;fbp(py + e Z, This

establishes our claim that B is not acd.
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C. Ext (B,Z) and Hom (B, Q/Z).

We first observe that if B is Z*-like, then we can write
B=B@Z, (4.5)

where / < k and B’ does not admit a Z-summand. Moreover, [ and the
isomorphism class of B’ are uniquely determined by B, since we plainly
have

ProrosiTioN 4.5. — Hom (B,Z) = 0 < B does not admit a Z-sum-
mand.

Proor. — Obviously, Hom (B, Z) # 0 if B admits a Z-summand.
Conversely, if there exists ¢ # 0: B —» Z, then Im ¢ = Z, so we have
a short exact sequence ker ¢ »» B — Z, which must split.

It follows that, if (4.5) holds, then Hom (B, Z) =~ Z/, so that / is uni-
quely determined by B. It now follows from [11; Theorem 7] that B’
is determined up to isomorphism by (4.5).

Thus we see that, in studying Ext (B, Z) and Hom (B, Q/Z) for a
given ZF-like group B, k > 1, we may assume Hom (B, Z) = 0. Thus
we will make this assumption in this subsection, and emphasize that our
assumption involves no significant loss of generality. We first prove

ProOPOSITION 4.6. — If Hom (B,Z) = 0, then
Hom (B, Q/Z) =~ Q" Ext (B,Z)

ProOF. — We have the exact sequence
0 — Hom (B, Z) — Hom (B, Q) —» Hom (B, Q/Z) — Ext (B, Z) — 0.

However, Hom (B, Z) = 0 and Hom (B,Q) = Q, since any homomor-
phism B — Q has a unique extension Q° — Q. Since QF is injective, the
exact sequence

0 - Q* - Hom (B, Q/Z) — Ext (B, Z) - 0
splits.
We now prove
ProrosiTiON 4.7. — If Hom (B, Z) = 0, then
Ext (B,Z) =~ V@ T (Ext (B, Z)),

where V is a Q-vector space of uncountable rank and TA is the torsion
subgroup of A.
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Proor. — Since B is torsionfree, Ext (B, Z) is divisible. Thus
T (Ext (B, Z)) splits off and

Ext (B, Z) = F(Ext (B, Z)) & T(Ext(B, Z))),

where FA = A/TA: moreover, F(Ext(B,Z)) is torsionfree and
divisible, and hence a Q-vector space.

We may now argue as in the proof of the theorem of Stein-Serre
[8] that. if B is not free,

card Hom (B, Q) = ¥,,
card Hom (B, Q/Z) = ¢,
so that
card Ext (B,Z) = ¢
Now we will see below (Theorem 4.8) that, since, by Proposition 4.6,

T(Ext (B, Z)) ~ T(Hom (B, Q/Z)),

card T(Ext (B,Z)) = card T(Hom (B, Q/Z)) = X,.

Thus card F(Ext (B Z)) = ¢, and Proposition 4.7 is proved.
Our study of Ext (B, Z) and Hom (B, Q/Z) is completed by

THEOREM 4.8. — If B is Z*-like, then
T(Hom (B, Q/Z)) = (Q/2)".

(Note that we do not require Hom (B, Z) = 0 in this theorem.)

Proor. — We choose a reduced sequential representation R, for B
as in Theorem 3.3. We replace B by its isomorph H, so that B is
generated by the elements Zaj,,c),, J=12, .., k, all p. We use Ry to
define, for each prime p, an isomorphism

¥, T,(Hom (B, Q/Z)) = (Z/p™)’,
by the rule
Fug)= {f(Z(’#ﬂei)}f (4.6)

Notice that, since p"f = 0 for some #, it follows that p"f (Xd,e) = 0. so
that ¥,(f) e (Z/p™). We prove that ¥, is bijective. To show it injec-
tive, let W,(f) = 0. Then f(Xaje) =0, j=1, 2, .., k, so that
fle)=0,i= 1,2, .., k. Let g be a prime different from p, and let m
be chosen so that ¢"R, has entries in Z—recall that R, has entries in
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1
Zlié] Then ¢"f(Zdj,e)= 0. But, for some n, pf=10, so

Pf(2d,e)=0. Since p,g are distinct primes we infer that
f(Zdle) = 0. Thus f = 0 and hence ¥, is injective.

To show ¥, surjective, let (x;, X5, .... X) € (Z/p™)", and let n be such
that p"x; = 0, j = 1, 2, ..., k. Define

g: (Zdpe, j= 1,2, ., k) > Zjp®
by
g: (Eaj:ue,') == xj,

note that g does define a homomorphism because the elements Xa)e;,
j=1,2, ... k, are linearly independent. Extend g to f:B—> Z/p*. We
must show that fe T,(Hom (B, Q/Z)). Now p’f (Zde) = 0. Thus
Pfle)=0,i=12 ..,k Letgbea prime distinct from p. With m
chosen as above, we infer that ¢"p"f(Zale) = 0. But ¢" determines an
automorphism of Z/p*, so that p%f (Zdaje) = 0. Thus p’f =0 and
feT,(Hom (B, Q/Z)). Obviously ¥,(f) = (x). X» ..., x,). Finally, the
isomorphisms ¥, fit together to produce the required isomorphism

¥ . T(Hom(B, Q/Z)) = (Q/Z)".

RemarK. — Of course, it is clear a priori that g admits a unigue
extension f.

We may now give a complete description of Ext (B, Z) for any Z*-
like group B. First, write B, uniquely, as B @27 as in (4.5), where
J < k and Hom (B, Z) = 0. If / = k, then B = Z* and Ext (B.Z) = 0.
Otherwise, let [ + m = k, so that B’ is Z"-like, m = 1. Then, by Pro-
positions 4.6, 4.7 and Theorem 4.8, Ext (B,Z)= Ext(B,Z)=
V& T(Ext (B, Z) @ VO T(Hom (B, Q/Z)) = V& (Q/Z)"; thus

Ext(B,Z) = V& (Q/Z)", 4.7)
where V is a Q-vector space of uncountable rank ; on the other hand,
again assuming B = B’ @® Z/, with Hom (B, Z) = 0 and | + m = k, we
find Hom (B, Q/Z) = (Q/Z)* if [ = k (so that B = Z%); and, other-
wise,

Hom (B, Q/Z) = V& (Q/Z)". (4.8)
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