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0 Introduction

In studying the Mislin genus for finitely generated nilpotent groups and its
relation to the genus of groups-with-operators (see [1, 2]) we have been led
to the following question. Suppose that

N >→ G
κ→→ Q (0.1)

is a short exact sequence of nilpotent groups which splits at every prime p,
that is, such that

Np >→ Gp
κp→→ Qp

admits a right splitting τ(p) : Qp → Gp for each p. Does it follow that
the original sequence (0.1) itself splits? In Theorem 2.1 of [1] we collected
together the known results, which we restate here.

Theorem 0.1 If N >→ G
κ→→ Q splits at every prime, then it splits provided

(a) Q is finitely generated and N is commutative, or

(b) Q is finitely generated and N is finite.

Moreover, in case (b), given the splitting maps τ(p) : Qp → Gp, we may
choose the splitting map τ : Q→ G so that τp = τ(p).

A further advance—though it was not presented as such—was contained
in Theorem 1.6 of [1], which effectively gave an example showing that the
answer to our question is not always affirmative.

The main purpose of this paper is to generalize both Theorem 0.1 and
the counterexample contained in Theorem 1.6 of [1]. Thus we prove (cf. The-
orems 2.1 and 2.3, which reproduce part (b) and part (a) of Theorem 0.2
respectively)
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Theorem 0.2 If N >→ G
κ→→ Q splits at every prime, then it splits provided

(a) Q is finitely generated and Np is commutative for almost all primes p,
being torsion for the exceptional values of p, or

(b) N is torsion and almost torsionfree.

Moreover, in case (b), given the splitting maps τ(p) : Qp → Gp, we may
choose the splitting map τ : Q→ G so that τp = τ(p).

Recall that N is almost torsionfree if TNp = {1} for almost all primes p.
Of course a finite (nilpotent) group is almost torsionfree.

This theorem actually presented itself as a byproduct of a study of the
Pull-back Theorem [4, Theorem I.3.9] which asserts that (i) for any nilpotent
group G and any partition (P1, P2) of the family of all primes, the square

G → GP1

↓ ↓
GP2 → G0

is a pull-back; we also know that (ii) every element of G0 is expressible as
x1x2, where x1 is the image of an element of GP1 and x2 is the image of an
element of GP2 . We need to generalize the pull-back property (i) to any finite
partition of the family of primes. In doing this, we also present a different
generalization of Theorem I.3.9 of [4], in which we no longer require that
(P1, P2) be a partition. We also generalize the supplementary conclusion (ii)
in Section 1 below—it is interesting that the hypotheses for the generalizations
of the properties (i) and (ii) in fact diverge. The arguments used extend in a
natural way to the case that the groups involved are locally nilpotent , i.e. such
that every finitely generated subgroup is nilpotent; we state the results in
Section 1 in this generality. Obviously all the generalizations so far referred
to have implications for the homotopy theory of nilpotent spaces, which we
plan to pursue in a subsequent paper.

Section 2 closes with a broad generalization of the counterexample implicit
in Theorem 1.6 of [1]. We study the group Ext(Q,N) when Q and N are
commutative, and establish conditions under which Ext(Q,N) is uncountable
although Ext(Qp, Np) = 0 for all p. A more detailed study of this situation
is currently being undertaken by Robert Militello.



1 On the pull-back and quasi-push-out

properties

We start with Theorem I.3.9 of [4] which asserts that if G is a nilpotent group
and (P1, P2) is a partition of the set of all primes, then the square

G
eP1→ GP1

eP2 ↓ ↓ rP1

GP2

rP2→ G0

(1.1)

is a pull-back. Moreover, the Remark following Theorem I.3.9 asserts that
every element of G0 is expressible as (rP1x1)(rP2x2), xi ∈ GPi

. If G is commu-
tative this last is equivalent to the square being a push-out (in the category
of commutative groups). We will describe this property, in general, by saying
that (1.1) is a quasi-push-out . We will generalize these two properties in two
directions.

We say that (P1, P2, . . . , Pk) is a (finite) presentation of the family P of
primes if P =

⋃
i Pi. It is a thin presentation if

⋂
i Pi = ∅. Thus a partition

coincides with a thin presentation in the case k = 2. However, observe the
divergence of the conditions stated in Theorems 1.1 and 1.2 below.

Theorem 1.1 Let G be a locally nilpotent group and let (P1, P2, . . . , Pk) be
a finite partition of the family P of primes. Then GP is the pull-back of
GP1 , GP2 , . . . , GPk

over G0.

Theorem 1.2 Let G be a locally nilpotent group and let (P1, P2, . . . , Pk) be
a thin presentation of the family P of primes. Then G0 is the quasi-push-out
of GP1 , GP2 , . . . , GPk

, in the sense that every element of G0 can be expressed
as

∏k
i=1 rPi

xi, xi ∈ GPi
.

Before giving the proofs, we explain the second direction of our general-
ization. In the next theorem, we no longer insist that (P1, P2) be a partition.

Theorem 1.3 Let P1, P2 be any families of primes and let P = P1 ∪ P2,
P0 = P1 ∩ P2. Let G be a locally nilpotent group. Then the square

GP

eP
P1→ GP1

eP
P2 ↓ ↓ eP1

P0

GP2

e
P2
P0→ GP0 ,

where all arrows are localization maps, is a pull-back and a quasi-push-out.



The strategy of proof is based on the following lemmas, as in [4]. We use
the notation G ∈ P to indicate that G has the pull-back and quasi-push-out
properties asserted by Theorem 1.3.

Lemma 1.4 Let G′ >→ G
κ→→ G′′ be a central extension of nilpotent groups.

Then G ∈ P if G′, G′′ ∈ P.

Proof. We first check the pull-back property for G. Note that it suffices
to prove that if xi ∈ GPi

with eP1
P0
x1 = eP2

P0
x2 = x0 then there exists x ∈ GP

with ePPi
x = xi, for the uniqueness of x follows from the fact that the kernel

of ePPi
: GP → GPi

consists of elements which are (P \ Pi)-torsion. Thus, with

the given elements xi, we have eP1
P0
κP1x1 = eP2

P0
κP2x2 = κP0x0. Since G′′ ∈ P ,

there exists an element x′′ ∈ G′′P with ePPi
x′′ = κPi

xi, i = 1, 2. Let x′′ = κP x̄.
Then κPi

ePPi
x̄ = ePPi

x′′ = κPi
xi, so that xi = (ePPi

x̄)x′i with x′i ∈ G′Pi
. Moreover

x0 = ePi
P0
xi = (ePP0

x̄)(ePi
P0
x′i), so that eP1

P0
x′1 = eP2

P0
x′2. Since G′ ∈ P , there

exists x′ ∈ G′P with ePPi
x′ = x′i, i = 1, 2. Thus ePPi

(x̄x′) = (ePPi
x̄)x′i = xi,

and the first part of the lemma is proved (note that we did not use here the
assumption that the extension is central). Now we turn to the quasi-push-
out property. Let x0 ∈ GP0 . Then κP0x0 = (eP1

P0
x′′1)(eP2

P0
x′′2), x′′i ∈ G′′Pi

, since

G′′ ∈ P . Let x′′i = κPi
xi, xi ∈ GPi

, so that κP0x0 = κP0(e
P1
P0
x1)(e

P2
P0
x2). Thus

x0 = (eP1
P0
x1)(e

P2
P0
x2)x

′
0 with x′0 ∈ G′0. Since G′ ∈ P , x′0 = (eP1

P0
x′1)(e

P2
P0
x′2),

x′i ∈ G′Pi
. Since G′ is central in G, we conclude finally that

x0 = (eP1
P0

(x1x
′
1))(e

P2
P0

(x2x
′
2)). 2

Lemma 1.5 Let {Gα, ϕαβ} be a directed system of nilpotent groups such that
Gα ∈ P for all α. Then G = lim

→
{Gα, ϕαβ} belongs to P.

Proof. Recall first that localization commutes with direct limits over di-
rected sets. Now let xi ∈ GPi

, i = 1, 2, with eP1
P0
x1 = eP2

P0
x2 = x0. Then there

exists α and xαi ∈ Gα
Pi

such that ϕαPi
xαi = xi, i = 1, 2, where ϕα is the canon-

ical homomorphism ϕα : Gα → G. Moreover, since ϕαP0
eP1
P0
xα1 = ϕαP0

eP2
P0
xα2 , we

may find β and xβi ∈ Gβ
Pi

such that ϕβPi
xβi = xi and eP1

P0
xβ1 = eP2

P0
xβ2 . Since

Gβ ∈ P , there exists xβ ∈ Gβ
P with ePPi

xβ = xβi , whence ePPi
ϕβxβ = xi, i = 1, 2,

establishing the pull-back property for G. The quasi-push-out property is
obvious. 2



Lemma 1.6 The groups Z, Z/pn belong to P.

Proof. If G = Z, we must show that if the reduced fractions (with positive
denominators) m1/n1 ∈ ZP1 , m2/n2 ∈ ZP2 are equal as rational numbers,
then m1 = m2 = m, n1 = n2 = n, and n is a P ′-number. This, however, is
clear since P ′1 ∩ P ′2 = P ′. We must also consider the reduced fraction m/n
where n is a P ′0-number. Write n as uvw, where u is a (P1 \ P0)-number, v
is a (P2 \ P0)-number, and w is a P ′-number. Since u, v are mutually prime,
1 = au+ bv for some a, b ∈ Z. Thus m/n = (ma/vw) + (mb/uw), and vw is
a P ′1-number while uw is a P ′2-number. This shows that Z belongs to P . If
G = Z/pn, both conclusions are obvious if p 6∈ P or if p ∈ P0. If p ∈ P1 \ P0,
then GP2 = GP0 = {0} and ePP1

= id, so, again, both conclusions are
clear. 2

Proof of Theorem 1.3. Starting from Lemma 1.6 and repeatedly using
Lemma 1.4, we conclude that G ∈ P if G is finitely generated commutative.
Lemma 1.5 then allows us to drop the condition of finite generation. Assume
next G nilpotent and proceed by induction on the nilpotency class of G. For
if nilG = c, so that ΓcG = {1}, we set Γ = Γc−1G and we have the central
extension Γ >→ G→→ G/Γ, with nilG/Γ = c− 1. Thus Lemma 1.4 allows us
to infer that G ∈ P . Finally, the proof in the case of G locally nilpotent is
achieved again using Lemma 1.5. 2

The above argument applies mutatis mutandi to provide proofs of Theo-
rems 1.1 and 1.2. However, it is more economic now to infer Theorems 1.1
and 1.2 from Theorem 1.3 as follows.

Lemma 1.7 If the diagrams
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are pull-backs in an arbitrary category, so is the diagram
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Proof. This only requires a routine checking of the characteristic universal
property. 2

Proof of Theorem 1.1. We argue by induction on k. By Theorem 1.3,
GP1∪P2 is the pull-back of GP1 and GP2 over G0, since P1 ∩ P2 = ∅. Assume
inductively that GP1∪...∪Pi

is the pull-back of GP1 , . . . , GPi
over G0. Then,

again by Theorem 1.3, GP1∪...∪Pi+1
is the pull-back of GP1∪...∪Pi

and GPi+1
over

G0. Therefore, by Lemma 1.7, GP1∪...∪Pi+1
is the pull-back of GP1 , . . . , GPi+1

over G0. 2

Theorem 1.8 Let G be a locally nilpotent group and let (P1, P2, . . . , Pk) be
any family of sets of primes with intersection P0. Then GP0 is the quasi-push-
out of GP1 , GP2 , . . . , GPk

.

Proof. We argue again by induction on k. Set Q = P2 ∩ . . . ∩ Pk. Then,
given x ∈ GP0 , by Theorem 1.3 we may write

x = (eP1
P0
x1)(e

Q
P0
y), x1 ∈ GP1 , y ∈ GQ.

But, by the inductive hypothesis, we have

y =
k∏
i=2

ePi
Q xi, xi ∈ GPi

,

and hence

eQP0
y =

k∏
i=2

ePi
P0
xi,

which proves the theorem. 2

Of course, Theorem 1.2 is a special case of Theorem 1.8. It is easy to see
that Theorem 1.8 in fact remains true if we assume the family (P1, P2, . . .) to
be infinite, provided we understand that a product

∏
i e
Pi
P0
xi has only finitely

many nontrivial factors.
Notice, however, that there is no useful analog of Theorem 1.8 in the

case of the pull-back property, for we would have to assume a presentation
(P1, . . . , Pk) of P such that Pi ∩ Pj, i 6= j, is independent of (i, j). This only
seems sensible in the case of a partition.



2 The splitting problem

We consider a short exact sequence of nilpotent groups

N >→ G
κ→→ Q, (2.1)

which we suppose splits at every prime p. Indeed, let τ(p) : Qp → Gp be a
splitting at the prime p, so that κpτ(p) = idQp .

Theorem 2.1 If N is torsion but almost torsionfree, then (2.1) splits. More-
over, there is a splitting τ : Q→ G such that τp = τ(p).

Proof. Let P = {p1, p2, . . . , pk} be the (finite) set of primes at which N
has torsion. We consider the partition (p1, p2, . . . , pk, P

′) of the family of
all primes. For each i = 1, 2, . . . , k we write τi = τ(pi) : Qpi

→ Gpi
. Now

NP ′ = {1} so that κP ′ : GP ′ ∼= QP ′ . Set τ ′ = (κP ′)−1 : QP ′ → GP ′ . Note that
each of τ1, τ2, . . . , τk, τ

′ rationalizes to a section of κ0 : G0 → Q0; but κ0 is an
isomorphism so that the only section of κ0 is (κ0)

−1. Thus the splitting maps
τ1, τ2, . . . , τk, τ

′ agree over Q0. We may therefore invoke Theorem 1.1 to infer
the existence of τ : Q→ G such that

τpi
= τi, i = 1, 2, . . . , k; τP ′ = τ ′.

Then epi
κτ = κpi

τiepi
= epi

and eP ′κτ = κP ′τ ′eP ′ = eP ′ . Thus by the
uniqueness assertion implicit in a pull-back, κτ = idQ and τ is a splitting of
(2.1). By construction, τpi

= τ(pi), i = 1, 2, . . . , k; and, if p ∈ P ′, then τp is
the unique section of the isomorphism κp so that τp = τ(p). This completes
the proof of the theorem. 2

This result generalizes part (b) of Theorem 0.1. Furthermore, we may
use it, together with the following observation, to yield a generalization of
part (a).

Lemma 2.2 Let N >→ G
κ→→ Q be an extension of nilpotent groups and

Γ ⊆ N a subgroup which is normal in G. Assume given a splitting s: Q→ G/Γ
of the extension

N/Γ >→ G/Γ
ε→→ Q

and a homomorphism t: G/Γ→ G such that επt = ε in the diagram

Γ >→ G
π→→ G/Γ

ι ↓ = ↓ ε ↓
N >→ G

κ→→ Q.

Then the composite ts is a section of κ.



Proof. κts = επts = εs = idQ. 2

Theorem 2.3 Assume that Q is finitely generated, Np is commutative for
all primes p except for a finite number p1, p2, . . . , pk, and Npi

is torsion for
i = 1, 2, . . . , k. Then (2.1) splits.

Proof. Write P = {p1, p2, . . . , pk}, and set Γ = Np1Np2 · · ·Npk
. Then Γ is

a direct factor in TN and certainly normal in G. If π denotes the projection
of G onto G/Γ, then for each prime p the homomorphism πpτ(p) splits the
extension

N/Γ >→ G/Γ
ε→→ Q, (2.2)

at the prime p, since εpπpτ(p) = κpτ(p) = idQp . But N/Γ is commutative
because (N/Γ)p is commutative for all p. Hence, (2.2) splits by part (a) of
Theorem 0.1. We next check that

Γ >→ G
π→→ G/Γ (2.3)

also splits, so that the theorem will follow from Lemma 2.2. Since Γ is torsion
and almost torsionfree, by Theorem 2.1 it suffices to check that (2.3) splits
at every prime p. If p ∈ P then the p-localization of (2.3) coincides with the
p-localization of (2.1) and hence splits. If p ∈ P ′, then Γp = {1} and hence
πp also admits an obvious section. This completes the argument. 2

It remains to show that some restriction on the sequence (2.1) is necessary
in order to deduce from the splitting of its localizations that it itself splits.

We confine ourselves to the situation in which both N and Q are com-
mutative and will further assume that Q is a group of pseudo-integers [3],
i.e. such that Qp

∼= Cp for all primes p, where C is cyclic infinite.

Lemma 2.4 Let Q be a group of pseudo-integers. Then Hn(Q) = 0 for
n ≥ 2.

Proof. If n ≥ 2 we have

Hn(Q)p ∼= Hn(Qp) ∼= Hn(Cp) ∼= Hn(C)p = 0

for all p. It follows that Hn(Q) = 0. 2



Proposition 2.5 Let N be commutative and Q a group of pseudo-integers.
Then, for every central extension N >→ G→→ Q, G is commutative.

Proof. Since Hom(H2(Q), N) = 0, we have H2(Q;N) = Ext(Q,N). 2

We will thus concentrate on abelian extensions

N >→ G→→ Q

with Q a group of pseudo-integers.

Proposition 2.6 Every such abelian extension splits at every prime.

Proof. Np >→ Gp →→ Qp is an extension of Zp-modules with Qp free. 2

We will now study Ext(Q,N), writing our abelian groups additively.
Then, if we enumerate the primes, Q is characterized by a set of non-negative
integers (n1, n2, . . .), in the sense that Q = 〈1/pn1

1 , 1/p
n2
2 , . . .〉. Thus there is

an exact sequence
Z >→ Q→→

⊕
i

Z/pni
i ,

giving rise to an exact sequence

Hom(Z, N)→ Ext(
⊕
i

Z/pni
i , N)→ Ext(Q,N)→ 0. (2.4)

Now Ext(
⊕
i Z/p

ni
i , N) =

∏
i Ext(Z/pni

i , N) =
∏
iN/p

ni
i N , so that (2.4) be-

comes
N

θ→
∏
i

N/pni
i N→→Ext(Q,N).

Moreover it is easy to see that the ith component of θ is just the standard
projection of N onto N/pni

i N . We conclude that

Ext(Q,N) ∼= coker θ;

and it only remains to describe conditions under which coker θ 6= {0}. Obvi-
ously a sufficient condition is that N be countable and

∏
iN/p

ni
i N uncount-

able. Now
∏
iN/p

ni
i N is uncountable if N/pni

i N 6= {0} for infinitely many i.
This will occur if there are infinitely many i such that ni > 0 and N is not
pi-divisible. Thus we infer

Theorem 2.7 Let N be a countable abelian group and let

Q = 〈1/pni
i , i = 1, 2, . . .〉

be a group of pseudo-integers. Then Ext(Q,N) is uncountable, provided there
exist infinitely many i such that ni > 0 and N is not pi-divisible. 2



Notice that we may take as suitable groups N

(i) any countable abelian group having a Z-summand;

(ii) any countable abelian torsion group such that Np is non-zero and
reduced for infinitely many primes p.

In case (i) any group of pseudo-integers not isomorphic to Z would be a
suitable Q; in case (ii) Q would need to be chosen more carefully. Of course,
case (i) immediately allows us to generalize to the following result.

Corollary 2.8 Let N be an abelian group having a Z-summand and let Q be
a group of pseudo-integers, Q 6∼= Z. Then Ext(Q,N) is uncountable.

In fact, we know that the conclusion of Corollary 2.8 holds so long as Q
is Zk-like but Q 6∼= Zk, with the same assumption on N .
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