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Abstract

We prove that, if X is a connected CW-complex of finite dimension with

only a finite number of nonzero Postnikov invariants, then the homotopy groups

πn(X) are rational vector spaces for n ≥ 2 and they vanish for all n sufficiently

large. Moreover, the fundamental group π1(X) is torsion-free and all its abelian

subgroups have finite rank. Our argument relies on Miller’s solution of a conjecture

due to Sullivan.

0 Introduction

It is well known that if a simply connected finite CW-complex is not contractible, then

it has infinitely many nonzero homotopy groups. This was proved by Serre in [15].

In fact, he proved that if X is a simply connected space of finite type with nontrivial

mod 2 homology and such that Hn(X; Z/2) = 0 for n sufficiently large, then there are

infinitely many values of i such that πi(X) contains a subgroup isomorphic to Z or Z/2

(see Théorème 10 in p. 217 of [15]).
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In the same article, Serre conjectured that, under the same assumptions, πi(X)

contains a copy of Z/2 for infinitely many values of i. This conjecture was proved

by McGibbon and Neisendorfer in [10] thirty years after. In fact, they proved Serre’s

conjecture for all primes p and without requiring that X be of finite type. The basic

ingredient in their article was Miller’s solution of the Sullivan conjecture [11]. An al-

ternative argument, still relying on Miller’s theorem, was given by Neisendorfer in [12],

using localization with respect to the constant map from an Eilenberg–Mac Lane space

K(Z/p, 1) to a point.

The results of Serre and McGibbon–Neisendorfer have subsequently been improved

by several authors. For simply connected spaces of finite mod 2 type, the assumption

that Hn(X; Z/2) be zero for almost all n was weakened by assuming only that the

cohomology H∗(X; Z/2) be locally finite as a module over the mod 2 Steenrod algebra

in [7], or that the reduced cohomology H̃∗(X; Z/2) be nilpotent in [8], or that X be

an n-cone in [5]. The hypothesis that X be simply connected was relaxed in [13] and

in [18]. More recently, Grodal has proved in [6] that if π1(X) is a finite p-group, X has

finite mod p type, and the module of indecomposables of H∗(X; Z/p) is locally finite,

then either X is mod p equivalent to the classifying space of a p-compact toral group

or πi(X) contains p-torsion for infinitely many values of i. This generalizes a result of

Dwyer and Wilkerson in [4].

In the present article, we consider CW-complexes of finite dimension with finitely

many nonzero homotopy groups, without any a priori restriction on the fundamental

group. Plenty of examples come to mind, such as wedges of circles, compact surfaces

with infinite fundamental group, rationalizations of spheres or complex projective spaces,

and finite products of any of these. However, we do not know any example of a finite

CW-complex with finitely many nonzero homotopy groups which is not a K(G, 1), and

the results of this paper suggest that it is unlikely that there exist any.

Our study originated from the observation that, if a space X has finite dimension and

only a finite number of nonzero Postnikov invariants, then the 1-connected cover of X is

a rational Postnikov piece. In order to prove this claim, which is stated as Theorem 1.1

below, one can either resort to the main result in [10], or give an alternative proof using
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techniques of homotopical localization. Both arguments, however, rely on the solution

of the Sullivan conjecture.

Of course, not all groups can be fundamental groups of finite-dimensional Postnikov

pieces. As we explain below, such a group is necessarily torsion-free and cannot contain

any abelian subgroup of infinite rank.

Acknowledgements. This note took its present form after a helpful exchange of ideas

with Dominique Arlettaz, Warren Dicks, and Jesper Grodal.

1 Statement and proof of results

All spaces considered in this paper are connected CW-complexes. Thus, we say that a

space X has dimension d if it has cells up to this dimension only. We say that a space X

is a Postnikov piece if the homotopy groups πi(X) vanish for almost all values of i.

A space X is called a GEM if it is homotopy equivalent to a (weak, possibly infinite)

product of Eilenberg–Mac Lane spaces K(An, n) where n ≥ 1 and each An is abelian.

Let us recall the definition of Postnikov invariants of (not necessarily simple) spaces.

If X is any connected space, then for each n ≥ 1 there is a homotopy fibration

X〈n〉 → X → PnX

where PnX is a Postnikov piece, X〈n〉 is n-connected and the map X〈n〉 → X induces

isomorphisms of homotopy groups at dimensions higher than n. For n ≥ 2, the homotopy

fibration

K(πn(X), n)→ PnX → Pn−1X

is classified, in the sense of [14], by a certain map

kn+1:Pn−1X → L(πn(X), n+ 1),

where we use the notation L(A,m) for the total space of a split fibre bundle

K(A,m)→ L(A,m)→ K(Aut(A), 1),
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in which the fundamental group of the base acts on the fibre by cellular homeomor-

phisms. Thus we may view kn+1 as a cohomology class in

Hn+1(Pn−1X; πn(X)),

where twisted coefficients are intended. These cohomology classes are called Postnikov

invariants of X.

The Postnikov invariants of the 1-connected cover X〈1〉 are the images of the Post-

nikov invariants of X under the obvious homomorphisms

Hn+1(Pn−1X; πn(X))→ Hn+1(Pn−1X〈1〉; πn(X)).

If n ≥ 1, then the condition that the Postnikov invariants km of a space X vanish for

m ≥ n + 3 is equivalent to the condition that the n-connected cover X〈n〉 be a GEM.

This is also true for n = 0 if the space X is simple; i.e., if π1(X) is abelian and its action

on the higher homotopy groups of X is trivial.

Theorem 1.1 If X is a CW-complex of finite dimension with only a finite number of

nonzero Postnikov invariants, then the following hold:

(a) X is a Postnikov piece.

(b) The homotopy groups πn(X) are Q-vector spaces for n ≥ 2.

(c) If G is any subgroup of π1(X), then the mod p homology groups Hn(G; Z/p) vanish

for all primes p if n is greater than the dimension of X.

Proof. Suppose that the Postnikov invariants ki of X vanish for i ≥ m + 2, where

m ≥ 1. Then the Postnikov invariants of the 1-connected cover X〈1〉 of X also vanish

for i ≥ m+ 2. Hence, X〈1〉 decomposes up to homotopy as a product

X〈1〉 ' X〈m〉 × PmX〈1〉

and the m-connected cover X〈m〉 is a GEM. If X has dimension d, then X〈1〉 has

dimension d as well. Therefore, the integral homology groups Hn(X〈1〉; Z) vanish for
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n > d. If the space X〈1〉 is not a Postnikov piece, then there is a positive integer n > d

and an abelian group A such that K(A, n) is a retract of X〈1〉. Thus, the identity map

of K(A, n) factors through X〈1〉, yielding a contradiction in homology. This shows that

X〈1〉 is a Postnikov piece and hence so is X.

Now it follows from Theorem 1 in [10] that Hn(X〈1〉; Z/p) = 0 for all n > 0 and

every prime p. This implies that the integral homology groups Hn(X〈1〉; Z) are Q-vector

spaces for n ≥ 2. Since X〈1〉 is simply connected, the homotopy groups πn(X) are also

Q-vector spaces for n ≥ 2.

Next, consider the homotopy fibration

X〈1〉 → X → K(π, 1), (1.1)

where π denotes the fundamental group of X. Since the homology groups Hn(X〈1〉; Z/p)
vanish for all primes p and n > 0, the Serre spectral sequence associated with (1.1) for

homology with mod p coefficients collapses, yielding isomorphisms

Hn(X; Z/p) ∼= Hn(π; Z/p) for all primes p and all n.

If G is any subgroup of π, then there is a covering space Y → X with π1(Y ) ∼= G. Then

there is also a homotopy fibration

X〈1〉 → Y → K(G, 1),

from which we infer that Hn(Y ; Z/p) ∼= Hn(G; Z/p) for all primes p and all n. Since Y

is a CW-complex of dimension d, we have shown that every subgroup of π has bounded

mod p homology for all primes p. ]

Part (c) in Theorem 1.1 implies, of course, that π1(X) is torsion-free. In fact it says

much more than this. For instance, it implies that π1(X) cannot contain any abelian

subgroup of infinite rank.

Theorem 1.2 For an abelian group A, the following assertions are equivalent:

• A is isomorphic to the fundamental group of a Postnikov piece of finite dimension.
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• A is a torsion-free abelian group of finite rank.

• There is a K(A, 1) of finite dimension.

Proof. Suppose that A ∼= π1(X) where X is a Postnikov piece of dimension d. Then

A is torsion-free and hence it embeds into A⊗Q. Suppose that the dimension of A⊗Q

over Q is greater than d. Then A contains a subgroup isomorphic to Zd+1. Since

Hd+1(Z
d+1; Z/p) is nonzero, this contradicts Theorem 1.1 and hence we have proved

that the rank of A is at most d.

If A has finite rank (say, r), then A embeds into Qr. If r = 1, then there is a

telescope of circles which is a K(A, 1) of dimension 2. If r ≥ 2, consider the cellular chain

complex of the universal cover of a K(Qr, 1) of dimension 2r. This is a free resolution

of Z as a trivial Z[A]-module, showing that the cohomology of K(A, 1) vanishes above

dimension 2r with arbitrary coefficients. Hence, there is a K(A, 1) of finite dimension;

see e.g. Theorem E in [17]. ]

Groups G for which there is a K(G, 1) of finite dimension have been extensively

studied; see e.g. [1]. However, as pointed out in the Introduction, we do not know any

example of a finite CW-complex with finitely many homotopy groups which is not a

K(G, 1). Theorem 1.1 tells us that, in order to decide whether such spaces exist or not,

the following question should be investigated.

Question 1.3 Can the higher homotopy groups of a finite CW-complex X be nonzero

rational vector spaces?

Of course, the answer is negative under suitable assumptions on X; for instance,

if X is nilpotent and finite, then the higher homotopy groups of X are finitely generated

abelian groups, so they cannot be nonzero rational vector spaces. However, if X is

finite but not nilpotent, then the higher homotopy groups of X need not be finitely

generated, not even as modules over the integral group ring of the fundamental group

π1(X); see [16]. This striking fact suggests that Question 1.3 might be more difficult

than one would naively expect.
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If we assume thatX has dimension 2, then the answer to Question 1.3 is also negative,

since H2(X〈1〉; Z) would then be a free abelian group and a rational vector space, hence

zero, and X〈1〉 would be contractible. For the validity of this argument it is not needed

that X be finite; thus, it follows from Theorem 1.1 that every Postnikov piece X of

dimension 2 is a K(G, 1). Motivated by these considerations and by Theorem 1.2, we

also prompt the following question.

Question 1.4 Suppose that a group G is isomorphic to the fundamental group of a

Postnikov piece of finite dimension. Is there a K(G, 1) of finite dimension?

2 An alternative argument

In the proof of Theorem 1.1, we have resorted to Theorem 1 in [10] at the key step. In

this section we point out that there is another argument based on localization techniques,

inspired by Neisendorfer’s article [12].

Thus, letX be a Postnikov piece of finite dimension. We give an alternative argument

to prove that the 1-connected cover X〈1〉 is a rational space.

Let L denote localization, in the sense of [3], with respect to the constant map

f :K(Z/p, 1) → ∗, where p is any fixed prime. Then, since X〈1〉 has finite dimension,

the based function space

map∗(K(Z/p, 1), X〈1〉)

is weakly contractible by [11], so that X〈1〉 is f -local; i.e., the localization map

X〈1〉 → LX〈1〉

is a homotopy equivalence. Now, for every abelian group A and n ≥ 2 there is a

homotopy fibration

F → K(A, n)→ K(A⊗ Z[1/p], n)

where F is a p-torsion space. Then it follows, as in § 7 of [2], that LF is contractible

and hence, using Theorem 1.H.1 in [3], we have

LK(A, n) ' LK(A⊗ Z[1/p], n) ' K(A⊗ Z[1/p], n),
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so that the p-completion LK(A, n)̂p is contractible. But if Y is any simply connected

space, then (LY )̂p is homotopy equivalent to LgY if g is the constant map from the wedge

K(Z/p, 1)∨M(Z[1/p], 1) to a point, where M denotes a Moore space. (As observed by

McGibbon in [9], this follows directly from Lemma 1.3 in [12].) Thus, from the fact that

X〈1〉 is a simply connected Postnikov piece of finite dimension we infer inductively that

the p-completion of X〈1〉 is contractible for all primes p and hence X〈1〉 is a rational

space.
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