
On nilpotent groups which are finitely
generated at every prime

By
Carles Casacuberta and Peter Hilton

0 Introduction

Certain theorems of algebraic topology, as of abelian or nilpotent group the-
ory, depend for their validity on the assumption that groups which enter into
their statement are finitely generated. Consider, for example, the following
theorem on fibre spaces:

Theorem 0.1 Let F
i
→ E

g
→ B be a fibration with F , E connected and

B simply-connected, and let

F
i
→ E

g
→ B

↓ fF ↓ fE ↓ fB

F
i
→ E

g
→ B

be a self-map of the fibration. Then if (fB)∗ : H∗(B) ∼= H∗(B) and if
(fE)∗ : i∗H∗(F ) ∼= i∗H∗(F ), then (fF )∗ : H∗(F ) ∼= H∗(F ) and
(fE)∗ : H∗(E) ∼= H∗(E).

As pointed out by J. M. Cohen ([4]), this theorem is false in general but
becomes true if one adds the condition that the spaces F , E, B have finitely
generated homology groups.
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We have recently noticed that theorems like Theorem 0.1 can be rendered
valid by imposing a condition much weaker than that of finite generation
on the abelian (or, more generally, nilpotent) groups involved; namely, one
assumes that such an abelian group is finitely generated at every prime.

To explain this notion, consider a P -local nilpotent group N , where P is
a family of primes. We say that a collection of elements {xi} in N generate
the P -local subgroup M of N if M is the smallest P -local subgroup of N
containing the elements xi. We then say that N is finitely generated (fg)
as a P -local group if there exists a finite set {x1, x2, . . . , xk} of elements of
N which generate it in the above sense. We further say that the nilpotent
group G is finitely generated at every prime (fgp) if Gp is a finitely generated
p-local group for all primes p. Of course, fg nilpotent groups are fgp, but the
converse is false. Indeed, as shown in [5], there are even uncountably many
isomorphism classes of abelian groups B such that Bp

∼= Zp for all primes p.

Among the fgp nilpotent groups are to be found the groups B which are
N -like for a given fg nilpotent group N , in the sense that Bp

∼= Np for all
primes p; we would also say that B is in the extended genus of N , written
B ∈ EG(N). We should, more accurately, describe the isomorphism class of
B as belonging to EG(N).

It was shown in [2] that the study of the extended genera EG(A), where
A is a given fg abelian group, reduces to the study of EG(Zk), where Zk

is free abelian of rank k. Of course, there are abelian groups B which are
fgp without being A-like for some fg abelian group A. Indeed, one readily
proves:

Theorem 0.2 Let B be a fgp abelian group. Then B is A-like for some fg
abelian group A if and only if B is almost torsionfree, that is, TBp = 0 for
almost all primes p.

In Section 1 we study criteria for a torsionfree abelian group of rank k to
be Zk-like. Here we would like to mention the criterion of coatomicity , drawn
to our attention by H. Zöschinger, and the notion of relative height , which is
a kind of relative valuation on the elements of Qk in a given embedding

Zk ∼= A ⊆ B ⊆ Qk (0.1)
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According to [8], an R-module M is coatomic if each proper submodule
of M is contained in a maximal submodule of M ; or, equivalently, if each
non-trivial quotient module of M has maximal submodules. In the case in
which R = Z, so that we are dealing with abelian groups, it is plain that K
is a maximal proper subgroup of H if and only if H/K is simple, that is, if
and only if H/K = Z/p for some prime p. It turns out, not surprisingly, that
a torsionfree abelian group of rank k is Zk-like if and only if it is coatomic
(see Theorem 1.1).

Now given 0 6= x ∈ Qk in (0.1), there is the familiar p-valuation, or
p-height , of x rel B which we designate hBp (x). We relativize this notion by
introducing the relative p-valuation hB,Ap (x), defined by

hB,Ap (x) = hBp (x)− hAp (x). (0.2)

It is then plain that
hB,Ap (x) = hB,Ap (px)

so that it becomes meaningful to talk, in this relative sense, of the non-zero
elements of B having bounded relative p-heights hB,Ap . Indeed, we show that
a torsionfree abelian group B of rank k is Zk-like if and only if, for each
prime p, there exists a (non-negative) integer N(p) such that

hB,Ap (x) ≤ N(p) for all 0 6= x ∈ B

(see Theorem 1.4).

In Section 2 we study fgp nilpotent groups in general; of course, our
results there have relevance for Zk-like groups. We draw particular attention
to the following unexpected phenomenon (see Corollary 2.3).

Theorem 0.3 Let ϕ: G→ G be an endomorphism of the nilpotent group G,
let x ∈ G, and let Hϕ(x) be the orbit group of x under ϕ, that is,

Hϕ(x) = 〈x, ϕx, . . . , ϕnx, . . .〉.

Then if Hϕ(x) is fgp, it is fg.

Thus, in particular, we see that, while there are uncountably many iso-
morphism classes of Zk-like groups, the only such isomorphism class which
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can occur as an orbit group for an endomorphism of a nilpotent group is
that of Zk itself. The study of those groups occurring as orbit groups thus
becomes a subject of interest. Abelian orbit groups are easy to characterize:
they are precisely the cyclic modules over the polynomial ring Z[x]. This
fact provides them with an obvious ring structure. Theorem 0.3 shows that
nilpotent orbit groups are also strongly restricted, but we do not have an
explicit characterization of them.

Theorem 0.3 is related to the principal group-theoretical notions discussed
in [6], [3]. One says that ϕ is finitary if Hϕ(x) is fg for all x ∈ G; and
that the automorphism ϕ is special if ϕ−1 is finitary — or, equivalently, if
x ∈ ϕHϕ(x) for all x ∈ G. Thus ϕ is a pseudo-identity ([6]) if and only
if ϕ is finitary and special1. Theorem 0.3 has the obvious consequence, in
an obvious terminology, that an endomorphism of a nilpotent group G is
finitary (special, a pseudo-identity) if it is finitary (special, a pseudo-identity)
at every prime. The converse also holds. For, given y ∈ Gp, we may write
yn = epx for some p′-number n and some x ∈ G, so that (see (2.3) and (2.4))
Hϕp(y) = Hϕ(x)p. Hence, if ϕ is finitary, then ϕp is finitary for every p.

The first-named author gratefully acknowledges support from the Comis-
sió Interdepartamental de Recerca i Innovació Tecnològica, CIRIT.

1 Characterizations of Zk-like groups

Let B be a subgroup of Qk of rank k, let {x1, x2, . . . , xk} be a maximal
linearly independent set in B, and let A = 〈x1, x2, . . . , xk〉. We may recognize
whether B is Zk-like by any of the criteria embodied in the following theorem.

Theorem 1.1 If B, A are as above, then the following statements are equiv-
alent:

(i) B is Zk-like;

(ii) Bp is fg for each prime p;

(iii) (B/A)p is finite for each prime p;

1The idea of separating the notion of pseudo-identity into its two “constituent” at-
tributes of being finitary and special is due to Francesco Caserta.
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(iv) (B/A)p has finite exponent for each prime p;

(v) B is coatomic;

(vi) B has no non-trivial divisible quotient.

Proof. Since Bp is a torsionfree rank k Zp-module, it is clear that Bp
∼= Zk

p

if and only if Bp is fg. Thus (i) ⇔ (ii). Since B/A is a torsion group and A
is fg, it is clear that (B/A)p is finite if and only if Bp is fg. Thus (ii) ⇔ (iii).

Now B is coatomic if and only if every non-zero quotient H has maximal
subgroups. But

H has maximal subgroups ⇔

⇔ H has a Z/p quotient for some p ⇔

⇔ H is not divisible. (1.1)

For if H is not divisible then pH 6= H for some prime p and then H/pH is a
non-trivial Z/p-vector space. Thus B is coatomic if and only if no non-trivial
quotient is divisible, so (v) ⇔ (vi). Plainly (iii) ⇒ (iv).

To complete the argument, observe that, if T = B/A, then

(a) if Tp is infinite then Tp has a Z/p∞ quotient; and

(b) if Tp has finite exponent there is no surjection Bp →→ Z/p∞.

To see (a), we note that Tp ⊆ (Qk/A)p = (Z/p∞)k. If Tp is infinite,
some projection πi : Tp → Z/p∞, 1 ≤ i ≤ k, has infinite range; but then
πi : Tp →→ Z/p∞. To see (b), we note that, if Tp has exponent pn and if
κ: Bp →→ Z/p∞, then κ|Ap : Ap →→ Z/p∞. For if y ∈ Z/p∞, let pnz = y, z = κx,
x ∈ Bp. Then y = κ(pnx) and pnx ∈ Ap. But, of course, there can be no
surjection Ap →→ Z/p∞.

Now if B has a non-trivial divisible quotient, then Bp has a Z/p∞ quo-
tient for some p. This contradicts (ii), so (ii) ⇒ (vi). If Tp is infinite then
T , and hence B, has a Z/p∞ quotient, by (a) above, so (vi) fails. Thus
(vi) ⇒ (iii). Finally if (vi) fails, then, as above, Bp has a Z/p∞ quotient
for some p, so (iv) fails, by (b) above. Thus (iv) ⇒ (vi) and Theorem 1.1 is
proved. 2

Remark. Conditions (ii), (v), (vi) are plainly intrinsic to B. On the other
hand, conditions (iii) and (iv) depend on the choice of maximal linearly
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independent set in B — or, at least, on the group A they generate. Although
the group B/A does depend on this choice, it is not difficult to see directly
that the qualitative properties described in (iii) and (iv) do not.

We now proceed to give a very concrete characterization of Zk-like groups
in terms of the p-heights of their elements. If B is, as before, a rank k
subgroup of Qk, we may assign a p-valuation (see [1]) to the non-zero elements
of Qk by defining

hBp (x) = sup{r | ∃y ∈ Bp with pry = x}, 0 6= x ∈ Qk. (1.2)

Thus hBp (x) is an integer or infinity. Plainly hBp (x) ≥ 0 if x ∈ Bp, and
hBp (x) = hBp

p (x). Also we observe that

hBp (px) = hBp (x) + 1, 0 6= x ∈ Qk. (1.3)

Now it is clear from (1.2) that if Bp
∼= Zk

p then no element of Qk can
have an infinite p-valuation hBp . On the other hand, an example due to
I. Kaplansky ([7], Theorem 19, p. 46) shows that there is a rank 2 subgroup
of Q2 which contains no element with infinite p-valuation but which has
Z/p∞ as a quotient. Thus we need a refinement of the notion of p-valuation
in order to characterize Zk-like groups.

The intuitive idea is that, in Zk-like groups, the p-heights of elements are
bounded. To give precision to this idea, we introduce a relativization of the
notion of p-valuation, in the following definition.

Definition 1.1 Let A, B, with A ⊆ B, be two rank k subgroups of Qk.
Then, for each x ∈ Qk such that hAp (x) < ∞, we introduce a relative
p-valuation by defining

hB,Ap (x) = hBp (x)− hAp (x).

If x ∈ B we call hB,Ap (x) the p-height of x rel A.

Notice that if Ap ∼= Zk
p then hAp (x) <∞ for all non-zero x in Qk, so that

hB,Ap (x) is always defined. We collect some elementary properties of hB,Ap in
the following portmanteau lemma.
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Lemma 1.2 (a) hB,Ap (x) ≥ 0 whenever it is defined;

(b) hB,Ap = hBp,A
p = hBp,Ap

p ;

(c) hB,Ap (x) = hB,Ap (px).

Proof. (a) follows from the inclusion Ap ⊆ Bp; (b) is obvious; (c) follows
from (1.3). 2

We now assign to A its meaning in Theorem 1.1; thus {x1, x2, . . . , xk} is
a linearly independent set in B, and A = 〈x1, x2, . . . , xk〉. We set T = B/A
as before. We now prove

Theorem 1.3 hB,Ap (x) ≤ N for all 0 6= x ∈ B if and only if pNBp ⊆ Ap.

Proof. Suppose hB,Ap (x) ≤ N for all 0 6= x ∈ B. If 0 6= y ∈ Bp, there
exists a p′-number m such that my ∈ B. Then hB,Ap (my) ≤ N so that
hAp (my) ≥ −N . Thus pN(my) ∈ Ap, so that pNy ∈ Ap, and it follows that
pNBp ⊆ Ap.

Conversely, suppose that pNBp ⊆ Ap. If there existed x ∈ B with
hB,Ap (x) ≥ N + 1, then

hBp (x)− hAp (x) ≥ N + 1,

so N − hBp (x) ≤ −(hAp (x) + 1).

Now p−h
B
p (x)x ∈ Bp, so pN−h

B
p (x)x ∈ Ap. Thus p−(hA

p (x)+1)x ∈ Ap, contradict-
ing the definition of hAp . 2

We are now able to prove our main theorem.

Theorem 1.4 Let B, A be as in Theorem 1.1. Then B is Zk-like if and
only if, for each prime p, there exists N(p) such that hB,Ap (x) ≤ N(p) for all
0 6= x ∈ B.

Proof. We know from Theorem 1.1 that B is Zk-like if and only if Tp
has finite exponent for each prime p. But Tp has finite exponent for each
p if and only if there exists, for each p, a positive integer N(p) such that
pN(p)Bp ⊆ Ap. We now apply Theorem 1.3 to complete the proof. 2
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It is interesting, in the light of Theorem 1.4, to see what relative heights
hB,Ap (x) can occur when B is Zk-like. Let us suppose that N(p) is actually

chosen so that pN(p) is the exponent of Tp. We set

M = N(p)

m = min{hBp (x1), . . . , h
B
p (xk)}

where A = 〈x1, x2, . . . , xk〉 and prove, for B a Zk-like group,

Theorem 1.5 There exists x ∈ B with hB,Ap (x) = h if and only if
m ≤ h ≤M .

(It is plain from Theorem 1.4 and the choice of M that m ≤M).

Proof. Let y ∈ Bp be chosen so that its image in Tp has exponent pM .
Then y is not divisible by p in Bp; moreover we may choose y to be in B.
Thus hBp (y) = 0, hAp (y) = −M , and hB,Ap (y) = M . Furthermore, Theorem
1.4 tells us that, for all 0 6= x ∈ B, hB,Ap (x) ≤M .

We next show that, for all 0 6= x ∈ B, hB,Ap (x) ≥ m. Let x =
∑k
i=1 λixi,

λi ∈ Q. Now p−h
A
p (x)x ∈ Ap, so that p−h

A
p (x)λi ∈ Zp, all i. Also p−mxi ∈ Bp,

all i, so
p−h

A
p (x)−mx ∈ Bp, whence hBp (x) ≥ hAp (x) +m,

or hB,Ap (x) ≥ m,

as required.

It only remains to prove that, if m < h < M , then there exists x ∈ B
with hB,Ap (x) = h. We have elements y, z such that hB,Ap (z) = m, hB,Ap (y) =
M . Moreover pMy = y′ with y′ in Ap and we may replace y′ by ny′, for a
suitable p′-number n, to obtain finally an element ȳ in A with hB,Ap (ȳ) = M ,
hAp (ȳ) = 0.

Renaming ȳ, we thus have elements y, z, actually in A, such that

hB,Ap (z) = m, hAp (z) = 0;

hB,Ap (y) = M, hAp (y) = 0.

Set
x = ph−mz + y.

8



Then x ∈ A and x 6= 0 since hAp (y) = 0 and h > m. On the other hand,

p−hx = p−mz + p−hy ∈ Bp,

since hBp (z) = m, hBp (y) > h;

p−h−1x = p−m−1z + p−h−1y 6∈ Bp,

since p−m−1z 6∈ Bp, but hBp (y) ≥ h+ 1, so p−h−1y ∈ Bp;

and p−1x = ph−m−1z + p−1y 6∈ Ap,

since h ≥ m+1, so ph−m−1z ∈ A, but p−1y 6∈ Ap. Thus hBp (x) = h, hAp (x) = 0,
hB,Ap (x) = h, and the theorem is proved. 2

Remark. It is easy to compute m and M from a reduced representation of
B (see [2]). Indeed, given such a representation R∗ one sees that M is the
largest power of p occurring in the denominator of an entry in Rp, written as
a reduced fraction. Of course, we assume here that A = 〈e1, e2, . . . , ek〉. For
example, let k = 2 and

Rp =

(
p−1 p−4

0 p−3

)
, all p.

Thus B = 〈p−1e1, p
−4e1+p−3e2, all p〉. We see that hBp (e1) = 1, hBp (e2) = 0,

so m = 0; and M = 4, for all p.

On the other hand, B is not characterized by m and M . For if

R′p =

(
p−2 p−4

0 p−2

)
, all p

we again have m = 0, M = 4 for all p; but if B′ = 〈p−2e1, p
−4e1 +

p−2e2, all p〉 then B 6∼= B′. This can be seen for example as follows. As-
sume that there exists a matrix N ∈ GL2(Q) such that R−1

p NR′p ∈ GL2(Zp)
for all primes p (see [2]). Then writing

R−1
p NR′p =

(
p −1
0 p3

)(
x y
z t

)(
p−2 p−4

0 p−2

)
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and evaluating this product we deduce that in particular p−1z+pt and p−1x−
p−2z belong to Zp for all primes p. But x, y, z, t are rational numbers which
do not depend on p. If t = 0 then p−1z ∈ Zp for all p, which forces z = 0
and hence contradicts the fact detN 6= 0. If t 6= 0 and z 6= 0 then we can
choose a prime p such that both t and z have p-valuation 0. Then z + p2t
must also have p-valuation 0 and this contradicts the fact p−1z + pt ∈ Zp.
Hence z = 0. But then p−1x ∈ Zp for all primes p, which gives x = 0. This
is again absurd.

2 Properties of fgp nilpotent groups

Recall that we are using the notation fgp for those nilpotent groups which
are finitely generated at every prime. Our main aim in this section is to
describe certain properties which fgp nilpotent groups have in common with
fg nilpotent groups. Of course, Zk-like groups form an important subclass of
the class of fgp groups.

If ϕ: G→ G is an endomorphism of the nilpotent group G and if x ∈ G,
we write Hϕ(x) for the orbit group of x under ϕ; thus

Hϕ(x) = 〈x, ϕx, . . . , ϕnx, . . .〉. (2.1)

If ep : G → Gp is the p-localization, then we understand by Hϕp(y),
y ∈ Gp, the p-local subgroup of Gp generated by the ϕp-orbit of y, so we may
write

Hϕp(y) = 〈y, ϕpy, . . . , ϕnpy, . . .〉p. (2.2)

Notice that
Hϕ(x)p = Hϕp(epx) (2.3)

and that
Hϕp(y) = Hϕp(yn) for any p′-number n. (2.4)

We now introduce a key definition.

Definition 2.1 Let ϕ: G→ G be an endomorphism of the nilpotent group
G. We say that (G,ϕ) has property P if, for all x ∈ G,

Hϕ(x) fg ⇔ Hϕp(epx) fg for all primes p. (2.5)
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We further say that G has property P if (G,ϕ) has property P for all
ϕ: G→ G.

Notice (i) that Hϕp(epx) is to be understood as a p-local group and is
to be understood as fg in this sense; and (ii) that the implication ‘⇒’ is
essentially trivial and need not detain us in the sequel.

We will show that every nilpotent group has property P . We first need
a technical lemma.

Lemma 2.1 Let
G′ >→ G

κ
→→ G′′

↓ ϕ′ ↓ ϕ ↓ ϕ′′

G′ >→ G
κ
→→ G′′

be an endomorphism of a short exact sequence of nilpotent groups. Then if
(G′, ϕ′) and (G′′, ϕ′′) have property P , (G,ϕ) also has property P .

Proof. We suppose that (G′, ϕ′) and (G′′, ϕ′′) have property P ; and we
assume that x ∈ G with Hϕp(epx) fg for each prime p. Then Hϕ′′

p
(e′′pκx) =

κpHϕp(epx) is fg for each p, so that Hϕ′′(κx) is fg. Thus there exists n such
that

(ϕ′′)nκx ∈ 〈κx, ϕ′′κx, . . . , (ϕ′′)n−1κx〉

or κϕnx ∈ 〈κx, κϕx, . . . , κϕn−1x〉.

This implies that ϕnx = yz, where y ∈ 〈x, ϕx, . . . , ϕn−1x〉 and z ∈ G′. But
z = y−1ϕnx, so that

z ∈ G′ ∩ 〈x, ϕx, . . . , ϕnx〉.

Since z ∈ Hϕ(x), Hϕ′(z) = Hϕ(z) ⊆ Hϕ(x). Thus Hϕ′
p
(e′pz) ⊆ Hϕp(epx); but

a p-local subgroup of a fg p-local nilpotent group is fg, so that Hϕ′
p
(e′pz) is fg

for each p. It follows that Hϕ′(z) is fg, so that there exists m such that

ϕmz ∈ 〈z, ϕz, . . . , ϕm−1z〉. (2.6)

Now
ϕm+nx = (ϕmy)(ϕmz) (2.7)

and
ϕmy ∈ 〈ϕmx, ϕm+1x, . . . , ϕm+n−1x〉, (2.8)
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ϕiz ∈ 〈ϕix, ϕi+1x, . . . , ϕi+nx〉. (2.9)

From (2.6) and (2.9) we see that

ϕmz ∈ 〈x, ϕx, . . . , ϕm+n−1x〉,

so that (2.7) and (2.8) tell us that

ϕm+nx ∈ 〈x, ϕx, . . . , ϕm+n−1x〉.

This shows that (G,ϕ) has property P so the lemma is proved. 2

Theorem 2.2 Every nilpotent group G has property P .

Proof. We first set G = A, a torsionfree abelian group, and suppose that
ϕ : A → A is an endomorphism such that, for some x ∈ A, Hϕp(epx) is
fg for each prime p. Since we may assume A ⊆ Ap ⊆ A0 for each p, it is
unnecessary to write ‘epx’ and we use the simplified notation Hϕp(x).

Fix a prime q and suppose that

ϕnqx ∈ 〈x, ϕqx, . . . , ϕn−1
q x〉q.

This implies that

ϕnx =
n−1∑
i=0

λiϕ
ix, λi ∈ Zq, 0 ≤ i ≤ n− 1. (2.10)

But then λi ∈ Zp, 0 ≤ i ≤ n − 1, for almost all primes p. Thus there exists
a finite set of primes S such that

ϕnpx ∈ 〈x, ϕpx, . . . , ϕn−1
p x〉p unless p ∈ S. (2.11)

Enumerate the primes in S as p1, p2, . . . , ps. For each i, there exists ni such
that

ϕni
pi
x ∈ 〈x, ϕpi

x, . . . , ϕni−1
pi

x〉pi
, i = 1, 2, . . . , s.

Let N = max(n, n1, n2, . . . , ns). Then

ϕNp x ∈ 〈x, ϕpx, . . . , ϕN−1
p x〉p, for all primes p. (2.12)
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Now consider the subgroup 〈x, ϕx, . . . , ϕN−1x〉 of A. Its p-localization is
〈x, ϕpx, . . . , ϕN−1

p x〉p and (2.12) tells us that ϕNx belongs to each of these
p-localizations. Since any torsionfree nilpotent group is the intersection of
its p-localizations, we infer that

ϕNx ∈ 〈x, ϕx, . . . , ϕN−1x〉.

This shows that Hϕ(x) is fg, so our theorem is proved in this special case.

Next we set G = T , a torsion abelian group, and suppose that ϕ: T → T
is an endomorphism such that, for some x ∈ T , Hϕp(epx) is fg for each prime
p. Consider the finite set of primes S such that p divides |x| if p ∈ S.
Enumerate the primes in S as p1, p2, . . . , ps. If p 6∈ S, then Hϕp(epx) = 0.
For each i there exists ni such that

ϕni
pi

(epi
x) ∈ 〈epi

x, ϕpi
epi
x, . . . , ϕni−1

pi
epi
x〉pi

, i = 1, 2, . . . , s.

Let N = max(n1, n2, . . . , ns). Then

ϕNp (epx) ∈ 〈epx, ϕpepx, . . . , ϕN−1
p epx〉p, all primes p. (2.13)

We again consider the subgroup U = 〈x, ϕx, . . . , ϕN−1x〉 of T and observe
from (2.13) that, since ϕNp epx = epϕ

Nx, it follows that ϕNx is an element of
T such that epϕ

Nx ∈ Up for all primes p. This implies that ϕNx ∈ U or

ϕNx ∈ 〈x, ϕx, . . . , ϕN−1x〉.

This shows that Hϕ(x) is fg, so our theorem is also proved in this special
case.

We now allow G to be any abelian group. Let T be its torsion subgroup
with quotient A = G/T . If ϕ: G→ G is an arbitrary endomorphism, then ϕ
induces a commutative diagram

T >→ G →→ A
↓ ϕ′ ↓ ϕ ↓ ϕ′′

T >→ G →→ A.

But we have proved that (T, ϕ′) and (A,ϕ′′) have property P , so that (G,ϕ)
has property P , by Lemma 2.1. Since ϕ was an arbitrary endomorphism of
G, it follows that G has property P .
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We now complete the proof by induction on c = nilG, the result having
been proved if c = 1. If nilG = c, let Γ be the smallest non-trivial term of
the lower central series of G, so that nil (G/Γ) = c− 1. If ϕ: G→ G, then ϕ
induces a commutative diagram

Γ >→ G →→ G/Γ
↓ ϕ′ ↓ ϕ ↓ ϕ′′

Γ >→ G →→ G/Γ.

Since Γ is commutative, (Γ, ϕ′) has property P ; by our inductive hypothesis
(G/Γ, ϕ′′) has property P . Thus (G,ϕ) has property P , by Lemma 2.1. Since
ϕ was an arbitrary endomorphism of G, we conclude that G has property P ,
so that the theorem is proved. 2

Corollary 2.3 If ϕ : G → G is an endomorphism of the nilpotent group G
and if, for some x ∈ G, Hϕ(x) is fgp, then Hϕ(x) is fg. In particular if Hϕ(x)
is A-like for some fg abelian group A, then Hϕ(x) ∼= A.

Corollary 2.4 If ϕ : G → G is an endomorphism of a fgp nilpotent group
and if Hϕ(x) is an orbit group for ϕ, then Hϕ(x) is fg. That is, every endo-
morphism of a fgp nilpotent group is finitary ([6]).

Corollary 2.5 If ϕ : G → G is an automorphism of a fgp nilpotent group,
then ϕ is a pseudo-identity ([6]).

For both ϕ and ϕ−1 are finitary; and, for any automorphism ϕ, x ∈ ϕHϕ(x)
if and only if ϕ−1 is finitary.

Remark. The second part of Corollary 2.3 is of especial interest to us if
A = Zk, for it then tells us that orbit groups are groups of a very special
kind. They can only be Zk-like if they are actually isomorphic to Zk. In fact,
the precise structure of abelian orbit groups is easy to describe explicitly.

Theorem 2.6 An abelian group A is an orbit group if and only if there exists
an ideal α of the polynomial ring Z[x] such that the underlying abelian group
in the ring Z[x]/α is isomorphic to A.
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Proof. Any endomorphism ϕ: A → A induces a Z[x]-module structure on
A by the evident rule

x · a = ϕ(a), a ∈ A. (2.14)

Moreover, it is plain that (2.14) sets up a one-one correspondence between
the set End(A) and the collection of Z[x]-module structures on A. Now A is
an orbit group for some endomorphism of an abelian group containing A if
and only if there is an endomorphism ϕ of A itself such that the associated
Z[x]-module structure given by (2.14) is cyclic. This last condition is plainly
equivalent to the existence of a Z[x]-module epimorphism

f : Z[x]→→ A,

in which, of course, α = ker f is a submodule of Z[x], i.e. an ideal. 2

This simple structure suggests an alternative argument for showing that
each abelian group G has property P . Namely, if H is an orbit group for
some endomorphism of G, then, by Theorem 2.6, H is isomorphic to the
underlying abelian group in some ring of the form Z[x]/α, and hence Hp is
isomorphic to the underlying abelian group in the ring

Zp[x]/(α⊗ Zp). (2.15)

Now it is plain that

Lemma 2.7 Zp[x]/(α⊗Zp) is finitely generated as Zp-module if and only if
the ideal α⊗ Zp contains a monic polynomial.

Moreover it is readily seen that, if each α⊗Zp contains a monic polynomial,
then α must itself contain a monic polynomial, and hence Z[x]/α is fg as
abelian group. This says precisely that if H is fgp then it is fg, as required.

Another consequence of Theorem 2.6 is that every abelian orbit group
carries a ring structure induced by the multiplication in Z[x]. It is thus of
some interest to observe that every fg abelian group A is indeed an orbit
group, for we can always write it in the form

A ∼= Ze1 ⊕ . . .⊕ Zek ⊕ (Z/d1)ek+1 ⊕ . . .⊕ (Z/dm)ek+m
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with dm|dm−1| . . . |d2|d1. Then the shift endomorphism ϕ(ei) = ei+1, i =
1, . . . , k+m−1, ϕ(ek+m) = 0, is well defined and A = Hϕ(e1). This provides
A with a ring structure, namely that of Z[x] divided by the ideal

α = (d1x
k, . . . , dmx

k+m−1, xk+m).

Note that, although obviously every orbit group is countably generated,
Corollary 2.3 shows that the converse is false, even in the abelian case.

We finally consider Hopficity. It is well-known that fg nilpotent groups
are Hopfian. Moreover, essentially the same argument shows that this fact
holds also for fg nilpotent p-local groups. For it is easily seen to hold for fg
abelian p-local groups and one then argues by induction on nilpotency class,
using the fact that the terms of the lower central series of a p-local nilpotent
group are themselves p-local.

Let us call a nilpotent group G fully Hopfian if Gp is Hopfian for all primes
p. The above remark tells us the following:

Theorem 2.8 If G is a fgp nilpotent group, then G is fully Hopfian.

It is easy to see that a fully Hopfian nilpotent group is always Hopfian.
However, the converse is false, as Example 2.11 below shows. We first estab-
lish the facts needed for this example.

Lemma 2.9 Let Gi, i = 1, 2, . . ., be a sequence of groups such that

Hom(Gi, Gj) = 0 if i > j,

and let
∏
iGi be their restricted direct product. If ϕ:

∏
iGi →

∏
iGi, then ϕ

maps
∏
i≥kGi to itself.

Proof. Suppose 1 6= x ∈ ∏
i≥kGi and ϕx 6∈ ∏

i≥kGi. Then there exists
j < k such that πjϕ :

∏
i≥kGi → Gj satisfies πjϕx 6= 1. Let x = (xi),

i ≥ k. Then πjϕx =
∏
i πjϕxi and, for some i, πjϕxi 6= 1. This means that

πjϕιi : Gi → Gj is not the constant homomorphism, although j < i. 2

Theorem 2.10 With the notation and hypothesis of the lemma, if each Gi

is Hopfian, then
∏
iGi is Hopfian.
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Proof. We first show, by induction on the number of factors, that
∏N
i=1Gi

is Hopfian. For we know that a given ϕ:
∏N
i=1Gi →

∏N
i=1Gi sends

∏N
i=2Gi to∏N

i=2Gi. Thus we have∏N
i=2Gi >→ ∏N

i=1Gi →→ G1

↓ ϕ′ ↓ ϕ ↓ ϕ′′∏N
i=2Gi >→ ∏N

i=1Gi →→ G1.

Now suppose ϕ surjective. Then ϕ′′ is surjective and hence, G1 being Hopfian,
an automorphism. Thus ϕ′ is surjective and hence, by our inductive hypoth-
esis, an automorphism. It now follows that ϕ is itself an automorphism, so
the inductive step is established.

We now prove the theorem. By the lemma each ϕ:
∏
iGi →

∏
iGi sends∏

i≥kGi to
∏
i≥kGi. Thus we have, for each k ≥ 1,∏

i≥kGi >→ ∏
iGi →→

∏k−1
i=1 Gi

↓ ϕ′ ↓ ϕ ↓ ϕ′′∏
i≥kGi >→ ∏

iGi →→
∏k−1
i=1 Gi.

Now suppose ϕ surjective. Then ϕ′′ is surjective and hence, by what we
have just proved, an automorphism. Thus ϕ′ is surjective. If ϕ were not an
automorphism, there would exist x 6= 1 in

∏
iGi with ϕx = 1. Now fix k to

be the smallest index such that the component xk of x is non-trivial. Then
x ∈ ∏i≥kGi and we have∏

i≥k+1Gi >→ ∏
i≥kGi →→ Gk

↓ ↓ ϕ′ ↓ ϕk∏
i≥k+1Gi >→ ∏

i≥kGi →→ Gk.

Since ϕ′ is surjective, so is ϕk. But xk 6= 1 and ϕkxk = 1, contradicting the
Hopficity of Gk. 2

Example 2.11 We denote by S(i) the subgroup of Q generated by the set
{p−i, all p}. This group is clearly Z-like for each i ≥ 0 and hence fully
Hopfian by Theorem 2.8. If Gi = S(i) then the conditions of Theorem 2.10
are satisfied. Thus if G =

⊕
i S(i), then G is Hopfian; but G is plainly not

fully Hopfian, since no Gp is Hopfian. Of course, one may construct many
such examples using Zk-like groups for the constituent Gi.
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