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0 Introduction

Special forms of the following situation are often encountered in the liter-
ature: Given a class of morphisms M in a category C, consider the full
subcategory D of objects X ∈ C such that, for each diagram

A
f→ B

g ↓
X

with f ∈ M, there is a unique morphism h : B → X with hf = g. The
orthogonal subcategory problem [13] asks whether D is reflective in C, i.e.,
under which conditions the inclusion functor D → C admits a left adjoint
E : C → D; see [17]. Many authors have given conditions on the category
C and the class of morphisms M ensuring the reflectivity of D, sometimes
even providing an explicit construction of the left adjoint E : C → D; see
for example Adams [1], Bousfield [3, 4], Deleanu-Frei-Hilton [9, 10], Heller
[15], Yosimura [22], Dror-Farjoun [11], Kelly [12]. The functor E is often
referred to as a localisation functor of C at the subcategory D. Most of the
known existence results of left adjoints work well when the category C is
cocomplete [12] or complete [19]. Unfortunately, these methods cannot be
directly applied to the homotopy category of CW-complexes, as it is neither
complete nor cocomplete. This difficulty is often circumvented by resorting
to semi-simplicial techniques.

In this paper we offer a construction of localisation functors depending
only on the availability of certain weak colimits in the category C. From a



technical point of view, the existence of such weak colimits reduces our argu-
ments essentially to the situation in cocomplete categories. From a practical
point of view, however, our result is a simple recipe for the explicit construc-
tion of localisation functors. It unifies a number of constructions created
for specific purposes; cf. [4, 18, 20]. In fact, its scope goes beyond these
applications: For example, it can be used to show that there is a whole
family of functors extending P -localisation of nilpotent homotopy types to
the homotopy category of all CW-complexes. We deal with this issue in [7],
where we discuss the geometric significance of these functors as well as their
interdependence.

Section 1 of the present paper contains background, followed by the state-
ment and proof of our main result: the affirmative solution of the orthogonal
subcategory problem in a wide range of cases. In Section 2 we discuss ex-
tensions of a localisation functor in a category C to localisation functors in
supercategories of C. Our results allow us to give, in Section 3, a uniform
existence proof for various localisation functors and also to explain their in-
terrelation. The basic features of our project have been outlined in [8].
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1 Orthogonal pairs and localisation functors

We begin by explaining the basic categorical notions we shall use. Our main
sources are [1, 3, 4, 13].

A morphism f : A → B and an object X in a category C are said to be
orthogonal if the function

f ∗ : C(B,X)→ C(A,X)

is bijective, where C( , ) denotes the set of morphisms between two given
objects of C. For a class of morphisms M, we denote by M⊥ the class of
objects orthogonal to each f ∈ M. Similarly, for a class of objects O, we
denote by O⊥ the class of morphisms orthogonal to each X ∈ O.

Definition 1.1 An orthogonal pair in C is a pair (S,D) consisting of a class
of morphisms S and a class of objects D such that D⊥ = S and S⊥ = D.



If (E, η) is an idempotent monad [1] in C, then the classes

S = {f : A→ B | Ef : EA ∼= EB}

D = {X | ηX : X ∼= EX}
form an orthogonal pair (note that these could easily be proper classes). The
morphisms in S are then called E-equivalences and the objects in D are said
to be E-local . Not every orthogonal pair (S,D) arises from an idempotent
monad in this way; cf. [19]. If so, we call E the localisation functor associated
with (S,D). Then the full subcategory of objects in D is reflective and E is
left adjoint to the inclusion D → C. The following proposition enables us to
detect localisation functors.

Proposition 1.2 Let C be a category and (S,D) an orthogonal pair in C. If
for each object X there exists a morphism ηX : X → EX in S with EX in
D, then

(i) ηX is terminal among the morphisms in S with domain X;

(ii) ηX is initial among the morphisms of C from X to an object of D;

(iii) The assignment X 7→ EX defines a localisation functor on C associ-
ated with (S,D).

For each class of morphismsM, the pair (M⊥⊥,M⊥) is orthogonal. We
say that this pair is generated byM and callM⊥⊥ the saturation ofM. If
M⊥⊥ = M, then M is said to be saturated . This terminology applies to
objects as well. Note that if (S,D) is an orthogonal pair then both S and
D are saturated. The next properties of saturated classes are easily checked
and well-known in a slightly more general context [3, 13].

Lemma 1.3 If a class of morphisms S is saturated, then

(i) S contains all isomorphisms of C.
(ii) If the composition gf of two morphisms is defined and any two of

f , g, gf are in S, then the third is also in S.
(iii) Whenever the coproduct of a family of morphisms of S exists, it is

in the class S.
(iv) If the diagram

A
s→ B

↓ ↓
C

t→ D

is a push-out in which s ∈ S, then t ∈ S.
(v) If α is an ordinal and F : α→ C is a directed system with direct limit

T , such that for each i < α the morphism si : F (0) → F (i) is in S, then
sα : F (0)→ T is in S.



We call a class of morphisms S closed in C if it satisfies (i), (ii) and (iii)
in Lemma 1.3 above. We restrict attention to closed classes from now on.

We proceed with the statement of our main result. Recall that a weak
colimit of a diagram is defined by requiring only existence, without insisting
on uniqueness, in the defining universal property [17].

Theorem 1.4 Let C be a category with coproducts and let S be a closed class
of morphisms in C. Suppose that:

(C1) There is a set S0 ⊆ S with S⊥0 = S⊥.

(C2) For every diagram C
f← A

s→ B with s ∈ S there exists a weak
push-out

A
s→ B

f ↓ ↓
C

t→ Z

with t ∈ S.
(C3) There is an ordinal α such that, for every β ≤ α, every directed

system F : β → C in which the morphisms si : F (0)→ F (i) are in S for i < β
admits a weak direct limit T satisfying

(a) the morphism sβ : F (0)→ T is in S;
(b) for each s: A→ B in S0, every morphism f : A→ T factors through

f ′ : A→ F (i) for some i < α;

(c) if two morphisms g1, g2 : B → T satisfy g1s = g2s with s : A → B in
S0, then they factor through g′1, g

′
2 : B → F (i) for some i < α, in such a way

that g′1s = g′2s.

Then the class S is saturated and the orthogonal pair (S,S⊥) admits a local-
isation functor E. Furthermore, for each object X, the localising morphism
ηX : X → EX can be constructed by means of a weak direct limit indexed
by α.

Proof. For each morphism s: A→ B in S0 fix a weak push-out

A
s→ B

s ↓ ↓ t2
B

t1→ Zs

in which t1 ∈ S. Then also t2 ∈ S because S is closed.

Remark 1.5 With applications in mind, it is worth observing that part (c)
of hypothesis (C3) in Theorem 1.4 is satisfied if each map f : Zs → T factors
through f ′ : Zs → F (i) for some i < α.



Choose next a morphism us : Zs → B rendering commutative the diagram

A B

B Zs

s→

t1→

s ↓ ↓ t2

B,

H
HHH

HHH
HHHj

S
S

S
S

S
S

S
Sw

Z
Z

Z
Z

ZZ~

id

id

us

and note that us ∈ S. Write D for S⊥. We shall construct, for each object
X ∈ C, a morphism ηX : X → EX with EX ∈ D and ηX ∈ S. Set
X0 = X. Given i < α, assume that Xi has been constructed, together with
a morphism X → Xi belonging to S. Define a morphism σi : Xi → Xi+1 as
follows: For each s: A→ B in the set S0, consider all morphisms ϕ: A→ Xi

and ψ : Zs → Xi for which no factorisation through s : A → B, resp.
us : Zs → B, exists (if there are no such morphisms, then Xi ∈ D and
we may set EX = Xi). Choose a weak push-out

∐
s∈S0

((
∐
ϕA)

∐
(
∐
ψ Zs))

φ−→ ∐
s∈S0

((
∐
ϕB)

∐
(
∐
ψ B))

f ↓ ↓
Xi

σi−→ Xi+1

with σi ∈ S, in which f is the coproduct morphism and φ is the corresponding
coproduct of copies of s : A → B and us : Zs → B (which is therefore
a morphism in S). Iterate this procedure until reaching the ordinal α. If
β ≤ α is a limit ordinal, define Xβ by choosing a weak direct limit of the
system {Xi, i < β}, according to (C3). Set EX = Xα. The construction
guarantees that the composite morphism ηX : X → EX is in S. We claim
that EX ∈ D. Since D = S⊥0 , it suffices to check that EX is orthogonal to
each morphism in S0. Take a diagram

A
s→ B

f ↓
EX

with s ∈ S0. Then f factors through f ′ : A→ Xi for some i < α and hence,
either f ′ factors through s: A→ B, or there is a commutative diagram

A
s→ B

f ′ ↓ ↓ g′

Xi
σi→ Xi+1



which provides a morphism g : B → EX such that gs = f . Now suppose
that there are two maps g1, g2 : B → EX with g1s = g2s = f . Then we can
choose an object Xi with i < α, and morphisms g′1, g

′
2 : B → Xi such that

g′1s = g′2s. Using the weak push-out property of Zs, we obtain a morphism
h: Zs → Xi rendering commutative the diagram

A B

B Zs

s→

t1→

s ↓ ↓ t2

Xi.

HHH
HHH

HHHHj

S
S

S
S

S
S

S
Sw

Z
Z

Z
Z

ZZ~

g′
2

g′
1

h

Then, either h factors through us : Zs → B and g′1 = g′2, or there is a
commutative diagram

Zs
us→ B

h ↓ ↓ k
Xi

σi→ Xi+1

which yields

σig
′
1 = σiht1 = kust1 = k = kust2 = σiht2 = σig

′
2

and hence g1 = g2. This shows that EX ∈ D.
To complete the proof it remains to show that S⊥⊥ = S. The inclusion

S ⊆ S⊥⊥ is trivial. For the converse, let f : A → B be orthogonal to all
objects in D. Since ηA : A → EA is in S and EB ∈ D, there is a unique
morphism Ef rendering commutative the diagram

A
f→ B

ηA↓ ↓ ηB

EA
Ef→ EB.

But ηBf is orthogonal to EA and this provides a morphism g : EB → EA
which is two-sided inverse to Ef . Hence Ef is an isomorphism and f ∈ S
because S is closed. 2

Given an orthogonal pair (S,D), the class S is saturated and, a fortiori,
closed. Therefore

Corollary 1.6 Let C be a category with coproducts and (S,D) an orthogonal
pair in C. Suppose that some set S0 ⊆ S generates the pair (S,D) and that
the class S satisfies conditions (C2) and (C3) in Theorem 1.4. Then the pair
(S,D) admits a localisation functor E.



Moreover, if the category C is cocomplete, then it follows from Lemma 1.3
that for each orthogonal pair (S,D) condition (C2) and part (a) of condition
(C3) are automatically satisfied. This leads to Corollary 1.7 below. An ob-
ject X has been called presentable [14] or s-definite [3] if, for some sufficiently
large ordinal α, the functor C(X, ) preserves direct limits of directed sys-
tems F : α → C. For example, all groups are presentable [3]. For finitely
presented groups it suffices to take α to be the first infinite ordinal.

Corollary 1.7 [3] Let C be a cocomplete category. Let (S,D) be the orthog-
onal pair generated by an arbitrary set S0 of morphisms of C. Suppose that
the domains and codomains of morphisms in S0 are presentable. Then (S,D)
admits a localisation functor.

Since any colimit of presentable objects is again presentable, the following
definition together with the results of [19] imply Corollary 1.9 below.

Definition 1.8 A set {Eα} of objects of a category C is a cogenerator set of C
if any morphism f : X → Y of C inducing bijections f∗ : C(Eα, X) ∼= C(Eα, Y )
for each α, is an isomorphism.

Corollary 1.9 Let C be a cocomplete category. Suppose that C has a cogener-
ator set whose elements are presentable. Then any orthogonal pair generated
by an arbitrary set of morphisms of C admits a localisation functor.

2 Extending localisation functors

Let E be a localisation functor on the subcategory C ′ of C. We wish to
discuss extensions of E over C. Familiar examples include the extension
of P -localisation of abelian groups to nilpotent groups and further to all
groups. Two problems arise here: existence —for which we often refer to
Theorem 1.4— and uniqueness. An appropriate setting for discussing the
latter is obtained by partially ordering the collection of all orthogonal pairs
in C as follows: For two given orthogonal pairs (S1,D1), (S2,D2) in C we
write (S1,D1) ≥ (S2,D2) if D1 ⊇ D2 (or, equivalently, if S1 ⊆ S2).

Remark 2.1 If E1, E2 are localisation functors associated to (S1,D1) and
(S2,D2) respectively, and if (S1,D1) ≥ (S2,D2), then there is a natural trans-
formation of functors E1 → E2. In fact, the restriction of E2 to D1 is left
adjoint to the inclusion D2 → D1.



An orthogonal pair (S,D) of C is said to extend the orthogonal pair
(S ′,D′) of the subcategory C ′ if both S ′ ⊆ S and D′ ⊆ D. The collection of
all extensions of (S ′,D′) is partially ordered. Moreover we have

Proposition 2.2 Let C ′ be a subcategory of C and (S ′,D′) an orthogonal
pair in C ′. If (S,D) is an extension of (S ′,D′) to C, then

((S ′)⊥⊥, (S ′)⊥) ≥ (S,D) ≥ ((D′)⊥, (D′)⊥⊥),

where orthogonality is meant in C.

In this situation, we call the orthogonal pair in C generated by the class S ′
the maximal extension of (S ′,D′), and the one generated by D′ the minimal
extension. A convenient tool for recognising such extremal extensions is given
in the next proposition.

Proposition 2.3 Let C ′ be a subcategory of C, (S ′,D′) an orthogonal pair in
C ′, and (S,D) an extension of (S ′,D′) to C. Then

(a) (S,D) is the maximal extension of (S ′,D′) if and only if there is a
subclass S0 ⊆ S ′ such that S⊥0 ⊆ D.

(b) (S,D) is the minimal extension of (S ′,D′) if and only if there is a
subclass D0 ⊆ D′ such that D⊥

0 ⊆ S.

Of course (S ′,D′) admits a unique extension to C if and only if the minimal
and the maximal extensions coincide.

Example 2.4 Let C be the category of finite groups and C ′ the subcategory
of finite nilpotent groups. Fix a prime p and consider the orthogonal pair
(S ′,D′) in C ′ associated to p-localisation [16]. The class D′ consists of all
p-groups, and the orthogonal pair (S,D) = ((D′)⊥,D′) in C is both the
maximal and the minimal extension of (S ′,D′) to C. The pair (S,D) admits a
localisation functor —namely, mapping each finite group G onto its maximal
p-quotient—, which is therefore the unique extension to all finite groups of
the p-localisation of finite nilpotent groups.

3 Applications of the basic existence result

Examples 3.1, 3.2 and 3.3 below discuss well-known functors, each of whose
constructions may be viewed as particular cases of Theorem 1.4. Examples
3.4 to 3.7 are new.



Example 3.1 Let H1 be the pointed homotopy category of simply-connec-
ted CW-complexes, and P a set of primes. The P -localisation functor de-
scribed by Sullivan [21] is associated to the orthogonal pair (S,D) generated
by the set

S0 = {ρkn : Sk → Sk | deg ρkn = n, k ≥ 2, n ∈ P ′},

where P ′ denotes the set of primes not in P . Objects in D are simply-
connected CW-complexes whose homotopy groups are ZP -modules. Mor-
phisms in S are H∗( ;ZP )-equivalences. The hypotheses of Corollary 1.6
are fulfilled by taking α to be the first infinite ordinal and using homotopy
colimits.

Example 3.2 Let H denote the pointed homotopy category of connected
CW-complexes and h∗ an additive homology theory. Take S to be the class
of morphisms f : X → Y inducing an isomorphism f∗ : h∗(X) ∼= h∗(Y ). We
know from [4] that S satisfies the hypotheses of Theorem 1.4: Choose α to be
the smallest infinite ordinal whose cardinality is bigger than the cardinality
of h∗(pt); the collection of all CW-inclusions ϕ: A→ B with h∗(ϕ) = 0 and
card(B) < card(α) represents a set S0 with S⊥0 = S⊥.

In the case h∗ = H∗( ;ZP ), the corresponding orthogonal pair (S,D)
extends the pair (S ′,D′) associated with P -localisation of nilpotent spaces
(see [4]). It is indeed the minimal extension of (S ′,D′), because the spaces
K(ZP , n), n ≥ 1, belong to D′ (cf. Proposition 2.3).

Example 3.3 Let G be the category of groups and P a set of primes. The
P -localisation functor described by Ribenboim [20] is associated to the or-
thogonal pair (S,D) generated by the set

S0 = {ρn : Z→ Z | ρn(1) = n, n ∈ P ′}.

Groups in D are those in which P ′-roots exist and are unique. Such groups
have been studied for several decades (see [2, 20] and the references there).
The hypotheses of Theorem 1.4 are readily checked (use Corollary 1.7). We
may choose α to be the first infinite ordinal. We denote by l: G→ GP the
P -localisation homomorphism.

If (S ′,D′) is the orthogonal pair corresponding to P -localisation of nilpo-
tent groups, then, since S0 ⊂ S ′, Proposition 2.3 implies that (S,D) is the
maximal extension of (S ′,D′). In particular, for each group G there is a nat-
ural homomorphism from GP to the Bousfield HZP -localisation of G (cf. [5]).



Example 3.4 Example 3.3 can be generalised to the category C of π-groups
for a fixed group π; that is, objects are groups with a π-action and morphisms
are action-preserving group homomorphisms. Let F (ξ) be the free π-group on
one generator (it can be explicitly described as the free group on the symbols
ξx, x ∈ π, with the obvious left π-action; cf. [18]). Define a π-homomorphism
ρn,x : F (ξ)→ F (ξ) for each x ∈ π, n ∈ Z, by the rule

ρn,x(ξ) = ξ(x · ξ)(x2 · ξ) . . . (xn−1 · ξ)

and consider the set of morphisms

S0 = {ρn,x : F (ξ)→ F (ξ) | x ∈ π, n ∈ P ′}.

By Corollary 1.7, the orthogonal pair (S,D) generated by S0 admits a local-
isation functor. It again suffices to take the first infinite ordinal as α in the
construction. Example 3.3 is the special case π = {1}.

We extend the term P -local to the π-groups in D and the term P -equiv-
alences to the morphisms in S. They are particularly relevant to the next
example.

Example 3.5 This example is extracted from [7]. Let H be the pointed ho-
motopy category of connected CW-complexes and P a set of primes. We
consider the class D of those spaces X in H for which the power map
ρn : ΩX → ΩX, ρn(ω) = ωn is a homotopy equivalence for all n ∈ P ′. Then
there exists a set of morphisms S0 such that S⊥0 = D, namely

S0 = {ρkn : S1 ∧ (Sk ∪ pt)→ S1 ∧ (Sk ∪ pt) | k ≥ 0, n ∈ P ′},

where ρkn = ρn ∧ id, ρn : S1 → S1 denotes the standard map of degree
n, and pt denotes a disjoint basepoint. Morphisms in S = D⊥ turn out
to be those f : X → Y for which f∗ : π1(X) → π1(Y ) is a P -equivalence
of groups and f∗ : H∗(X;A)→ H∗(Y ;A) is an isomorphism for each abelian
π1(Y )P -group A which is P -local in the sense of Example 3.4. The conditions
of Corollary 1.6 are satisfied. One can take α to be the first infinite ordinal.
Spaces inD will be called P -local and maps in S will be called P -equivalences.
We denote the P -localisation map by l : X → XP . The pair (S,D) extends
the pair (S ′,D′) corresponding to P -localisation of nilpotent spaces.

Since the orthogonal pair corresponding toH∗( ;ZP )-localisation is min-
imal among those pairs extending P -localisation of nilpotent spaces (see
Example 3.2), for each space X there is a natural map from XP to the
H∗( ;ZP )-localisation of X.



Example 3.6 Let H denote the pointed homotopy category of connected
CW-complexes and P a set of primes. Consider the orthogonal pair (S,D)
generated by the set

S0 = {ρkn : Sk → Sk | deg ρkn = n, k ≥ 1, n ∈ P ′}.

The class D consists of spaces whose homotopy groups are P -local, and one
finds, with the same methods as in [7, 9], that S consists of morphisms
f : X → Y such that f∗ : π1(X) → π1(Y ) is a P -equivalence of groups
and f ∗ : Hk(Y ;A) → Hk(X;A) is an isomorphism for k ≥ 2 and every
ZP [π1(Y )P ]-module A. This class S is not closed under homotopy colimits,
because the natural map from S1 to K(ZP , 1), which is the homotopy colimit
of a certain direct system of maps ρ1

n, n ∈ P ′, fails to induce an isomorphism
in H2 with coefficients in the group ring ZP [ZP ], and hence does not belong
to S. Thus, Corollary 1.6 does not apply in this case. In fact, the orthogonal
pair (S,D) does not admit a localisation functor [7].

On the other hand, if we delete from S0 the maps ρ1
n, n ∈ P ′, then the re-

sulting class D consists of spaces whose higher homotopy groups are P -local,
and S consists of morphisms f : X → Y inducing an isomorphism of funda-
mental groups and such that f ∗ : Hk(Y ;A) → Hk(X;A) is an isomorphism
for all k and every ZP [π1(Y )]-module A. This orthogonal pair (S,D) is the
maximal extension to H of the pair described in Example 3.1. Now Corol-
lary 1.6 provides a localisation functor associated to (S,D). This functor
induces an isomorphism of fundamental groups and P -localises the higher
homotopy groups, i.e., corresponds to fibrewise localisation with respect to
the universal covering fibration X̃ → X → K(π1(X), 1).

Example 3.7 Fix a group G and let H(G) be the category whose objects
are maps X → K(G, 1) in H and whose morphisms are homotopy com-
mutative triangles. Given an abelian G-group A, let S(A) be the class of
morphisms f such that f∗ : H∗(X;A)→ H∗(Y ;A) is an isomorphism. Then
S(A) satisfies the conditions of Theorem 1.4. Example 3.2 corresponds to
the particular case G = {1}. In [7] we show that several idempotent functors
on H extending P -localisation of nilpotent spaces can be obtained by splic-
ing localisation functors with respect to twisted homology in a suitable way.
In fact, Example 3.5 can be alternatively obtained as a special case of this
procedure.
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Notes in Math. 221, Springer-Verlag (1971).

[15] A. Heller, Homotopy Theories, Mem. Amer. Math. Soc. 71 (1988),
no. 383.



[16] P. Hilton, G. Mislin and J. Roitberg, Localization of Nilpotent
Groups and Spaces , North-Holland Math. Studies 15 (1975).

[17] S. MacLane, Categories for the Working Mathematician, Graduate
Texts in Math. 5, Springer-Verlag (1975).

[18] G. Peschke, Localizing groups with action, Publ. Mat. 33 (1989), no. 2,
227–234.

[19] M. Pfenniger, Remarks related to the Adams spectral sequence,
U.C.N.W. Maths Preprint 91.19, Bangor (1991).

[20] P. Ribenboim, Torsion et localisation de groupes arbitraires, Lecture
Notes in Math. 740, Springer-Verlag (1978), 444–456.

[21] D. Sullivan, Genetics of homotopy theory and the Adams conjecture,
Ann. of Math. 100 (1970), 885–887.

[22] Z. Yosimura, Localization of Eilenberg-MacLane G-spaces with re-
spect to homology theory, Osaka J. Math. 20 (1983), 521–537.

Carles CASACUBERTA
Centre de Recerca Matemàtica
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